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Abstract: Photonic crystal fiber sensors have potential application in environmental monitoring,
industry, biomedicine, food preservation, and many more. These sensors work based on advanced and
flexible phototonic crystal fiber (PCF) structures, controlled light propagation for the measurement of
amplitude, phase, polarization and wavelength of spectrum, and PCF-incorporated interferometry
techniques. In this article various PCF-based physical sensors are summarized with the advancement
of time based on reported works. Some physical PCF sensors are discussed based on solid core as well
as hollow core structures, dual core fibers, liquid infiltrated structures, metal coated fibers, grating
incorporated fibers. With the advancement of sensing technology the possibilities of temperature,
pressure, strain, twist, curvature, electromagnetic field, and refractive index sensing are discussed.
Also, limitations as well as possible solutions and future hopes are outlined.

Keywords: photonic crystal fiber; temperature sensors; pressure sensors; strain sensor; twist or
torsion sensor; curvature or bend sensors; electromagnetic sensors; refractive index sensors

1. Introduction

PCF was invented by invented by Russell and his colleagues at the end of 20th century [1].
From its invention PCF is showing its potential not only in low loss communication but also
in many versatile and improved applications-sensing is one of them. Investigation of different
physical parameters using photonic crystal fiber (PCF) is an integrative branch of optics as well
as engineering. It successfully integrates fiber optics, structural engineering, electromagnetism,
laser optics, the infiltration technique, optoelectronics, microelectronics, and material science.
Photonics crystal fiber sensors are advantageous over other electrical and optical fiber sensing system
in many aspects.

PCF has an advantageous geometry over standard optical fiber. Generally, PCF has either a
hollow core or a solid core around which air holes are distributed in different patterns. Light is guided
by the distribution of these air holes. Also, propagation of light can be manipulated by changing
the distribution of air holes as well as with the environmental change [2–4]. This unique nature
of PCF is drawing a lot of attention for its sensing applications from last two decades. PCF-based
sensors became the focus of many research groups due to their high sensitivity, flexibility, small size,
robustness, and that they can be used in many unfavorable situations. The small physical dimensions
of PCF-based sensing probes make them suitable for attaching or inserting in a system. These sensing
probes can be connected with the control system without the use of any wire. They can be used in
a hazardous and noisy environment or high temperature, high voltage, high electromagnetic field,
and explosive environments even for the purpose of remote sensing.
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Measurement of different physical parameters like, temperature, pressure, strain, twist or torsion,
curvature or bend, and electromagnetic field is necessary for regular application, shown in Figure 1.
In this article we tried to present an updated and compact description of PCF sensors applied or
proposed for physical parameter sensing. It consists theoretical background of PCF, its wide range of
applications for physical parameter measurement, current technologies as well as short comes and
finally ended with concluding discussion.
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2. Theoretical Framework of PCF

For a conventional optical fiber both the core and cladding both are solid. Generally cladding
is pure silica and the core is doped glass-having a relatively high refractive index in comparison to
cladding [5]. So, there is a positive refractive index difference between core and cladding. But in the
case of PCF this refractive index difference is imposed by placing air holes in cladding. These air
holes run throughout the length of the fiber and took an important role in guiding light through the
core. Depending on the core nature PCF can be divided in two broad categories: solid core PCF and
hollow core PCF. If the core is solid then it is solid core PCF (Figure 2). It has a positive refractive
index difference between the core and cladding and it works based on the total internal reflection
(TIR) phenomenon [2,6]. For hollow core PCF (Figure 3), the core is made of air and it has a negative
refractive index difference between the core and cladding. It works based on photonic bad gap guiding
mechanism [2,7].Sensors 2019, 19, 464 3 of 27 
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PCF has many attractive properties compared to standard optical fibers like, highly
birefringent [3,8], very low loss [9,10], endless single-mode propagation through a long wavelength
range [1,11,12], highly nonlinear [13,14], dispersion tailoring [15,16], and large mode area [17,18].
These unique optical properties encourage researchers to use PCF not only in the field of
communication [14,19–21] but also in spectroscopy [22], supercontinuum generation [23], nonlinear
applications [24], Raman fiber laser [25,26], sensing [27], etc. Using the holey nature of PCF many
sensors are proposed as well as fabricated with very high sensitivity [28,29]. PCF-based advanced
physical sensors will be discussed in the following sections.

For an optical fiber, V-number and Numerical aperture (NA) are two important optical parameters.
Endlessly single-mode (ESM) propagation of a PCF is decided by its V-number. Through a long
wavelength range, the single-mode propagation capability of a PCF due to its exceptional cladding
microstructure is defined as endlessly single-mode propagation. The V-number of a PCF can be
calculated according to Mortensen et al. [11] using the following formula,

VPCF(λ) =
2π∆

λ

√
n2

core(λ)− n2
e f f (λ) (1)

where Λ is pitch of PCF. From Equation (1) it can be observed that endlessly single-mode operation of
a PCF depends on both its parameter and propagating wavelength. For PCF, the single-mode cut-off
criteria is VPCF < π. Here, neff is the effective refractive index of guided-mode of PCF and ncore is
refractive index of the core. neff can be expressed as neff = β/k0—where β is the propagation constant
and k0 is free space propagation constant. Also k0 can be expressed as k0 = 2π/λ, where λ is the
propagating wavelength [30].

Light gathering potential of an optical fiber is represent by numerical aperture. It is a
dimensionless quantity. Large NA indicates more light gathering capability of a fiber. For PCF,
NA can be calculated using the following formula [30],

NA =
√

n2
core − n2

e f f (2)

From the very start, different kinds of PCFs are designed, analyzed by using commercial software
as well as fabricated. Mostly, these analyzed works are based on either the finite element method or
the finite difference time domain method. In both methods the whole structure is meshed in triangular
pieces then the electromagnetic equations are applied in each section and the light guiding nature is
studied. These techniques are very popular in computational electromagnetism [31–33]. They reduce
losses during fabrication and enhance accuracy.

Many sensors are reported based on dual core PCF. Dual core PCF works based on mode coupling
theory due to the coupling that four supermodes (x even, y even, x odd, and y odd modes) generate.
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For one coupling length power transfer completely from one core to another. At output optical power
intensity can be calculated as

I(λ) = 1 − cos
{π

λ

(
∆nx + ∆ny

)}
· cos

{π
λ

(
∆nx − ∆ny

)}
(3)

Here, ∆ni with i = x,y is effective refractive index difference of x polarized even-odd mode and
y polarized even-odd mode. Output intensity curve is sinusoidal in nature. Sensitivity of a dual
core PCF consisting probe can be calculated from the output transmission peak shift with changing
environment [34,35].

3. Overview of PCF Physical Sensors

PCF-based sensors are advantageous over standard optical fiber sensors in many aspects. They not
only have great design flexibility but also their holey internal structure can be filled with analyte so
that a controlled interaction can take place between propagating light and the analyte sample [36].
This greatly enhances the sensitivity of fiber optic sensors as well as opens up a new direction for
making advanced portable sensors. PCF sensors have a wide range of applications. Measurement
of different physical parameters like temperature, pressure, strain, twist, torsion, curvature, bend,
and electromagnetic field are a few of them. Observation as well as control of these parameters
are really important in many daily life applications including civil structural health monitoring [37].
PCF-based physical sensors are gaining a lot of attention due to their in situ and remote sensing
capabilities; immunity from the hazardous environments of high electromagnetic field and high
voltage; and biomedical sensing capability [37,38]. At the very beginning main focus was on fabricating
PCF-based sensors using different interferometry techniques. However, with time the focus has shifted
toward the design and fabrication of new PCF structures with advanced optical properties and
their application for making sensors. Evolution of different physical sensors are discussed in the
following sections.

3.1. Temperature Sensors

Temperature measurement is an important physical parameter for all fields of technical activities,
industrial stages of production and maintenance and also in medical treatments. The invention of fiber
optic sensors for temperature measurement was a great breakthrough representing a viable alternative
to the use of electronic sensors. These sensors can be made with multimode fiber (MMF), single-mode
fiber (SMF), and enhances the sensitivity of measurement using a laser source with optoelectronics.
The most practical advantage is to use fiber-based temperature sensors in the field of applications
where electromagnetic interference (EMI) and RF are vital obstructions to the use of electronic sensors.
PCF-based sensors are also useful in aerospace, defense, the chemical industry, semiconductor industry,
civil engineering applications, turbine areas, and many more. In the field of these sensors, Zhu et al.
fabricated, as well as demonstrated [39], strain-insensitive and high-temperature long-period gratings
sensors inscribed in solid core PCF having sensitivity of 10.9 pm/◦C from 24 ◦C to 992 ◦C illuminated
by CO2 laser at 1299.59 nm wavelength. A hexagonal solid core PCF sensor was reported [40]
with sensitivity 7 nm/◦C when air holes were filled with 1550 nm liquid crystal (Figure 4) for the
measurement of temperature and electric fields. A layer-by-layer quantum dot nanocoatings on the
inner holes of PCF (LMA-20) spliced with MMF is experimentally demonstrated [41] in the temperature
range of 40 ◦C to 70 ◦C with wavelength sensitivity 0.1451 nm/◦C (Figure 5). A 7-cell HCPCF sensor
spliced with a SMF was reported previously [28] with sensitivity −7.1 pm/◦C (Figure 6). Another
selectively filled polarization-maintaining PCF (PMPCF) temperature sensor based on the Sagnac
interferometer was reported [42], in which L1 is the infiltration length and L is the total length of
PM-PCF inside the fiber loop as shown in Figure 7. It has sensitivity 2.58 nm/◦C for the 11.7 cm-long
fiber as measured from transmission wavelength shift.
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reference [42]).

A relatively new structured PCF temperature sensor [43] was demonstrated when a standard
Si wafers was attached to the facet of a standard single-mode optical fiber. It acts as a tip sensor
with a sensitivity of 0.11 nm/◦C in the 100 ◦C to 700 ◦C temperature range. Another temperature
sensor was fabricated [44] based on Mach–Zehnder interference and dual core PCF with selectively
polymer-filled air holes with high sensitivity 1.595 nm/◦C (Figure 8). A surface plasmon resonance
based PCF temperature sensor with nanoscale gold coating of the central air hole was reported [31]
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with sensitivity −2.15 nm/◦C (Figure 9). Fully and partially ethanol-filled photonic bandgap fibers
spliced between standard SMF was reported [45] having temperature sensitivity −292 pm/◦C and
−120 pm/◦C for fully and partially filled ethanol, respectively. Few more temperature sensors are
presented in Table 1.
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asymmetric dual elliptical core PCF 30–34 Wavelength 42.99 nm/◦C [52]

Multibeam Mach–Zehnder
interferometer using a PCF with

two asymmetric cores
25–500 wavelength 1.24 pm/◦C [53]

Isopropanol-filled PCF long period
grating 20–50 Wavelength 1.356 nm/◦C [54]

Selectively filled solid core PCF
consisting a central air bore −80 to 90 Wavelength −6.02 nm/◦C [55]
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3.2. Pressure Sensors

Pressure is an important physical quantity when observing many environmental phenomena
in precision application areas as well as monitoring many industrial processes in spite of the harsh
environment. Due to the good compatibility of fiber pressure sensors with human and other animal
bodies they can be used in medical diagnosis purpose also. PCF-based pressure sensors can be used in
measuring human body fluid pressure. These sensors are also suitable in measuring temperature and
pressure under water. In 2005, a polarization-maintaining PCF PM-1550-01-based pressure sensor was
developed [56] by Blaze photonics (Figure 10). A hydrostatic pressure sensor was reported [57] with
highly birefringent PCF and sensitivity −10 rad/MPa.m at 1.44 µm wavelength (Figure 11). Then a
compact pressure sensor was developed [58] using Sagnac interference with a polarization-maintaining
PCF with sensitivity 3.42 nm/MPa for a 58.4 cm long fiber (Figure 12). Another highly birefringent
hydrostatic pressure sensor was demonstrated [59] theoretically as well as experimentally having
sensitivity more than −43 rad/MPa.m at 1.55 µm wavelength (Figure 13). A sensor was reported [60]
using a Fabry–Pérot cavity in which a microstructure fiber is spliced between SMF and hollow-core
fiber with pressure sensitivity −4.68 × 10−5 nm/psi (Figure 14). A pore water pressure sensor was
reported [32] with a six-hole suspended-core PM-PCF-based Sagnac interferometer having sensitivity
254.75 kPa/nm for a 100 cm long fiber (Figure 15). Excluding the sensors listed above a few more
pressure sensors are presented in Table 2.
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Table 2. Comparative representation of different PCF-based pressure sensors.

Reported Structure More about
These Sensors Sensitivity Ref.

Periodically tapered long-period gratings combined with PCF
Can measure

pressure up to
180 bar

11.2 pm/bar [61]

Modal interferometer based high birefringence PCF - 3.36 nm/MPa [62]

Polarization-maintaining PCF-based Sagnac interferometer for
downhole application

Measured at
1320 nm 4.21 nm/MPa [63]

Side-hole polarization-maintaining PCF - −2.30 × 10−5/MPa [64]

Bragg grating based highly birefringent microstructured
optical fiber

Measured at
1550 nm 33 pm/MPa [65]

3.3. Strain Sensor

Strain measurement is a necessary requirement in industrial application and precision control
system. Fiber optics-based strain sensors can be used in earthquake damage detection, in defense
applications, monitoring telecommunication cables during temperature variation, process control,
load control on important bridges & structures, fire detection, etc. These sensors have important
applications in civil engineering: in bridge monitoring, welding residual stresses monitoring,
observation of old heritage buildings, pipeline monitoring, and other structural health monitoring.
An endlessly single-mode PCF-based cable consisting a long period grating has been fabricated [66]
using a spatially periodic electric arc discharge technique. It has strain sensitivity −2.0 pm/µε. Using a
highly birefringent PCF loop mirror coated with acrylate material a strain sensor was reported [67]
with enhanced sensitivity of 1.21 pm/µε. The length of the sensing head for this sensor was 380 mm.
A hollow-core photonic band gap fiber based Fabry–Pérot (FP) interferometric strain sensor was
reported [68] having FP cavity in the order of millimeters and fabricated by the simple techniques of
cleaving and fusion splicing. The sensitivity of the sensor is 1.55 pm/µε at the wavelength of 1550 nm
and suitable for a wide range of applications.

A low loss PM-PCF-based birefringent interferometer strain sensor was reported [69] with strain
sensitivity 1.3 pm/µε in a strain range from 0 µε to 1600 µε (Figure 16). A F-P cavity having length
207 µm was fabricated by splicing a hollow-core ring PCF between two standard SMF and using this a
strain sensor was fabricated [70] with sensitivity 15.4 pm/µε for a FP cavity of 13 µm length (Figure 17).
A strain sensor was reported [71] using a dual-core PCF-based Mach–Zehnder interferometer having
sensitivity −0.31 pm/µεwithin a range 0 µε to 4000 µε (Figure 18). A multi components interferometer
based on partially filled dual-core PCF was demonstrated [72] in which cladding air holes surrounding
of core a were blocked by glue and air holes surrounding of core b were kept open. It has sensitivity
−2.08 pm/µε. A few more strain sensors are presented in Table 3.
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Table 3. Comparative representation of different PCF-based strain sensors.

Reported Structure Strain
Range (µε) Sensitivity Ref.

PCF-based long-period fiber-grating 0–800 −7.6 pm/µε [73]

PCF-based Mach–Zehnder type interferometers introducing
coupling point 0–3250 ~2.2 pm/µε [74]

Fiber Bragg gratings photo-written in PCF having refractive
index-neutral germanium/fluorine codoped core 0–3500 1.166 pm/µε [75]

In-line fiber Mach–Zehnder interferometer using solid core
large mode area PCF 0–2500 −3 pm/µε [76]

Modified PCF-based Mach–Zehnder interferometer 0–1300 11.22 dB/mε [77]

Fiber ring cavity laser with a photonic crystal fiber PCF in-line
Mach–Zehnder interferometer structure 0–2100 2.1 pm/µε [78]

PCF with two asymmetric cores 0–4000 −1.59 pm/µε [53]

3.4. Twist or Torsion Sensor

Torsion is an important parameter that has to measure for different civil structure for safety
purpose. For immunity against harsh environment, light weight, small size, and high shock
survivability are required and these types of sensors are attracting attention due to their suitability
for industrial use. A single-mode PCF was demonstrated [79] as a torsion sensor by including stress
induced mechanical long-period grating. The sensitivity of this sensor is 0.73 nm/2π. A two-linearly
polarized mode operation in a ultrahigh birefringent photonic crystal fiber-based twist sensor was
reported [80] having sensitivity of 8.25/◦C with resolution ~2.7◦ for the range 90–270◦.

A suspended twin-core fiber based loop mirror configuration was demonstrated [81] as a torsion
sensor having sensitivity 5.1 × 10−4/◦C (Figure 19). Another sensor was reported [82] using Hi-Bi
PCF-based Sagnac interferometer having sensitivity ~0.06 nm/◦C. A torsion sensor was reported [83]
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using side leakage PCF with sensitivity 0.9354 nm/◦C over a range of 0 to 90 in both clock wise
and anticlockwise direction. Thereafter, a solid core low birefringence PCF (LMA-10)-based Sagnac
interferometer using torsion sensor was proposed [84] with sensitivity 1.00 nm/◦C and resolution
0.01◦. A three-beam path Mach–Zehnder interferometer was formed [85] by fusion splicing a piece of
double ytterbium-doped double-cladding PCF between two segments of SMF to fabricate torsional
sensor with sensitivity 0.001 nm/◦C (Figure 20).
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Curvature is also an important parameter in structural health monitoring. Curvature sensors are
useful in robot making, in medical tooth root canaling treatment, in artificial organs, etc. In 2001 a two
core PCF was used [86] to make a two-beam interferometer to measure its phase change curvature
variation and sensitivity 127 rad/rad (Figure 21). A long-period fiber grating incorporated into a holey
fiber was reported as a bending sensor considering its axial rotation angle [87]. This sensor shows a
shift of the central wavelength into the shorter wavelength for bending curvature higher than 4 m−1

also the bending sensitivity change by rotational orientation (Figure 22). A two-asymmetric hole region
consisting of a highly birefringent PCF inserted into a Sagnac interferometer was demonstrated as
a curvature sensor [88]. It is able to work in a curvature range of 0.6 to 5 m−1. A curvature sensor
was demonstrated [89] with a low-birefringence PCF-based Sagnac loop, consisting of a 40 cm-long
PCF having curvature measurement sensitivity of −0.337 nm in the range of 0–9.92 m−1 (Figure 23).
A curvature sensor was reported by Hwang et al. [90] using novel PCF of high birefringence based
Sagnac interferometer. Its sensitivity depends on the bending direction. Obtained sensitivity is
−1.87 nm/m−1 and 1.24 nm/m−1 for parallel and perpendicular bending, respectively, to the large air
hole axis near 1480 nm wavelength (Figure 24).
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Figure 24. Image of two large air holes consisting PCF; cross-section of (i) the preform and (ii) fabricated
high-birefringent fiber. It is used for the demonstration of a curvature sensor (Reproduced from [85],
with the permission of IOP Science publishing).

Then a three-coupled core consisting of a PCF-based curvature sensor was reported [91]
with a maximum curvature sensitivity of 2.0 dB/m−1 for the curvature range 0 to 2.8 m−1

(Figure 25). A curvature sensor was demonstrated [92] using a tapered PCF collapsed with SMF-based
Mach-Zehnder interferometer with sensitivity 8.35 dB/m−1 in between curvature 0.87 and 1.34 m−1

with resolution 0.0012 m−1 (Figure 26). Another curvature sensor was reported [93] with a hollow
core PCF-based Sagnac interferometer having sensitivity 0.232 nm/m−1 in the curvature range of
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0 to 9.9 m−1. A cladding modes analyzation-based long-period gratings PCF curvature sensor was
proposed [94] with sensitivity ~20 nm for 1550 nm wavelength for curvature range 0 to 2 m−1

(Figure 27). A microcavity curvature sensor was manufactured [95] by splicing a hollow core PCF at
the end of a SMF. Its maximum sensitivity was found 10.4 dB/m−1 for the curvature range 0 to 1 m−1

with a second taper diameter of 18 µm (Figure 28).
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3.6. Electromagnetic Sensors

Electromagnetic field and associated force is one of the fundamental forces of nature. It creates
strong and detectable for high electricity consuming objects which is harmful for leaving beings
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but this field is not detectable by the sense organs. So sensing of this field as well as its current in
many cases is an important task. In electric power industry and other places presence of metal may
influence the electromagnetic field measurement. So, fiber optics sensors are suitable for the same.
Also, the properties of fiber for remote sensing are small size, nonconducting nature, and immunity
to electromagnetic interference representing them as a suitable candidate in making electromagnetic
sensors based on PCF. Among the various reported electromagnetic sensors some of them are discussed
here. At the early stage a solid core PCF filled with liquid crystal (LC) was demonstrated [40] as an
electric field sensor based on the orientation of the LC molecules with the changing of an applied
electric field. Then moving a few steps forward based on this LC (MDA-05-2782) filling in a PCF
(LMA-8) a sensor probe was reported [96] for measuring high electric field intensity with sensitivity
~10.1 dB/kV rms/mm for the electric field intensity range 2.35–4.95 kV rms/mm and resolution
~1 V rms/mm for in-line type transmitted mode (Figure 29). In the same year a magnetic field sensor
was demonstrated [97] on a PM-PCF, by filling its cladding air holes with Fe3O4 nanofluid. This sensor
has sensitivity 242 pm/mT for the concentration of the fluid 0.6 mg/mL (Figure 30).
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Figure 30. Experimental set up for magnetic field detection using polarization-maintaining PCF filled
with Fe3O4 nanofluid (Reproduced from [97], with the permission of AIP publishing).

Then using hollow core PCF which forms a FP cavity, core of which is filled with water-based
CdFe2O4 as the magnetic fluid, a magnetic field sensor was proposed [98] with sensitivity 33 pm/Oe
for a very small sensor probe of 200 µm (Figure 31). A glass core PCF-based current sensor using
electromagnetic vibration was reported [99] in the same period (Figure 32).
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A loss based ferrofluid (EMG905) infiltrated microstructured polymer optical fiber (MPOF)
magnetic field sensor was demonstrated [100] which can measure the magnetic field change up to
2000 gauss for the magnetic field perpendicular to the fiber axis. The refractive index of the ferrofluid
changes per magnetic field as ~1 × 10−3/100 G (Figure 33). A tapered PCF coated with ferrofluid
(water-based ferrofluid EMG507, Ferrotec) was reported [101] as a magnetic field sensor. It was made
by a tapered PCF spliced between two SMF. It has sensitivity 16.04 pm/G for the magnetic field range
100 to 600 G with resolution 0.62 G (Figure 34). Then a magnetic field sensing probe was proposed [34]
which consists of a dual core PCF and both the cores are filled with Fe3O4 magnetic fluid. These two
cores behave as two separate wave guides and mode coupling takes place between them. Based on
mode coupling different high magnetic field can be identified from spectral shift. This probe has
sensitivity 305.8 pm/Oe (Figure 35). Very recently a SPR technique was combined with PCF for the
purpose of magnetic field detection in which two parts of gold-layer-filled PCF are joined together to
achieve a localized SPR effect [102]. Cladding air holes of the two PCF segments were filled selectively
with magnetic fluid and force was applied on one of it (Figure 36). It gives some new way to think about
SPR based magnetic field sensors. Recently Yin et al. demonstrated [103] a nanomagnetic fluid filled
double clad PCF-based magnetometer which is working on a modal interference mechanism and has a
sensitivity 114.5 pm/mT. Also a polarization maintaining PCF incorporated Sagnac interferometer
was proposed [104] for magnetic field detection. Water based nanoparticles Fe3O4 are infiltrate into
the fiber. Refractive index changing property of magnetic fluid with changing magnetic field is used to
study its two dip wavelengths shift with increasing magnetic field. It has sensitivity 384 pm/Oe in
the detection range of 410 to 600 Oe. Recently, De et al. proposed a square lattice dual core photonic
crystal fiber based magnetic field sensor with sensitivity 799.07 pm/Oe for magnetic field variation
form 89.9 Oe to 271.0 Oe [105].
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3.7. Refractive Index Sensors

Refractive index is an important basic physical parameter. In situ measurement of it helps
to identify a material in many practical fields, like, chemical industry, gas and oil field industry,
food processing and quality control industry, to check the adulteration level in liquid, for the
identification of biomolecules, etc. At the beginning commercially available LMA PCFs were the
main point of interest of many research groups for the development of PCF sensors. In 2005 a
LMA-tapered holey fiber containing collapsed air hole refractive index sensor was experimentally
demonstrated by Minkovich et al. [106] with a resolution around 1 × 10−5 for a refractive index higher
than 1.44 (Figure 37). A combination of three-hole microstructured optical fiber and Fiber Bragg
Grating (FBG) was reported [107] for refractive index sensing. Fiber Bragg grating (FBG) was written
in the suspended Ge-doped silica core. It has a resolution of 3 × 10−5 and 6 × 10−5 for refractive index
1.33 and 1.40 (Figure 38). In 2007 Sun et al. reported a HC-PCF-based refractive index sensor [108]
which works based on photonic band gap principal. It has resolution 2 × 10−6 RIU in RI range 1.333
to 1.390. Demodulation technique was applied here. At RI 1.35 it shows a blue shift of 110 nm for RI
change of 0.02 (Figure 39).
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Figure 39. Schematic diagram of the photonic band gap fiber with hollow core. It is filled with
tested analyte (na) for refractive index measurement (Reproduced from [108], with the permission of
Elsevier publishing).

Also different interferometry techniques are combined with PCF to make an advanced sensing
system. Jha et al. demonstrated an interferometry based sensing probe in which a LMA PCF spliced
between two single-mode fiber [109]. Length of the interferometer was 32–mm. This sensor has a high
resolution of 2.9 × 10−4 in RI range 1.38–1.44. During this period hollow nature of PCF successfully
combined with selective infiltration technique to make an improvised PCF sensing probe. Using this
technique on a probe was reported [110], in which one air hole of a solid core PCF is filled with liquid.
Here a strong field overlap takes place between core mode and mode associated with fluid infiltrated
waveguide. Its sensitivity is 30,100 nm/RIU with resolution 4.6 × 10−7. A dual core PCF works
based on mode coupling between two cores. A RI sensing probe was proposed [35] based on a dual
core PCF in which central air hole is filled with suspected analyte (Figure 40). It shows sensitivity
7000 nm/RIU for a large RI variation. Sensitivity of PCF-based RI sensors enhanced multiple times
when PCF is integrated with surface Plasmon resonance effect. Here, sensitivity can be determined
from resonance peak shift. Dash et al. reported a graphene and silver coated birefringent PCF probe
having external flow of analyte [111] for RI sensing. It has sensitivity 860 RIU−1 and resolution
4 × 10−5 RIU (Figure 41). Also, a gold layer coated D-shaped PCF probe was proposed [33] with high
average sensitivity 7700 nm/RIU and resolution 1.30 × 10−5 RIU in refractive index range 1.43–1.46
(Figure 42). Recently, Rifat et al. successfully fabricated [112] a birefringent PCF-based selectively gold
layer coated sensing probe (Figure 43) with sensitivity 11,000 nm/RIU for RI variation from 1.33 to
1.42. A few more RI sensors are presented in Table 4.
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Table 4. Collective representation of various PCF-based refractive index sensors.

Reported Structure Spectral Range
(nm) RI Range Observed

Quantity Sensitivity Resolution
(RIU) Ref.

Stable photonic crystal fiber
modal interferometer 1250–1340 1.33–1.45 Interference

pattern shift - 7 × 10−5 [113]

Surface long-period gratings
incorporated D-shaped
photonic crystal fiber

1250–1650 1.00–1.45 Wavelength 585.3 nm/RIU - [114]

Extrinsic cavity formed by a
micromirror and a photonic

crystal fiber tip which contains
a bifunctional lens with large

radius of curvature

1260–1350 1.328–1.357 Intensity - 2.60 ×
10−5 [115]
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Table 4. Cont.

Reported Structure Spectral Range
(nm) RI Range Observed

Quantity Sensitivity Resolution
(RIU) Ref.

Directional coupler based on
PCF polymer fiber 400–900 1.337–1.344 Wavelength 1.66 × 103 nm/RIU ~2 × 10−6 [116]

SPR based multicore flat fiber 1000–1500 1.470–1.475 Wavelength 23,000 nm/RIU 4.35 ×
10−6 [117]

Four channel containing PCF
combined with gold wire 1600–2000 1.30–1.79 Wavelength 3233 nm/RIU 3.09 ×

10−5 [118]

D shaped PCF combined with
metamaterials 755–830 1.34–1.36 Wavelength 3700 nm/RIU 2.70 ×

10−5 [119]

Gold nanowire consisting solid
core PCF 600–1100 1.27–1.36 Wavelength 2350 nm/RIU 2.8 × 10−5 [120]

SPR based dual polarized
spiral PCF 550–850 1.33–1.38 Wavelength 4600 nm/RIU - [121]

Dual core based
microstructured optical fiber 500–900 1.35–1.51 Wavelength 7000 nm/RIU 7 × 10−6 [122]

4. Limitations and Technological Advancement

At the very beginning PCF was applied as a waveguide. Then after nearly four years it started
to be used as a sensor. So, PCF sensor technology is now at its infancy stage. In spite of that
research progressed very rapidly in this filed due to its versatile and advanced optical properties
over conventional optical fiber sensor and commercially available bulk sensors. Throughout this time
many PCF sensors have been proposed and fabricated but it cannot be denied that the majority of
the designed sensors are still at the proposal stage. At present the light of hope is the drastically
developing PCF sensing technology. PCF was stated to be fabricated with a very popular stack and
draw technique [2]. With this technique asymmetric, complex, and submicron structure fabrication was
almost impossible. Then with time drilling [123], 3D printing [124], sol-gel [125], and extrusion [126]
techniques were developed for the fabrication of advanced PCF. Selective infiltration of air holes either
with analyte or particles [105,127] and application of noble metal or thin film coating inside air hole or
outside of PCF [128–130] enhance its sensitivity several times over existing fiber sensors. Capillary
force, focused ion beam milled micro channels can be applied to fill the air holes [131–134]. For a
uniform and controlled noble metal coating chemical vapor deposition technique can be applied [135].
PCF sensors can be attached with any system due to its small size. Very small length of PCF is needed
to make a sensing probe. If mass fabrication of a PCF sensor is possible then the cost of each sensor
will be very low; they could even be used in household applications. Observing the exponential
growth in PCF fabrication technology we are really hopeful about its industrial applications, detection
of wide range of bio-chemical analytes, access of lab on a chip. Recently, for sensing in THz region
some polymer like, TOPAS, poly (methyl methacrylate) (PMMA), polyamide-6 (PA6) bases PCF are
designed [46,116,136,137]. Which is a great integration of fiber and THz technology.

5. Conclusions

Evolution of different type of PCF physical sensors are precisely discussed in this article. Starting
from the interferometry based PCF sensors; design and fabrication of many PCF with advanced optical
properties as well as their application in physical parameter sensing is summarized. This article
starts with theoretical framework and basics of PCF and continues with the discussion of temperature,
pressure, strain, twist, curvature, electromagnetic field, and refractive index sensors. Lastly it ended
with a brief discussion on present concern and future hopes of PCF sensing technology.

From the above-discussion we can say that PCF sensor technology is a highly promising branch
of modern optics and it has a lot of future possibilities. If PCF sensors wants to successfully compete
with current commercially available techniques then it has to develop fabrication technology, enhance
real time and industrial applications. At present scenario it is clear that many PCF sensors having
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advanced sensitivity showing their potential in wide range of sensing application with their very
small size, robustness, flexibility, immunity against harsh environment, and many more. So, we can
hope that PCF-based sensors will overcome their current limitations soon and prove suitable in large
scale applications in industry as well as daily life. We are also hoping that this review article will give
readers a clear idea about the current trends in the development of PCF physical sensors.
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PCF Photonic crystal fiber
SC-PCF Solid core photonic crystal fiber
HC-PCF Hollow core photonic crystal fiber
NA Numerical Aperture
TIR Total internal reflection
SMF Single-mode fiber
MMF Multi-mode fiber
MOF Microstructure optical fiber
FBG Fiber brag grating
FP Cavity Fabry–Pérot cavity
LPG Long period grating
LMA Large mode area
MZI Mach–Zehnder interferometer
SPR Surface plasmon resonance
LC Liquid crystal
PBG Photonic band gap fiber
DC-PCF Dual core photonic crystal fiber
D-PCF D shaped photonic crystal fiber
LC-PCF Liquid crystal photonic crystal fiber
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