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Abstract: Recently, we have been concerned with locating and tracking vehicles in aerial videos.
Vehicles in aerial videos usually have small sizes due to use of cameras from a remote distance.
However, most of the current methods use a fixed bounding box region as the input of tracking.
For the purpose of target locating and tracking in our system, detecting the contour of the target
is utilized and can help with improving the accuracy of target tracking, because a shape-adaptive
template segmented by object contour contains the most useful information and the least background
for object tracking. In this paper, we propose a new start-up of tracking by clicking on the target,
and implement the whole tracking process by modifying and combining a contour detection network
and a fully convolutional Siamese tracking network. The experimental results show that our algorithm
has significantly improved tracking accuracy compared to the state-of-the-art regarding vehicle
images in both OTB100 and DARPA datasets. We propose utilizing our method in real time tracking
and guidance systems.
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1. Introduction

Visual object tracking is fundamental in various tasks of computer vision, such as video
surveillance [1], augmented reality, or autonomous and assistance systems, such as automatic
driving [2]. This paper focuses on the problem of visual object tracking, which is one of the most active
research areas. Tracking generally describes the task of detecting and following one or more than one
objects in a video sequence, where substantial strategies are used. For instance, tracking by simple
template, tracking by salient image feature, or tracking by highly adaptive online learning.

A large amount of previous work has been done in both single object tracking [3–7] and
multiple-object tracking [8–14]. There are different kinds of challenges in object tracking, such as
appearance variance caused by motion, illumination, occlusion, and deformation [15,16]. Tracking by
detection [17–22] is one of the normal strategies to deal with these challenges. However, most of
them depend on bounding boxes which are a four-dimensional vector with x, y coordinates, width,
and height as input for target representations, and typically suffer from the problem of bounding
boxes drifting. The drifting problem may be caused by several reasons: target occlusion, articulated or
non-rigid motions, confusion of foreground and background, etc. Take confusion of foreground and
background for an example, with only a bounding box region in the first frame as the known target,
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it is difficult to differentiate the target from the cluttered background especially when the target itself
moves, or has a change of appearance.

Recently, tracking algorithms based on segmentation have been investigated [23–27], but only
pixel-level information is utilized in semantic structure modeling for targets in these methods.
If higher level semantic information is required, that will introduce a huge amount of computation.
Most methods extract semantic information depending on deep convolutional neural networks (CNNs)
and are not able to achieve real time requirement. On one hand, real-time tracking is demanded in
most of the applications. On the other hand, many approaches also adopt online training, which is
computationally expensive, to boost the performance. Conventionally, it is difficult to satisfy both
real time and high performance in a single tracker. Therefore, it is very crucial to balance the tracking
performance and the time consumption.

As mentioned above, both traditional bounding boxes methods and pixel-level tracking by
segmentation methods have their respective drawbacks. In our task, our mission is to locate and track
vehicles in real time. These vehicles have small size in images. As a result, it is difficult for a human
to locate vehicles precisely in real-time video. Another problem is that taking fixed bounding boxes
as input in most tracking algorithms is not suitable for our condition, because too much cluttered
or even deceptive background information makes the small size target unable to be differentiated.
We combined the ideas from both of the two and propose a new method that may be effective to
model both feature-level and semantic-level information of the target. The performance degradation
by the reduction of online training or learning can be offset to a certain extent with this reliable
and information-rich target template. By avoiding time-consuming online training, offline training
is adopted in our system instead. While GOTURN [28] regards object tracking as a box regression
problem, we use a Siamese network to regard it as a similarity learning problem. Finally, we implement
our system with high performance with relatively high speed in real time.

Our contributions can be concluded as follows: (1) We propose and implement the function of a
target selection module by “start with a point” which has advantages over the traditional bounding
boxes for start-up in tracking methods; (2) We modify and combine the contour detection network and
the fully-convolutional Siamese tracking network to track in real time using shape-adaptive templates;
(3) It achieves leading performance for vehicle videos in both OTB100 and Defense Advanced Research
Projects Agency (DARPA) Video Verification of Identity (VIVID) datasets.

The rest of the paper is organized as follows. In Section 2, we introduce the related research
work about system design, object contour detection proposal, and Siamese networks. In addition,
we show the example of failed tracking by Siamese network with bounding box input due to the
interference of background information. In Section 3, we describe the details of our approach to
the contour detection network architecture, the template extraction module, the fully convolutional
Siamese network architecture, and the details of the end-to-end training. Experimental results on the
OTB100 dataset and DARPA datasets are showed in Section 4. Section 5 concludes the paper.

2. Related Work

In this part, we will introduce our related work from three aspects: (1) Algorithm Design,
(2) Bounding Box Proposal vs. Object Contour Proposal, and (3) Siamese Network.

2.1. Algorithm Design

Unlike common start-up with an initial bounding box in most of the tracking process,
our requirement is to select a target in real-time video by clicking on it on the monitor screen.
Upon clicking on any part of the object, the tracking information is learned automatically by the
system. To be specific, our system will detect and segment the contour of the selected target on a
semantic level. After that, target feature can be extracted depending on the contour model without
background information. In other words, we let the tracker know which object to track rather than a
bounding box region. Regarding the contour detection network, we adopt and modify the VGG-16
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network [29], which performs the state-of-art ImageNet challenge [30]. In detail, we adopt the front-end
which has done well in extracting features and modify the back-end to make the network available
to extract contour information. Using the shape-adaptive segmented template as input instead of a
bounding box region successfully solves the problem of bounding box drifting regarding complex or
deceptive background. Then, a filling algorithm is utilized on the output of previous contour detection
network to create a template and start the tracker. Now, we take the template and the search region
of each frame as inputs of the Siamese tracking network which generates a maximum correlation to
denote new output position. A block diagram of the main steps of the whole process is shown in
Figure 1.
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2.2. Bounding Box Proposal vs. Object Contour Proposal

Visual object detection and tracking are two of the most fundamental and challenging computer
vision problems. They are highly interrelated in most of the tasks, detection provides input that can
guide tracking and enhance its performance. At the same time, an accurate solution to the detection
problem provides reliable observations to tracking.

There are various object detection methods with outputs of bounding boxes. Most state-of-art
algorithms are mentioned in both Pont-Tuset et al. and Hosang et al.’s work [31,32]. These methods are
motivated by the requirements of target detecting or tracking and widely used in many applications.
However, compared with object contour detection, the drawback of these bounding boxes is that their
results are not accurate enough to locate the objects. By contrast, the results in object contour detection
clearly show the shape of the target and its exact location. Instead of bounding boxes, using target
contour for detecting or tracking purpose cannot only help with improving the accuracy, but can also
tell the system what the target might be according to the shape.

Figure 2 shows an example of the results in both bounding box proposal method and object
contour proposal method: the result of a bounding box proposal method is a coarse window, while the
result of an object contours proposal method are fine pixels. Compared with the result in the bounding
box method, the result of the object contour method contains most of the target information and the
least background information. From the bounding box in the image on the left-hand side, the sky,
the landing ground, and the buildings which belong to background information are also taken into
account as target information during the feature extraction process in tracking.
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2.3. Siamese Network

Recently, Siamese networks have been widely utilized in many visual tracking tasks. A Siamese
network has two branches; each of them encodes different features into another representation domain
and then compares with each other by fusing with a specific tensor. Finally, a single output is produced
to display results such as similarity. Siamese networks have balanced accuracy and speed because
they transfer the traditional visual tracking from searching tasks to comparison tasks.

For instance, GOTURN is one of the networks using Siamese network in feature extraction process
and adopts fully connected layers as its fusion tensor. In this regression method, the last bounding
box is used to predict a current one. The real-time recurrent network (Re3) [33] also employs Siamese
network, besides, a recurrent network is adopted to make the template branch to produce better
feature. Siamese-FC [34] outperforms GOTURN and this owes to three reasons: the first reason is
that its fully convolutional network architecture makes the offline training data highly discriminative;
the second reason is that Siamese-FC adopts a densely supervised heat map instead of one proposal
regression in GOTURN; last but not least, a correlation layer is utilized as a fusion tensor to improve the
accuracy, which is attributed to the success of those correlation based methods on visual object tracking.
Although a lot of latest discriminative correlation filter (DCF) methods, such as LADCF [35] and
MFT, use multi-resolution and multi-feature fusion to improve the tracking precision, they sacrifice
algorithm speed and are not able to satisfy our real-time requirement. There are several Siamese
methods based on Siamese-FC, for instance, SA-Siam [36] uses two Siamese-FC networks to extract
semantic feature and appearance feature, respectively. The fusion of two branches can also improve
the tracking accuracy with doubled computational load. However, even Siamese-FC still suffers from
background interference. An example of false tracking is displayed in Figure 3.
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In this video image sequence, the man walks on the sidewalk and passes buildings on the roadside.
Our mission is to track the man and use the ground truth in the first frame as the target template.
Because the Siamese network tracker treats the background in the ground truth bounding box as
the tracking object template as well, when the man walks away in frame 92, the tracker is not able
to track the target successfully and tracks on the background instead. After analyzing this example,
we consider that the background has significant features, such as sharp edges or even similarities with
target, which may cause this kind of phenomenon, especially when targets are small compared to the
bounding boxes.

In our system, targets at the beginning are small in most situations because of the long distance
form the camera in the sky. Furthermore, most of the current applications for real-time tracking start
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with cropping an object bounding box manually and are not able to generate suitable bounding boxes
as ground truths in public datasets. Under this condition, we need to make our tracker more intelligent
to differentiate targets and background. Consequently, we propose a method to get shape-adaptive
templates from targets and to track them with a fully convolutional Siamese network.

3. Results

Our main idea is to design a network to track the target according to a manually-selected object in
real-time video. Unlike most current tracking methods, which start with a precise ground truth and run
a high score in public datasets, our network needs to get the best performance in our real-time system.
In this section, we will introduce our method in four parts: the contour detection part, the template
extraction part, the feature matching part, and the training part.

3.1. Contour Detection Network Architecture

A VGG-16 network has great depth and great density (16 convolutional layers and stride-1
convolutional kernels); it is widely used in classification tasks because it is easy to train and converges
fast. Therefore, we adopt the architecture of VGG-16 network to extract features. In order to detect
edge, some modifications are made in our contour detection network. Firstly, all the fully connected
layers are deleted. Secondly, the last pooling layer is deleted. Thirdly, the output is connected with
a refinement module. We take the Conv1, Conv2, Conv3, Conv4, and Conv5 with max pooling in a
VGG-16 network as our first part. During the convolution process, we choose very small convolution
filters (3 × 3), because it is the smallest size that can capture left/right, up/down, and center motions.
The convolution stride is fixed to 1 pixel and max pooling is performed over a 2 × 2 pixel window,
with stride 2. [29] The configurations of the receptive fields and strides are summarized in Table 1.

Table 1. The receptive field and stride size in our contour detection network. (RF is short for receptive
fields, C is short for convolution, and P is short for pooling).

Layer C1_2 P1 C2_2 P2 C3_3 P3 C4_3 P4 C5_3

RF size 5 6 14 16 40 44 92 100 196
stride 1 2 2 4 4 8 8 16 16

After analyzing the characteristics in different layers in a normal holistically-nested edge detection
(HED) [37] network: the lower layers capture more spatial details, but lack sufficient semantic
information; by contrast, the deeper layers encode richer semantic information, but spatial details are
missing. Therefore, we learn from the idea of HED and choose to utilize the highest layers among
the five side outputs. Especially in higher layers, the boundaries in edge maps suffer more from the
problem of thick boundaries from the HED network. Consequently, the output needs to be refined
and resized by up-pooling and transposed convolution/deconvolution to original size. All in all,
the architecture of the proposed contour detection network is shown in Figure 4.
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The following is the comparison of the results of Canny, HED, and our network.
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Figure 5 shows the results of different methods on a vehicle image taken by DARPA. Canny is an
edge detection filter that simply detects edge information according to pixels which have the highest
gradients in each area. HED has five side outputs (HED-dsn1, HED-dsn2, HED-dsn3, HED-dsn4,
and HED-dsn5): the first three lower layers capture more spatial detail, while the last two higher
layers capture semantic information; and the final output (HED-fuse) simply averages independent
predictions from all side output layers without exploring the hierarchical feature representations of
the convolutional network. [38] As a result, the final output of HED has more useless background
information and interference from object texture. Our method, based on the highest layer which has
low resolution and rich semantic information, has the best performance for detecting contours among
the three methods. More details about the contour detection network were discussed in our previous
paper [39].
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3.2. Template Extraction Module

The output of our contour detection network is a binary image with edge information. From the
edge map, we need to firstly extract the object contour and generate a mask with the contour
information. Then, the object can be discriminated from the background. Instead of traditional
bounding box inputs, our template extraction module can generate an active template with object
contour information. The advantages of an active template compared with bounding boxes have been
discussed in Section 2.2. As a result, the accuracy of our contour detection module is significant and
can improve the performance of the entire system. We have tested our contour detection network on
vehicle images taken from the air at Eglin Air Base during the DARPA VIVID program. Figure 6 shows
the results of our contour detection method on vehicle images taken by DARPA.

In order to realize the function of “start with a point”, we firstly utilize the flood fill method in
OpenCV to generate a connected region to represent the position of our selected target from the contour
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map. Next, we can further produce a mask of the object based on the previous stage. The mask sets the
background information as zero and the selected object is segmented from the original image and its
features can be extracted as a target template without background information. A brief diagrammatic
sketch is shown in Figure 7.Sensors 2019, 19 7 
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To formulate out Siamese network, we revise and adopt the convolutional stage of the network
designed by Krizhevsky et al. [30] for both the target template and the search region; the last three
fully connected layers are deleted because our mission is to extract features rather than classification.
The schematic diagram of our feature extraction network structure is shown in Figure 8.
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Figure 8. The schematic diagram of our feature extraction network’s structure: black boxes denote
convolutional layers and red boxes denote max pooling layers.

The kernel size of the first convolutional layer is 11 × 11 × 3 with a stride of 4 pixels.
After response-normalizing and pooling the output of the first layer, the second convolutional layer
takes it as input and filters by kernels of size 5 × 5 × 48. The third convolutional layer is connected to
the normalized and pooled output of the second layer with kernel size of 3 × 3 × 256. The following
two convolutional layers are connected without any intervening pooling or normalization layers with
kernel sizes of 3 × 3 × 192 and 3 × 3 × 192, respectively. The configurations of the receptive fields and
strides are summarized in Table 2.

Table 2. The receptive field and stride size in our Siamese network (RF is short for receptive fields, C is
short for convolution and P is short for pooling).

layer C1 P1 C2 P2 C3 C4 C5

RF size 11 15 31 39 71 103 135
stride 4 8 8 16 16 16 16

After extracting features of the target, we need to find the target within search region in the next
frame. Here, we adopt the technique of stereo matching [40] to match score maps. The details will be
illustrated in the next part.

3.3. Fully Convolutional Siamese Network Architecture

For most tracking methods, such as GOTURN and SiamFC, the first step is to scale and crop
the input target image in the case of a lack of target feature information. During this operation,
the added margin for context has benefits when the target is moving partially outside the bounding
box, but at the same time, may cause the target’s reduction in size and introduces more background
information. GOTURN utilizes the regression result in the last frame and updates the template in
each frame, while SiamFC generates a template from the ground truth in the first frame throughout.
In our approach, we do not update the template because this template is manually selected and has no
non-rigid transformation: manually selected means it is a relatively good template compared with
those in other frames, and vehicles are usually rigid objects. As a result, the template is fixed once
selected by a human in the first frame, while the center of each search region is the position of target in
previous frame. Now, the only remaining problem is finding the target in the search region. We finally
utilize a correlation operation to compute the feature similarity between the template and the search
region and generate a similarity heat map. The highest score in the heat map denotes the location of
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the target’s center in the next frame. To sum up, this loop from frame to frame achieves the function of
tracking in our system.

Figure 9 shows the architecture of the fully convolutional Siamese tracking network: Firstly,
the fully convolutional network takes the template and the search region as input separately and
outputs features for both of them. Then, the similarity of the template’s and the search region’s features
is computed through correlation and a heat map is generated. Finally, the object is located in the search
region according to the heat map.Sensors 2019, 19 9 

 

 
Figure 9. Main framework of our fully convolutional Siamese network. 

Figure 9 shows the architecture of the fully convolutional Siamese tracking network: Firstly, the 
fully convolutional network takes the template and the search region as input separately and outputs 
features for both of them. Then, the similarity of the template’s and the search region’s features is 
computed through correlation and a heat map is generated. Finally, the object is located in the search 
region according to the heat map. 

3.4. Details of Training End-To-End 

In our approach, we pick template and detection patches as sample pairs from two frames with 
a random interval of the same video in ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 
[41]. ILSVRC is a challenge to classify 30 different classes of animals and vehicles and detect these 
objects from videos. Therein, the vehicle videos with ground truth of location can help with our end-
to-end training in the vehicle tracking system. The learning rate is set to  10ି଺ and the batch size is 
set to 8. We train our fully Siamese network end-to-end using straightforward Stochastic Gradient 
Descent (SGD) to minimize the loss function. The logistic loss is defined as: 

)( )(, log 1 yvl y v e−= +
 

(1) 

where y ∈ ሼ+1, -1ሽ , 𝑦 ∈ ሼ+1, −1ሽ is the ground-truth label and v is the score which denotes the 
similarity of each exemplar candidate pair. Because each candidate pair consists of an exemplar 
image and a search region, this generates a score map 𝐷 →. We define the mean of the individual 

losses as the score map loss L:  

)( [ ]( [ ])1, ,
| | u D

L y v l y u v u
D ∈

= 
 

(2) 

where 𝑦[𝑢] ∈ ሼ+1, −1ሽ for each 𝑢 ∈ 𝐷 is required as a true label. 

4. Experiments and Results 

Our segmentation and tracking networks were implemented based on TensorFlow framework 
with OpenCV 2.7 for Python. We firstly ran our tracking network on public datasets OTB100 and 
compared with other methods. In this section, we selected 11 vehicle videos in datasets: BlurCar1, 
BlurCar2, BlurCar3, BlurCar4, Car1, Car2, Car24, Car4, CarDark, CarScale, and Suv. After following 
the instruction of OTB100 benchmark, the precision and success plots of OPE were plotted separately. 
Then, we tested our system on real-world scenarios with images taken by a camera on an unmanned 
aerial vehicle. This set of experiments was performed by comparing the performance of the SiamFC 
with fixed bounding boxes as input and our fully convolutional Siamese network with shape-
adaptive templates. The resolution of this set of images was 640 × 480. From 5 series of videos, we 
chose 2500 images constituting our datasets for testing. All the above experiments were tested on a 
server with a TITAN X GPU and a 3.5 GHz CPU. 

Figure 9. Main framework of our fully convolutional Siamese network.

3.4. Details of Training End-To-End

In our approach, we pick template and detection patches as sample pairs from two frames
with a random interval of the same video in ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [41]. ILSVRC is a challenge to classify 30 different classes of animals and vehicles and detect
these objects from videos. Therein, the vehicle videos with ground truth of location can help with our
end-to-end training in the vehicle tracking system. The learning rate is set to 10−6 and the batch size is
set to 8. We train our fully Siamese network end-to-end using straightforward Stochastic Gradient
Descent (SGD) to minimize the loss function. The logistic loss is defined as:

l(y, v) = log
(
1 + e−yv) (1)

where y ∈ {+1,−1}, y ∈ {+1,−1} is the ground-truth label and v is the score which denotes the
similarity of each exemplar candidate pair. Because each candidate pair consists of an exemplar image
and a search region, this generates a score map D → R . We define the mean of the individual losses
as the score map loss L:

L(y, v) =
1
|D| ∑u∈D

l(y[u] , v[u]) (2)

where y[u] ∈ {+1,−1} for each u ∈ D is required as a true label.

4. Experiments and Results

Our segmentation and tracking networks were implemented based on TensorFlow framework
with OpenCV 2.7 for Python. We firstly ran our tracking network on public datasets OTB100 and
compared with other methods. In this section, we selected 11 vehicle videos in datasets: BlurCar1,
BlurCar2, BlurCar3, BlurCar4, Car1, Car2, Car24, Car4, CarDark, CarScale, and Suv. After following
the instruction of OTB100 benchmark, the precision and success plots of OPE were plotted separately.
Then, we tested our system on real-world scenarios with images taken by a camera on an unmanned
aerial vehicle. This set of experiments was performed by comparing the performance of the SiamFC
with fixed bounding boxes as input and our fully convolutional Siamese network with shape-adaptive
templates. The resolution of this set of images was 640 × 480. From 5 series of videos, we chose
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2500 images constituting our datasets for testing. All the above experiments were tested on a server
with a TITAN X GPU and a 3.5 GHz CPU.

4.1. Results on OTB100

SiamFC achieved state-of-the-art performance of object tracking of the OTB100 datasets. Because
of the differences between the OTB100 challenge and our requirements, here we added a new group
label for vehicle videos and modified the fore-end of our tracking network for testing. To be specific,
we utilized the center point of the ground-truth bounding box as our “starting point”.

We tested the one-pass evaluation (OPE) metric, which is accordance with our system.
The precision plots of OPE and Success plots of OPE are shown in Figure 9.

From Figure 10, we can see that our proposed shape-adaptive template method achieves the best
performance among these trackers. Figure 10a,b shows the distance precision and the overlap precision
in OPE. In this set of experiments, our method obtained a 0.892 success rate at a 20-pixel threshold
in the distance precision and an AUC score of 0.738 for overlap precision. Our method achieves the
best performance for both of them: for distance precision, our method improves the performance by
9.9% when compared with the second-ranked tracker SiamFC.; for overlap precision, our method
outperforms SiamFC by 10.0%.
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4.2. Results on DARPA VIVID Datasets

4.2.1. Qualitative Evaluation

As mentioned before, in our program, the images were taken from distance by a camera
on a fast-moving unmanned aerial vehicle. This resulted in low resolution and small targets.
We used similar datasets collected at Eglin Air Base from airborne sensor platforms by DARPA.
The following two sets of images are from datasets taken by DARPA and are the results of the fully
convolutional Siamese tracking network with different input methods, including fixed bounding boxes
and shape-adaptive templates.

Figure 11 shows results on one sequence of video images in datasets taken by DARPA. SiamFC
utilizes traditional bounding boxes as input and our method utilizes shape-adaptive templates which
were generated by the segmentation masks. In Figure 11a, although both methods successfully track
the target, the heat maps show that our method has much higher response according to the similarity.
This results from our shape-adaptive templates that reduce the interference of background information.
Besides, our method achieves a more precise result with higher overlap rate because of the successful
learning of the target’s semantic information from the contour segmentation stage. In Figure 11b,
the target is partially concealed by trees. Under this condition, SiamFC fails to track the object and
obtains the highest similarity score at the wrong position that is similar to the background in the
template bounding box. In contrast, our method has higher robustness with occlusions and tracks
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successfully. In Figure 11c, SiamFC false tracks another car following behind the target pick-up truck,
while our method performs much better. In Figure 11d,e, SiamFC has interference from occlusion and
loses the target, while our method tracks correctly from the beginning to the end.Sensors 2019, 19 11 
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Figure 11. Results on images in datasets taken by DARPA: (a–e) are five groups of comparison 
between the tracking results of SiamFC and our method. In each group, the left images are results 
from SiamFC and right images are results from our method. For each method, the image at the bottom 
is the tracking result in the origin frame, the image at the top left corner is the partially enlarged detail 
of the tracking result in the current frame, and the image at the top right corner is the corresponding 
score map that denotes the similarity. All the green boxes denote the ground truth and all the red 
boxes denote the tracking results. 

Figure 11 shows results on one sequence of video images in datasets taken by DARPA. SiamFC 
utilizes traditional bounding boxes as input and our method utilizes shape-adaptive templates which 
were generated by the segmentation masks. In Figure 11a, although both methods successfully track 
the target, the heat maps show that our method has much higher response according to the similarity. 
This results from our shape-adaptive templates that reduce the interference of background 
information. Besides, our method achieves a more precise result with higher overlap rate because of 
the successful learning of the target’s semantic information from the contour segmentation stage. In 
Figure 11b, the target is partially concealed by trees. Under this condition, SiamFC fails to track the 
object and obtains the highest similarity score at the wrong position that is similar to the background 
in the template bounding box. In contrast, our method has higher robustness with occlusions and 
tracks successfully. In Figure 11c, SiamFC false tracks another car following behind the target pick-
up truck, while our method performs much better. In Figure 11d,e, SiamFC has interference from 
occlusion and loses the target, while our method tracks correctly from the beginning to the end. 

4.2.2. Quantitative Evaluation 

Figure 11. Results on images in datasets taken by DARPA: (a–e) are five groups of comparison between
the tracking results of SiamFC and our method. In each group, the left images are results from SiamFC
and right images are results from our method. For each method, the image at the bottom is the tracking
result in the origin frame, the image at the top left corner is the partially enlarged detail of the tracking
result in the current frame, and the image at the top right corner is the corresponding score map that
denotes the similarity. All the green boxes denote the ground truth and all the red boxes denote the
tracking results.

4.2.2. Quantitative Evaluation

In order to make the result a clearer and more visual, we calibrated and recorded the deviation of
results in both SiamFC and our method.

It is worth noting that although our shape-adaptive template method has a much higher overlap
score due to the template segmentation step, for fairness, we only compared the center precision score
for success rate at a threshold of 20 pixels. This is because, in our system, center precision was the
most important feature and the experimental results may vary according to different sizes of input
bounding boxes. For accordance, we compared different methods with the calibrated ground truth
every 10 frames and drew the figures below for 5 video sequences.
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Figure 12 shows the statistical results for 5 video sequences and the average of the centering error
in pixels. From video sequence 1 to 4, the target sizes are about 20 to 40 pixels, which is very small.
In most frames, our method has a centering error of less than 10 pixels. This deviation is tolerable as
long as the detected target’s center is still the real target’s position. Images in Figure 9 are from video
sequence 5. In this video sequence, the target size is about 100 pixels, which is larger than those in the
previous four. Our method’s centering error is mostly below 20 pixels, while SiamFC suffered from
false tracking. Overall, our method has smaller centering error and outperforms SiamFC regarding
images taken at Eglin Air Base by DARPA.
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Figure 12. Statistical results of SiamFC and our method in DARPA VIVID datasets: : (a–e) are 
centering errors in five different video sequences; (f) is the average centering error. 

Figure 12 shows the statistical results for 5 video sequences and the average of the centering 
error in pixels. From video sequence 1 to 4, the target sizes are about 20 to 40 pixels, which is very 
small. In most frames, our method has a centering error of less than 10 pixels. This deviation is 
tolerable as long as the detected target’s center is still the real target’s position. Images in Figure 9 are 
from video sequence 5. In this video sequence, the target size is about 100 pixels, which is larger than 
those in the previous four. Our method’s centering error is mostly below 20 pixels, while SiamFC 
suffered from false tracking. Overall, our method has smaller centering error and outperforms 
SiamFC regarding images taken at Eglin Air Base by DARPA. 

5. Conclusions 

In this paper, we firstly analyzed the properties and drawbacks of current tracking methods 
regarding our requirements. After that, we proposed and implemented our “start with a point” tracking 
system: modifying and combining the contour detection network and the fully-convolutional Siamese 
tracking network to track in real time using shape-adaptive templates which has advantages over the 
traditional bounding boxes start-up. Experimental results show that our method has the best 
performance on vehicle videos in both OTB100 datasets and DARPA datasets. 
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5. Conclusions

In this paper, we firstly analyzed the properties and drawbacks of current tracking methods
regarding our requirements. After that, we proposed and implemented our “start with a point”
tracking system: modifying and combining the contour detection network and the fully-convolutional
Siamese tracking network to track in real time using shape-adaptive templates which has advantages
over the traditional bounding boxes start-up. Experimental results show that our method has the best
performance on vehicle videos in both OTB100 datasets and DARPA datasets.
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