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Abstract: Ambient backscatter communication (AmBC) is considered as a promising future emerging
technology. Several works on AmBC have been proposed thanks to its convenience and low cost
property. This paper focuses on finding the optimal energy detector at the receiver side and
estimating the corresponding bit error rate for the communication system utilizing the AmBC.
Through theoretical and numerical analyses, we present two important results. First, we improve
the existing energy detector by calculating the optimal averaging power orders. Second, we take
advantage of the early work on orthogonal frequency division multiplexing (OFDM), where the
repeating structure of ambient OFDM signals is exploited to cancel out the direct-link interference by
using a cyclic prefix, then provide a test statistic in which optimal detection threshold and optimal
power order are derived accordingly. The study reveals the inherent limitation of AmBC energy
detectors and provides a guidance for achieving optimal power order for a given significance level.

Keywords: ambient backscatter communication; energy detector; OFDM; test statistic

1. Introduction

Ambient backscatter communication (AmBC) is a new mechanism in which a device can
communicate with others by backscattering ambient radio-frequency (RF) signals (e.g, WiFi, TV signals)
without any additional power suppliers [1,2]. In traditional backscatter communication such as
radio-frequency identification (RFID system), a device conveys the data by modulating its reflections
of an incident RF signal, which takes an expensive process for generating radio waves. For instance,
a reader generates a continuous carrier wave then broadcasts it. A tag receives the signal and modulates
it, and backscatters to the reader. Thus, the backscattered signal has a long delay and additional path
loss. Moreover, as communicating and computing devices become smaller and abundant, powering
them becomes more difficult because they require more batteries, cost, and recharging/replacement
that is impractical at large scales. The AmBC solves this problem by utilizing existing RF signals,
rather than generating their own radio waves. Since the RF signals are reused, the AmBC is
more power-efficient and much cheaper than the traditional radio communication [3–5]. Therefore,
the AmBC is the key building block that enables internet-of-things (IoT) and ubiquitous communication
among devices with cheap and nearly zero maintenance.

Basically, RF-power devices employing the AmBC must face three main challenging issues [5,6].
First, since the backscatter signals are weak, the problem of signal detection with small changes
needs to be investigated. Second, traditional backscatter receivers are constructed from powered
components (e.g., oscillators), while the AmBC ones use already available RF sources, thereby reducing
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extra hardware cost and power consumption. In terms of spectrum sensing, the spectrum resource
utilization can be much more improved since it does not need to allocate a new frequency spectrum [7].
For instance, by taking the advantage of existing RF signals in the air, it does not required any additional
deployment like the RFID reader that suffers more installation and maintenance costs. The question is
either how to build a network that enables ambient backscattering or build new complex digital signal
processing techniques. Third, how to operate a distributed multiple access protocol and supporting the
functionalities required for the AmBC should be considered. In this paper, we attempt to solve the first
problem, which is the design of reader detector to recover the tag bits. There are several related works
on this topic such as [5,8,9]. In [5], the authors first performed energy detection without the ability
to directly measure the energy on the medium. The key insight is that if the transmitter backscatter
information at a lower rate than the ambient signals, then one is able to design a receiver that can
separate the two signals by leveraging the difference in communication rates. Thus, the results are
very low signal-to-noise ratio (SNR) decoding and low data rate. In [8,9], the authors focused on the
uplink signal detection of the communication systems adopting the AmBC, where the detectors exploit
maximum a posteriori probability (MAP) and maximum-likelihood (ML) estimators at the receiver side.
However, the solutions do not perform well when the difference between the backscatter channel and
the direct-link channel is small. Other approaches [10,11] make use of WiFi backscatter to decode the
tag bits by detecting the changes in the received signal strength which highly depend on channel and
multi-path effects. Recently, a new AmBC over orthogonal frequency division multiplexing (OFDM)
signals was proposed in [12], where the system model for such AmBC system from spread-spectrum
perspective was established. By inhibiting the effects of cyclic prefix (CP) on the ambient OFDM signals,
the authors developed a test statistic that is able to invalidate the inter-symbol interference among
them. An extension of [12] to the case of multi-antenna receiver was presented in [13], where the test
statistic was built from a linear combination of the per-antenna test statistics.

Inspired by [12], our approach is to focus on the uplink signal detection and the performance
analysis for a communication system that utilizes AmBC over ambient OFDM signals. Our main
ideas and contributions are highlighted as follows. First, we introduce the system model for the
AmBC over ambient OFDM carriers in the air and the test statistic for tag signal detection, which are
established in [12]. Second, we design an improved energy detector by proposing an arbitrary positive
power operation on the signal amplitude instead of the squaring operation given as the previous work.
Numerical results demonstrate that the proposed detector with optimum power order can achieve
lower bit error rate (BER) and higher data rate than those in [12].

The remainder of this paper is organized as follows. Section 2 presents the system model and the
problem formulation. Section 3 analyzes the optimal energy detector design for the proposed scheme.
Section 4 gives the numerical results, followed by the conclusion in Section 5.

2. System Model and Problem Formulation

The aim of this section is first to introduce the existing AmBC system that utilizes OFDM carriers,
then to present those factors that affect the detector performance. In order to understand how to
make use of both energy harvesting and backscattering, we investigate the AmBC system model
where an energy harvesting tag uses the existing radio signals from ambient sources to operate
itself (e.g., RF source). It produces a modulated reflection of those signals to a nearby receiver
(e.g., reader). Legacy receivers employ OFDM structure, where data is transmitted in parallel on
a certain number of sub-carriers of different frequencies. Thus, it leads to low power consumption
on data transmissions which is very suitable for low-powered hardware or batteryless IoT devices.
Moreover, in terms of efficient spectrum sensing, it has been shown that energy detection approach has
low computational complexity and ability to identify the spectrum holes without a priori knowledge
of primary characteristic [8,14,15]. Once we develop an appropriate test statistic for energy detector,
it can guarantee a desired detection performance.
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2.1. Notations

The following notations are used throughout the paper.

• E(·) and Var(·) denote the expectation and variance operators, respectively.
• N (µ, σ2) and CN (µ, σ2) denote the Gaussian and the circularly-symmetric Gaussian distributions

with mean µ and variance σ2, respectively.
• Re{·} is the real part of a complex number.
• A random variable X that is gamma-distributed with shape k and rate θ is denoted as X ∼ Γ(k, θ).

The corresponding probability density function (PDF) in the shape-rate parametrization is
f (x; k, θ) = 1

θkΓ(k) xk−1 exp{−x/θ}, where Γ(k) =
∫ ∞

0 xk−1exdx, k ∈ (0, ∞) is the gamma function
evaluated at k.

2.2. Overall System Architecture

The overall system architecture utilizing the AmBC over OFDM carriers is illustrated in Figure 1.
In this system, we consider two communication components coexist: the legacy OFDM system and
the AmBC system. In the legacy OFDM system, the RF source transmits OFDM signals to its legacy
users, while in the AmBC system a backscatter tag transmits its modulated signals to the reader over
ambient OFDM carriers from the RF source. Note that this tag is equipped with a switch that can
split the received signal into two parts: information decoder (ID) and energy harvester (EH). Assume
that they are all connected to a single antenna and use the same RF signals. The RF-powered passive
tag communicates with the reader by switching its antenna impedance of its backscattered signals.
The energy harvester collects the energy from the ambient OFDM signals and uses it to provide
a small amount power required for the communication and performing tasks at the tag. Finally,
the backscattered signal is received and decoded by the reader.
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Figure 1. A communication system utilizing the AmBC over OFDM carriers. The AmBC system consists
of three main components: RF source (e.g., TV tower), ambient backscatter transmitter (e.g., AmBC tag),
and ambient backscattter receiver (e.g., reader), while the legacy OFDM system consists of several
legacy receivers (e.g., mobile phones).

Mathematically, the RF source transmit a passband signal s̃(n) = Re
{√

Pss(n) exp{jω2π fc
n
fs
}
}

,
where s(n) is the equivalent complex baseband signal with unit power, Ps is the average transmit
power, fc is the carrier frequency, and fs is the OFDM bandwidth. The tag receives the RF source
signal and transmit its modulation signal c̃(n) to the reader. When we add the CP, the ambient OFDM
signals are converted to a serial form and transmitted through a wireless channel. Suppose that the
channel impulse response of a multipath channel is modeled as a finite impulse response filter with
a certain number of taps. We denote Nst, Ntr, and Nsr as the number of taps corresponding to hst(n),
htr(n), and hsr(n), respectively. Here, we define the maximum delay of the multipath channels as
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L , max{Nsr, Nst + Ntr − 1}. Let N be the number of subcarriers of OFDM signals s(n) and Ncp

be the CP length. In order to gain perfect timing alignment and frequency synchronization at the
receiver side, we assume that the maximum delay spread of the channel is less than the length of the
CP, i.e., L� Ncp. Theoretically, increasing the number of OFDM subcarriers N leads to larger delay
spread. With a fixed available bandwidth, it may cause the frequency mismatch problem between two
neighbor subcarriers because the subcarrier spacing is very small. On the other hand, the number of
OFDM carriers should be proportional to the CP length in practice. Thus, a tradeoff between the CP
length and the subcarrier spacing must be obtained for a reasonable design.

Let x(n) be the tag data signal, thus, the received signal at the reader is given as

y(n) = [ηc(n)x(n)]htr(n)︸ ︷︷ ︸
yb(n): received backscattered

signal from the tag

+
√

Pss(n)hsr(n)︸ ︷︷ ︸
yd(n): direct-link interference

from the RF source

+ w(n), (1)

where w(n) ∼ CN (0, σ2) and η are the noise and the signal attenuation parameter inside the
tag, respectively.

2.3. Tag Operation

To ensure the orthogonality of received subcarriers over the useful symbol period as well as
efficient joint allocation of subcarriers and powers among legacy users, we need to design a waveform
to convey information bit in tag symbol, where the CP is longer than the delay spread of the
channel. In fact, the tag uses the waveform construction x(n) in [12] to convey the bit B in each
tag symbol as

x(n) =

Π(n) + Π
(

n− N+Ncp
2

)
, if B(n) = 0 (bit 0),

Π(n)−Π
(

n− N−Ncp
2

)
, if B(n) = 1 (bit 1),

(2)

where the square function Π(n) is defined as

Π(n) =

{
1 for n = 0, 1, · · · , N+Ncp

2 − 1,

0 , otherwise
. (3)

2.4. Received Signal at the Reader

At the reader, due to the multipath effect, two portions of the direct-link interference signal yd(n)
in each OFDM symbol period are identical, i.e., yd(n) = yd(n+ N), n = Nsr − 1, · · · , Ncp− 1. Similarly,
for the received ambient OFDM signal c(n) at the tag, c(n) = c(n + N), n = Nst − 1, · · · , Ncp − 1.
Finally, we obtain the received backscattered signal yb(n) at the reader as

yb(n) =

{
yb(n + N), if B = 0

−yb(n + N), if B = 1
. (4)

For n = L− 1, · · · , Ncp − 1, we have

z(n) , y(n)− y(n + N) =

{
v(n), if B = 0

u(n) + v(n), if B = 1
. (5)

Here, v(n) ∼ CN (0, σ2
v ) with σ2

v = ρσ2 where ρ is the noise uncertainty factor with a given
upper bound noise uncertainty (in dB) B = supp{10 log10 ρ} [8], and u(n) ∼ CN (0, σ2

u) with
σ2

u = 4Ps|η|2|htr|2 ∑Nst−1
l=0 |hst(l)|2. Our goal is to design a test statistic for the reader to recover the

tag signal x(n) from the received signal y(n) without knowledge on OFDM ambient signal
√

Pss(n)
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transmitted from RF source. We begin by exterminating the following detection problem which tries
to distinguish between the hypotheses H0 and H1.

H0 : z(n) = v(n), if B = 0

H1 : z(n) = u(n) + v(n), if B = 1
. (6)

We define the detection SNR as γ , σ2
u

σ2
v

.

3. Optimal Detector Design

Let π0 = P(H0) and π1 = P(H1), then π0 + π1 = 1. Regarding to [16], a decision function δ(x)
partitions the observation domain R into two disjoint sets R0 and R1, where

R0 = {x : δ(x) = 0}, R1 = {x : δ(x) = 1}. (7)

We also observe that we have two possible incorrect decisions: (i) probability of false alarm,
Pf (type-I error) and (ii) probability of miss detection, Pm(δ) = 1− Pd(δ) (type-II error), where Pd(δ) is
the probability of correct detection. Mathematically, we express

Pf = P(H1 was chosen when H0 true),

Pd = P(H1 was chosen when H1 true).

In [16], Neyman and Pearson formulated the binary hypothesis testing problem pragmatically
by selecting the test δ that maximizes Pd(δ) or equivalently that minimizes Pm(δ), while ensuring
that Pf (δ) is less than or equal to a number α. The energy detector is derived by using the generated
likelihood ratio test approach [16], where u(n) ∼ CN (0, σ2

u) and v(n) ∼ CN (0, σ2
v ).

L(x) =
f1(z)
f0(z)

H1
≷
H0

τ, (8)

where τ is chosen such that Pf =
∫

L(z)>τ f (z|H0)dz = α. We define z = {z(n)}, u = {u(n)},
v = {v(n)} (n = L− 1, · · · , Ncp − 1), and D = Ncp − L + 1. For our hypotheses H0 and H1, the PDFs
of the samples can be derived as

f0(z) =
1

(2πσ2
v )

D/2 exp

−∑
Ncp−1
n=L−1 |z(n)|2

2σ2
v

 , (9)

f1(z) =
1

(2πσ2
v )

D/2 exp

−∑
Ncp−1
n=L−1 |z(n)− u(n)|2

2σ2
v

 . (10)

Considering the same detection problem of (6), we define a new test as the following to improve
the detection performance.

t ,
1
D

Ncp−1

∑
n=L−1

|z(n)|p
σ

p
v

H1
≷
H0

τ. (11)

Here, p > 0 is an arbitrary constant which is discussed later, and τ is the detection threshold
to be determined. Then, the test statistic follows the Gamma distribution with shape ki and scale θi,

i.e., t ∼ Γ(ki, θi) under Hi, where ki =
[E(t|Hi)]

2

Var(t|Hi)
, θi =

Var(t|Hi)
E(t|Hi)

(i = 0 or 1). We denote F0(·), F1(·) are
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the cumulative distribution functions (CDFs) of the Gamma variable t under H0 and H1, respectively,
thus, Fi(z; ki; θi) =

∫ z
0

1
θ

ki
i Γ(ki)

xki−1e−x/θi dx (i = 0, 1). Then, we have

Pf = P(t > τ|H0) = 1− F0(τ; k0, θ0), (12)

Pd = P(t > τ|H1) = 1− F1(τ; k1, θ1). (13)

To set the threshold, we set Pf = α and thus, τ = F−1
0 (1 − α, k0, θ0), resulting in Pd = 1 −

F1(F−1
0 (1− α, k0, θ0); k1; θ1). According to the central limit theorem (CLT) [16], as D becomes large

we can represent t ∼ N (E(t), Var(t)). By assuming that |z(n)|p/σ
p
v are independent and identically

distributed random variables, we obtain

E(t|H0) = µ0; Var(t|H0) =
σ2

0
D

, (14)

E(t|H1) = µ1; Var(t|H1) =
σ2

1
D

. (15)

Here, we have

µ0 =
2p/2
√

π
Γ
(

p + 1
2

)
, µ1 =

2p/2(1 + γ)p/2
√

π
Γ
(

p + 1
2

)
, (16)

σ2
0 =

2p
√

π

[
Γ
(

2p + 1
2

)
− 1√

π
Γ2
(

p + 1
2

)]
, (17)

σ2
1 =

2p(1 + γ)p
√

π

[
Γ
(

2p + 1
2

)
− 1√

π
Γ2
(

p + 1
2

)]
, (18)

where Γ(k) =
∫ ∞

0 xk−1exdx (k > 0) is the Gamma function evaluated at k. Thus, the probabilities of
false alarm and correct detection can be evaluated as

Pf ≈ Q
(

τ − µ0

σ0/
√

D

)
, Pd ≈ Q

(
τ − µ1

σ1/
√

D

)
. (19)

To set the threshold, we have Pf = α, and thus, τ = Q−1(α)σ0/
√

D + µ0, resulting in

Pd ≈ Q

(
Q−1(α)σ0 +

√
D(µ0 − µ1)

σ1

)
. (20)

Thus, the overall BER is given by

Pe = π0Pf + π1(1− Pd). (21)

Considering equal probabilities of each type of error, i.e., π0 = π1 = 1/2, the minimum value of
BER is achieved by taking the derivative of Pe with respect to τ and letting it to zeros, resulting the
optimal detection threshold τ∗. The detailed derivation is given in the Remark 1.

Remark 1 (Optimal value of detection threshold). In order to find the optimal value τ∗, we need to solve
the following equation

1√
2πσ2

0 /D
exp

{
− (t− µ0)

2

2σ2
0 /D

}
=

1√
2πσ2

1 /D
exp

{
− (t− µ1)

2

2σ2
1 /D

}
. (22)

By taking the natural logarithm on both sides, (22) can be simplified as
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D
2

[
1
σ2

0
− 1

σ2
1

]
t2 + D

[
µ0

σ2
0
− µ1

σ2
1

]
t +

[
ln

σ0

σ1
+

D
2

(
µ2

0
σ2

0
− µ2

1
σ2

1

)]
= 0. (23)

The above equation is a quadratic form, thus, the optimal detection threshold is given by τ∗ =

− ξ1
2 +

√(
ξ1
2

)2
− ξ2, where

ξ1

2
=

(
µ0

σ2
0
− µ1

σ2
1

)(
1
σ2

0
− 1

σ2
1

)
, ξ2 =

2
D ln σ0

σ1
+

(
µ2

0
σ2

0
− µ2

1
σ2

1

)
(

1
σ2

0
− 1

σ2
1

) . (24)

Remark 2 (Optimal value of power order p). In [12], the value p is fixed at p = 2. In our paper, the value p
is chosen to maximize Pd at fixed Pf , γ, and D. Thus, the optimal value of p∗ is obtained by solving

p∗ = arg max
p

Pd

= arg max
p

Q

(
Q−1(α)σ0/

√
D + µ0 − µ1

σ1/
√

D

)
.

(25)

If we assume Pd to be differentiable, then we can differentiate both sides

∂Pd
∂p

= 0. (26)

The derivation of solving this equation is given in Appendix A.

4. Numerical Results

In [12], the authors compared the energy detector with a benchmark design in which the reader
detected the tag bit by distinguishing between two different orders of the average power of the received
signal y(n), where

z̄ ,
1

N + Ccp

N+Ncp−1

∑
n=1

|y(n)|2. (27)

They also showed that the their design was comparable to the benchmark design in terms of
complexity, but the performance was better in terms of transmission rate and BER. Thus, we compare
our proposed approach with [12] (i.e., p = 2), which is referred as the “conventional” energy detector.
A summary description of simulation parameters is given in Table 1. For comparison purpose, we keep
all the parameter as the same for both detection schemes. In fact, if the tag backscatters the information
at a lower rate than the ambient signals, we can design a receiver that can separate two signals [5,12].

Table 1. Simulation Parameters

Parameter Value

OFDM bandwidth fs = 20 MHz
Number of paths Nsr = Nst = 8, Ntr = 1
Attenuation value η = 1

CP length Ncp = 16, 32, 64, 128
Number of carriers N = 8Ncp

In the following, we briefly describe some metrics that we used to evaluate the proposed statistic
test. The test must be a sufficient statistic for our energy detection problem and contains all the
information required to distinguish two hypotheses H0 and H1.
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(i) First, we check the validity of the Gaussian approximation for the proposed test. In fact, since the
test statistic (11) follows the Gamma distribution under both hypotheses, the length D must be
large enough to apply the CLT while not very large to keep the approximation meaningful. In the
first run, Figure 2 gives us a case study on this approximation.

(ii) Second, in order to find the optimal p for the test (11) instead of using p = 2, we solve (25) to
obtain an adaptive power order. The result is shown in Figure 3. The purpose of this result is to
observe how the p∗ changes for maximizing the probability of correct detection according to the
changes in the SNR. Thus, we may have a certain strategy to select p for a given SNR and a false
alarm rate.

(iii) Third, with different settings (e.g., SNR and Ncp), we observe how much the BER changes when
using our test statistics and the conventional ones in terms of our ability to solve p∗ with high
correct detection probability Pd. The results are given in Figures 4 and 5.

(iv) Finally, we provide the median receiver operating characteristics (ROC) curve for our detector
design as predicted by our aforementioned analysis.

Following the above construction, in order to verify the accuracy of approximating the simulated
PDFs (i.e., Gamma distribution) by the theoretical approximation (i.e., Q-function), Figure 2 illustrates
those PDFs when γ = 0 dB, Ncp = 64, and N = 512, thus, L = 8 and D = 57. We observe that
the Gamma approximation fits well in most cases considered. The accuracy of the approximation
increases when p decreases. This approximation may be adequate for practical energy detectors since
we can improve it by increasing the length D in the detection. Thus, we have to select appropriate
values of length D and Pf to guarantee high probability of detection, while keeping the Gaussian
approximations to be valid.

Figure 3 shows the optimum value of p in (25) with different fixed values of Pf = α. The value
p∗ maximizing Pd decreases when γ increases. We also plot a small subgraph at the right hand side
of Figure 3 to illustrate the p∗ value (in vertical axis) versus small SNR (in horizontal axis) because
we observe that p∗-curve has a big jump in its value for γ in the range of (0, 1.5). We offer some brief
comments. First, the value p∗ is probably the best solution we has achieved through numerical results.
The p∗-curve grows sub-linearly versus small value of SNR (e.g, γ ≤ 1) simultaneously, while it decays
slowly and remains constant as a function of γ ≥ 6. In a certain sense, the vector z represents the
relative difference between two input signals. Due to weak backscattered signals, if it has any small
component, p = 2 makes them negligible. On the other hand, the optimal power order is around
1, which is more irritated by small values. For instance, when γ ≤ 1, the proposed detector returns
p∗ ≈ 1 rather than p = 2. In this case, it prefers returning the number of non-zero values of the vector
z = {z(n)} rather than tolerates them.
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Figure 2. Illustration of CDFs under H0 and H1. Note that the theoretical analysis shows that the
test statistic t ∼ Γ(ki, θi) under Hi, while the simulation approximation gives us t ∼ N (E(t), Var(t)),
where E(t) and Var(t) are given in (14) and (15), respectively. (a) Simulated CDFs for t under H0 when
γ = 0. (b) Simulated CDFs for t under H1 when γ = 0.

SNR γ (dB)
0 2 4 6 8 10

O
pt

im
al

 v
al

ue
 p

*

0.5

1

1.5

2

2.5

3

α=0.01
α=0.05
α=0.1

0 0.5 1 1.5

0.5

1

1.5

2

2.5

Figure 3. The optimum value of power order p versus γ. It shows the effect of γ on p∗ at several
different SNR levels, which comes from solving procedure of (26). We generated an SNR vector of
21 equally-spaced points between 0 and 10. The p∗-curve is aimed to choose the appropriate p value
for the test statistic.

Figure 4 demonstrates the theoretical BER performance of the conventional energy detector
with p = 2 and the proposed detector with optimal power order p∗. We set Ncp = 64, N = 512,
and α = 0.01. We can see that the energy detector performs worse than the proposed one because of the
inaccurate Gaussian approximation. We also see that the improvement here becomes more prominent
when the target probability of false alarm is smaller, as well as the achieved SNR is relatively higher.
The BER becomes flat even for high SNR value. For the proposed detector, it can be found that the
increasing SNR yields reduced BER, especially when SNR is small (e.g., SNR ≤ 2 dB). For larger SNR,
the BER performance remains unchanged. This phenomenon may be caused by the strong direct-link
interference [13]. Morever, since the reader tries to distinguish between two bits by taking a sufficiently
large number of samples, i.e., D, the value of D we consider here is large enough to apply the CLT,
thus, the probability of miss detection and the probability of false alarm are moderate, i.e., they are not
changed with D. Consequently, the overall BER in (21) does not become much different. The detector
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must reach the error probabilities uniformly over a whole uncertainty set with various D. As SNR
increases, it hits the SNR wall [17] while the required sample complexity meets our performance target.

SNR (dB)
0 2 4 6 8 10

B
E

R

10-3

10-2

10-1

100
p=2, α=0.01
Optimal p, α=0.01
p=2, α=0.05
Optimal p, α=0.05
p=2, α=0.1
Optimal p, α=0.1

Figure 4. BER versus SNR γ. We observe that BER achieves the maximum at γ = 0. The designed
detector can perform well even when the SNR is high. In both detector schemes, the BER remains
unchanged despite of large SNR because of strong direct-link interference [8] or SNR wall problem [17].

Figure 5 depicts the curves of BER versus SNR with several value of Ncp for the proposed detector.
We set γ = 5 dB and α = 0.01. The BER approaches 0.5 at small Ncp and there exist little gaps between
BER curves. We observe that the BER decreases as Ncp increases. However, the smaller Ncp offers
higher data rate from the relationship

Rtag =
fs

(N + Ncp)
, (28)

where Rtag is the tag rate [12]. Obviously, if we fix the number of OFDM carriers N, Rtag decreases
as the CP length increases, while the BER decreases, as illustrated in Figure 5. Thus, there exists
a trade-off between the BER and the data rate Rtag.

SNR (dB)
0 2 4 6 8 10

B
E

R

10-4

10-3

10-2

10-1

100
N

cp
=16

N
cp

=32

N
cp

=64

N
cp

=128

Figure 5. BER versus SNR with Ncp. As we predicted, the BER increases as Ncp decreases. Since N
is defined to be proportional to Ncp, while Ncp should be greater than the channel delay spread L to
eliminating the interference, there exists tradeoffs between the CP length and the subcarrier spacing as
well as the CP length and the tag rate.
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In order to assess the performance of the proposed detector, we plot the ROC curves in Figure 6,
which shows the relationship between the probability of detection Pd and the probability of false alarm
Pf for a given SNR γ. We confirm that the proposed approach provides better ROC values when γ is
small, i.e., the performance gain becomes much larger in the lower SNR environment. As the SNR
increases, the detection threshold must be set higher to obtain a good ROC.

Probability of false alarm P
f
= α
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0.8

0.85

0.9

0.95

1

γ=0 dB
γ=5 dB
γ=10 dB

Figure 6. ROC curve with SNR γ. An ROC curve is obtained by taking the average over 100 independent
trials. From the figure, for each false alarm rate Pf , there is a SNR value γ for achieving the objective
probability of correct detection Pd.

5. Conclusions

In this paper, we have studied the signal detection for the AmBC system with OFDM carriers,
while providing some key mathematical insights underlying this theory and proposing an improved
energy detector with optimum power orders. Especially, in order to maximize the probability of correct
detection, the power order of energy detector was chosen subject to the target probability of false alarm.
The proposed detector was shown to improve energy efficiency for spectrum sharing via AmBC.

Moreover, based on the insightful results we suggest the following directions for future work.

(i) Regarding tag operation, an important direction is to come up with a model that examines the
energy harvesting model and enhances the detection performance accordingly.

(i) In our problem formulation, we use a simple noise uncertainty model, i.e., the variance of v(n)
is assumed to be bounded by a given number B. This value depends only on a single value ρ,
thus, it may not incorporate the RF strength and other changes in the environments. Therefore,
we need to investigate other nonlinear models that relate to energy detector’s inherent noise
uncertainty.

(ii) We have shown that the proposed energy detector can be effective for the AmBC system with
OFDM carriers. However, it needs more theoretical bounds on D and SNR γ along with numerical
results.

(iii) In the problem formulation, we assumed that the tag has two states: backscattering and
non-backscattering, while in practice its antenna load may switch among three states: no reflecting,
reflecting in the same phase, and reflecting in the opposite phase, resulting in a ternary signal
B(n). Thus, we need to design a waveform x(n) to convey the corresponding bits.

We expect that the above future directions can contribute to the advancement of energy detection
and estimation areas.
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Abbreviations

The following abbreviations are used in this manuscript:
AmBC Ambient backscatter communication
BER Bit error rate
CDF Cumulative distribution function
CLT Central limit theorem
CP Cyclic prefix
ED Energy harvester
ID Information decoder
MAP Maximum a posteriori probability
ML Maximum likelihood
OFDM Orthogonal frequency-division multiplexing
PDF Probability density function
RF Radio frequency
RFID Radio-frequency identification
ROC Receiver operating characteristic
SNR signal-to-noise ratio
TV Television

Appendix A. Solving (26)

As we mentioned before, the optimal value p∗ can be obtained by simply taking the derivative of
Pd and setting it to be zero. The detailed procedure is described as follows. By using the chain rule
and the fundamental theorem of calculus to find the derivative of ∂Pd

∂p , we rewrite (26) as

∂Pd
∂Λ

∂Λ
∂p

= 0, (A1)

where Λ = [Q−1(α)σ0 +
√

D(µ0 − µ1)]/σ1 , A/σ1. With some mathematical manipulations, it can be
shown that

∂Pd
∂Λ

= − 1
2π

e−
Λ2
2 ,

∂Λ
∂p

=

∂A
∂p σ1 − A ∂σ1

∂p

σ2
1

. (A2)

Defining Ψ(x) = d
dx ln Γ(x) = Γ′(x)

Γ(x) which is known as the Ψ-function [18], we have

∂A
∂p

= Q−1(α)
dσ0

dp
+
√

D
(

dµ0

dp
− dµ1

dp

)
, (A3)

dµ0

dp
=

2p/2−1
√

π
Γ
(

p + 1
2

) [
ln 2 + Ψ

(
p + 1

2

)]
, (A4)

dσ0

dp
=

2p/2−1

B 4
√

π

[
B2 ln 2 + Ψ

(
p +

1
2

)
Γ
(

p +
1
2

)]
− 1√

π
Ψ
(

p + 1
2

)
Γ2
(

p + 1
2

)
, (A5)
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dµ1

dp
=

2p/2−1(1 + γ)p/2
√

π
Γ
(

p + 1
2

)
×
[

Ψ
(

p + 1
2

)
+ ln(2 + 2γ)

]
, (A6)

dσ1

dp
=

2p/2−1(1 + γ)p/2

B 4
√

π

[
B2 ln(2 + 2γ) + Ψ

(
p +

1
2

)
× Γ

(
p +

1
2

)
− 1√

π
Ψ
(

p + 1
2

)
Γ2
(

p + 1
2

)]
,

(A7)

where B =

√
Γ
(

p + 1
2

)
− 1√

π
Γ
(

p+1
2

)
. By substituting (A3)–(A7) into (A2), the solution of (26) can

be numerically found. With other fixed parameters, Pd is a function of the single variable p. Thus,
we first select an guess interval for p, then apply efficient numerical tools (e.g., Newton method [16])
to obtain the approximate roots of (A2). We also assume that the error produced due to computing
process can be ignored, i.e., the numerical result is acceptable for all cases.
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