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Abstract: The design of urban clusters has played an important role in urban planning, but realizing
the construction of these urban plans is quite a long process. Hence, how the progress is evaluated
is significant for urban managers in the process of urban construction. Traditional methods for
detecting urban clusters are inaccurate since the raw data is generally collected from small sample
questionnaires of resident trips rather than large-scale studies. Spatiotemporal big data provides a new
lens for understanding urban clusters in a natural and fine-grained way. In this article, we propose a
novel method for Detecting and Evaluating Urban Clusters (DEUC) with taxi trajectories and Sina
Weibo check-in data. Firstly, DEUC applies an agglomerative hierarchical clustering method to detect
urban clusters based on the similarities in the daily travel space of urban residents. Secondly, DEUC
infers resident demands for land-use functions using a naïve Bayes’ theorem, and three indicators are
adopted to assess the rationality of land-use functions in the detected clusters—namely, cross-regional
travel index, commuting direction index, and fulfilled demand index. Thirdly, DEUC evaluates the
progress of urban cluster construction by calculating a proposed conformance indicator. In the case
study, we applied our method to detect and analyze urban clusters in Wuhan, China in the years 2009,
2014, and 2015. The results suggest the effectiveness of the proposed method, which can provide a
scientific basis for urban construction.

Keywords: urban clusters; clustering; rationality; conformance; travel activities; spatiotemporal
big data

1. Introduction

Urban clusters significantly reduce traffic through a mixed agglomeration of various land-use
functions [1–4]. Specifically, a land-use multifunctional cluster in a clustered city has relatively
well-developed infrastructure and residential facilities [5], meeting the needs of the majority of
residents in the cluster, thus reducing cross-regional travels [1–4]. Xu et al. [6] found that a small
activity space was enough to fulfill the demands of the majority of residents in Shenzhen, China,
consistent with the municipal government’s goal to achieve a clustered city. Based on these advantages,
the design of urban clusters has become an active area of urban planning.

Realizing the construction of urban clusters is a long process, so it is indispensable for urban
managers to assess the construction’s progress. Traditional methods are inaccurate since the detection
of urban clusters generally relies on small sample questionnaires of resident trips [1,7], which are
easily influenced by questionnaire design and subjective judgements. Spatiotemporal big data,
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such as vehicle trajectories [8–10], cellphone data [11,12], social media data [13–15], and geo-tagged
photos [16,17], provides first-hand information about individual activities, which can complement
traditional methods [18] and provide a new lens for understanding cities [19]. Human behavior,
as documented by digital trails, follows inherent regularity [20], which can be applied to the study of
land use and urban space [9,12,21]. Furthermore, the application of Geographic Information Systems
(GIS) tools provides opportunities to study multiple geographical scales from the individual to the
urban area, which can facilitate the study of reciprocal interactions between people and cities [22,23].
In this article, we combine spatiotemporal attributes of taxi GPS data and geo-semantic information of
Sina Weibo check-in data to detect and evaluate urban clusters.

The remainder of this article is structured as follows. Section 2 introduces some related work
about land-use studies. In Section 3, we describe the Detecting and Evaluating Urban Clusters (DEUC)
method and its algorithm in detail. In Section 4, we apply our method for detecting and analyzing
urban clusters in Wuhan, China, as a case study. The conclusions are shown in Section 5.

2. Related Work

Spatiotemporal big data, containing information about resident activities and reciprocal
interactions between residents and cities, has been widely applied in urban land-use studies [9,13,24].
Moreover, the development of spatial information technologies, such as geographic information system
and remote sensing, provides technical support for relevant studies [25–27]. The retrieval of current
land-use studies can be divided into two stages: detection of resident activities and delineation of
land-use patterns based on resident activities [28].

In the first stage, the spatiotemporal big data has opened up new horizons for studying various
aspects of resident activities. For instance, Widhalm et al. [11] proposed a probability method in order
to extract daily activities from cellphone data. Gong et al. [29] inferred trip purposes and discovered
travel patterns from taxi trajectories. In addition, the popularity of the Internet allows users to upload
their geographic locations via mobile communication devices. The location data generated in this
way is called check-in data [13]. The check-in data is rich in geo-semantic information and has been
widely applied in exploring the spatiotemporal patterns of resident activities [13–15]. For instance,
Tu et al. [14] explored diurnal patterns of urban functions by analyzing resident activities inferred from
cellphone data and check-in data. Resident activities containing socioeconomic information closely
related to land use can be applied to detect land-use patterns.

Therefore, in the second stage, using the abundant socioeconomic information derived from
resident activities, researchers classified land-use types and investigated new land-use patterns related
to resident activities. For instance, Soto et al. [12,30] applied a fuzzy-c means method to extract
land-use types automatically (including office, business, nightlife, leisure, and residential areas).
Pei et al. [28] used a semi-supervised classification method to classify urban land into residential,
business, commercial, open space, and others. Frias-Martinez et al. [31] detected land uses and
identified urban Points of Interest (POI) automatically from Twitter data. Toole et al. [32] applied a
random forest method to infer urban land use, with weekday–weekend cellphone data. Moreover,
some scholars began to integrate multi-sourced data for land-use research [33–36]. Similarly to
that combined building-level social media data with remote sensing images, Chen et al. [33] used a
k-medoids clustering method to delineate urban functional areas. The relevant research even extended
to the field of indoor environments. For example, based on MIT’s Wi-Fi data, Calabrese et al. [25]
used a k-means clustering method to match physical environments to corresponding activities, such
as the lab and classroom. Some recent land-use studies with spatiotemporal big data are listed in
Table 1, indicating that although researchers have done a great deal of work on land use, there are two
problems worth further study.
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Table 1. Recent land-use studies with spatiotemporal big data.

Studies Detection of
Functional Zones

Detection of
Urban Clusters

Evaluation of the Urban
Construction Progress

Soto et al. [12,30]
√

Pei et al. [28]
√

Frias-Martinez et al. [31]
√

Toole et al. [32]
√

Chen et al. [33]
√

Caceres et al. [10]
√

This study
√ √

The first problem is that these studies mainly apply spatiotemporal big data to detect land-use
structures from the perspective of functional zones, but they lack the detection of the comprehensive,
clustered urban layout. The second is that they lack the support of evaluation of the urban construction
progress. Therefore, we propose a DEUC method with spatiotemporal big data, in which we detect
urban clusters from resident travel activities, analyze the rationality of land-use functions in the
detected clusters, and evaluate conformance between detected urban clusters and that in urban
planning documents.

3. Methodology

In this section, we present our DEUC method. Using taxi GPS data and Weibo check-in data,
this method consists of two main components: the detection (Section 3.1) and the quantitative
evaluation (Section 3.2) of urban clusters. We superimposed the study areas with suitable grid
cells (Section 3.1.1). The locations of Pick-Up Points (PUPs) and Drop-Off Points (DOPs) extracted from
taxi GPS data were regarded as the origins and destinations of resident trips. By measuring the spatial
distribution of Origin-Destinations (ODs) originating from each grid cell, the daily travel space of urban
residents in each grid cell can be acquired, which is the basis for clustering (Section 3.1.2). We grouped
the grid cells with similar travel space into clusters in order to detect urban clusters (Section 3.1.3).
Through combination of the spatiotemporal attributes of taxi GPS data with geo-semantic information
derived from Weibo check-in data, resident demands for land-use functions can be acquired by
inferring their daily activity types and used for analyzing the rationality of land-use functions in the
detected clusters (Section 3.2.1). The travel behaviors of residents straightforwardly reflect whether
the land-use functions are reasonable. Hence, we adopted three indicators—namely, the cross-regional
travel index, commuting direction index, and fulfilled demand index, to analyze the travel behaviors
of residents and quantitatively evaluate land-use functions (Section 3.2.2). Moreover, we developed an
indicator to evaluate conformance between the detected results and planned clusters, which is helpful
when evaluating the progress of urban cluster construction (Section 3.2.3). The following two sections
describe each step in detail.

3.1. Detection of Urban Clusters from Daily Travel Space of Urban Residents

3.1.1. Determining the Grid Cell Size

At the beginning of the DEUC method, the study area was superimposed with regular grid cells,
as widely applied in movement analysis and modelling [6,37,38]. For simplification, we assumed that
resident activities would occur in the same grid cell where PUPs and DOPs are located. As PUP and
DOP of a taxi trip are generally as close as possible to the place where the activity occurs, the location of
PUP/DOP should be within walking distance from where the activity takes place. Hence, we regarded
grid cells as “walkable grid cells”, and the longest distance (the diagonal distance) within a cell should
not exceed the threshold of suitable walking distance. In the relevant research, the distance of a 10 min
walk (around 750 m) is regarded as the threshold for suitable walking distance [39,40]. Hence, we chose
500 m as the grid cell size.
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3.1.2. Measuring Daily Travel Space of Urban Residents

In general, the number of resident trips will decrease as travel distance increases. Therefore,
we assumed that the DOPs of trips originating from the same grid cell would roughly match a normal
spatial distribution. Standard Deviational Ellipses (SDE) are widely used to measure the spatial
distribution of a group of points with normal spatial distribution [41,42]; hence, we applied SDEs to
measure the daily travel space of urban residents. The farther a trip is, the more random the travel,
which means a smaller weight should be assigned to the SDE when the trip distance is far. Therefore,
before constructing SDEs, we set different weights (W ′) for each DOP based on the trip distance,
as shown in Equation (1):

W = 1/
√
(XDOP − XPUP)

2 + (YDOP −YPUP)
2 (1)

where (XPUP, YPUP) and (XDOP, YDOP) denote coordinates of PUP/DOP, and W is the computed
weight. All of the obtained weights are then normalized as W ′.

3.1.3. Detecting Urban Clusters

A land-use multifunctional cluster can meet the daily travel requirements of the majority of
residents in the cluster, thus reducing cross-regional travels. Therefore, a land-use multifunctional
cluster can be considered as the daily travel space of residents within that cluster. Based on this
assumption, urban clusters can be detected by grouping grid cells with similar SDEs, as described later
in this section. However, the number and centers of clusters are unknown before grouping. In this
case, using unsupervised classification is helpful to discover new knowledge [43]. Hence, we used the
Agglomerative Hierarchical Clustering (AHC) method [37,43,44] in this study.

The grid cells are clustered based on the similarity of travel space of trips originating from each
grid cell, which can be measured with the area of overlap of SDEs; the larger the overlapping area,
the higher the similarity coefficient. Since grid cells are the basic unit for analysis, all the SDEs were
projected on the divided grid cells. The corresponding SDE of each grid cell is represented by a
grid cell set A(g1, g2, . . . , gm), where gm denotes the grid cell number. In this step, the similarity
measurement between any two SDEs then converts into the similarity measurement between two
sets of grid cells. The similarity thus can be calculated by using Intersection over Union (also called
the Jaccard coefficient), as shown in Equation (2). The Jaccard coefficient is obtained by dividing the
intersection of two grid cell sets by the size of the union of the two grid cell sets [45]. Equation (2)
indicates that the Jaccard coefficient is positively related with the ratio of overlap of the two grid
cell sets:

J(A, B) =
|A ∩ B|
|A ∪ B| (2)

where A and B denote the grid cell set A(g1, g2, . . . , gm) and B(g′1, g′2, . . . , g′m), respectively.
In the clustering process, we applied average linkage strategy. Specifically, the similarity between

any two clusters can be computed as the average value of Jaccard coefficients between grid cell sets
from the first cluster and grid cell sets from the second cluster. The two clusters with the highest
average value are merged into a new cluster systematically. The clustering process runs until it reaches
the optimal clustering number. In an optimal clustering result, the correlation inside each cluster
must be stronger than the correlation between different clusters, as indicated by taxi trips. In detail,
when the number of ODs with origins and destinations both in each cluster is larger than the number
between it and any other clusters, the corresponding clustering count is considered as the optimal
clustering number. In addition, a small number of ODs originating from a grid cell are likely to form
several small clusters containing only themselves or containing very few grid cells. These outliers
must be removed during the clustering process.
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3.2. Quantitative Analysis and Evaluation of Urban Clusters

3.2.1. Acquiring Resident Demands for Land-Use Functions Based on Inferred Activity Types

The preceding activity types of PUPs and succeeding activity types of DOPs can reflect the
resident demands for land use types. Hence, we can acquire the demands for land uses by inferring
activity types. In this method, we focus on five types of daily activity. The mapping relationships
between the types of POIs and the activity types are listed in Table 2.

Table 2. Correspondence between POI types in check-in data and resident activity types.

POIs of Check-In Data Activity Types

Residential locations In-home
Universities, primary schools, secondary schools... Schooling
Shopping malls, commercial streets, supermarkets... Commercial
Cinemas, parks, zoos, museums... Recreation
Companies, IT companies, financial services companies... Working

Based on Table 2, each piece of check-in data can be labeled as one type of activity according to
their POIs. Let C = {y1, y2, . . . , y5}, where C is the activity type set and y1 − y5 denotes each activity
type in Table 2. We inferred the preceding activity types of PUPs and succeeding activity types of
DOPs based on the Bayes’ theorem, shown in Equation (3):

P(yi|x ) =
P(x|yi )P(yi)

P(x)
(3)

where P(yi|x) is a conditional probability representing the occurring probability of yi-type activity,
given that x has occurred. Let x = {a1, a2, a3} be an activity to be inferred, and each element ai in x
represents a feature:

• a1 = {1, 2, 3, . . . , n} is the well-divided gird set in which n denotes the grid cell number.
• a2 = {0:00–8:00, 8:00–10:00, 10:00–12:00, 12:00–14:00, 14:00–16:00, 16:00–18:00, 18:00–20:00,

20:00–22:00, 22:00–24:00} is the timeline in which the day is divided into nine intervals.
• a3 = {workdays, weekends} is the day set.

By aggregating check-in data within each grid cell, the occurring probability of each feature ai
given that yi-type activity has occurred, i.e., P(a1|yi ), P(a2|yi ), and P(a3|yi ), can be computed. With
the prior knowledge of activities from the check-in data, we could infer activity types related to PUPs
and DOPs. We assumed that each feature was conditionally independent, and thus the computation
of P(yi|x ) could be simplified to Equation (4). If P(yk|x) = max{P(y1|x), P(y2|x), . . . , P(y5|x)} , then
x ∈ yk. After the inference, we could match the corresponding demand for land-use functions
(including residential, education, commercial, recreation, and business) based on the inferred
activity types.

P(x|yi )P(yi) = P(a1|yi )P(a2|yi )P(a3|yi )P(yi) = P(yi)
3

∏
j=1

P(aj|yi ) (4)

3.2.2. Evaluating the Rationality of Land-Use Functions in the Detected Clusters

In this section, we present how we adopted three indicators to analyze trips quantitatively,
evaluating the rationality of land-use functions in the detected clusters.
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Definition 1. (Cross-regional travel index pij): The cross-regional travel index pij represents the proportion of
ODs from cluster i to cluster j in the total ODs originating from cluster i. The ranges of i and j are determined
by the clustering results:

pij =
Tij

∑k
m=1 Tim

(5)

where Tij denotes the number of ODs from cluster i to cluster j; k denotes the number of detected clusters;
and ∑k

m=1 Tim denotes the number of ODs originating from cluster i. When i = j, pij is an internal travel index.
The higher the value of the internal travel index, the more the internal land-use functions can fulfill the travel
demands, suggesting that land-use functions in cluster i are more reasonable. When i 6= j, this indicator reflects
the external travel destinations of cluster i; the cluster j, corresponding to the highest value, is the main external
travel destination.

Definition 2. (Commuting direction index kij): Commuting is an important part of resident daily trips.
Commuting behaviors can reflect the jobs–housing balance. The commuting direction index kij is shown in
Equation (6) [1], where kij is defined as the ratio of the difference between the number of commuting ODs from
cluster i to cluster j to the sum of the number of commuting ODs from cluster i to cluster j and that from cluster
j to cluster i:

kij =
Tij

Tij + Tji
(6)

where kij >0.5 represents that the commuting pattern is from cluster i to cluster j, while kij <0.5 represents
that the commuting pattern is from cluster j to cluster i. The more the value of kij deviates from 0.5, the more
unbalanced the commuting pattern.

Definition 3. (Fulfilled demand index diy): The fulfilled demand index diy represents the proportion of ODs
with both origins and destinations in cluster i among the total ODs originating from cluster i based on the y-type
land-use demands:

diy =
Tii

y

∑k
m=1 Ty

im

(7)

where ∑k
m=1 Ty

im denotes the number of ODs originating from cluster i based on the y-type land-use demands.
The higher the value of diy is, the more the internal y-type land-use functions fulfill the demands, suggesting that
y-type land-use function in cluster i is more reasonable.

3.2.3. Evaluating Conformance between Detected Clusters and Planned Clusters

In this section, we develop a Conformance Ratio (CR) to evaluate conformance between detected
results and planned clusters in order to assess the progress of urban construction. The computation of
CR is shown in Equation (8), in which the proportion of the area of the planned cluster i in the total
area of all planned clusters is assigned as the weight. The higher the CR, the closer the detected result
is to the planned urban clusters:

CR =
k

∑
i=1

(
Gi

detected ∩ Gi
planned

Gi
planned

×
Gi

planned

Gplanned

)
(8)

where Gi
detected denotes the grid cells overlapped by detected cluster i; Gi

planned denotes the grid cells
overlapped by the corresponding planned cluster i; Gplanned denotes the grid cells overlapped by all
planned clusters; and k denotes the number of detected clusters.
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4. Implementation and Results

4.1. Study Area and Dataset

In this article, we selected the area inside the third ring expressway in Wuhan, China, as the study
area. Wuhan is one of the provincial capitals and central cities of China. Yangtze River, the world’s
third largest river, and its largest tributary, Han River, divide the main city district of Wuhan into three
parts, forming the three towns of Wuhan: Wuchang, Hankou, and Hanyang. The geographical location
is presented in Figure 1a. The Municipal government planned 17 land-use multifunctional clusters
shown in Figure 1b.Sensors 2019, 19, x FOR PEER REVIEW 7 of 15 
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Figure 1. Study area: (a) the geographical location of the three towns of Wuhan in the map of China;
(b) the planned urban clusters of Wuhan.

Three trajectory data used in this study were GPS data collected from over 10,000 taxis for one
ordinary week, including workdays and weekends, from 1 to 7 September in 2009, 19 to 25 September
in 2014, and 8 to 14 May in 2015. These data contain the information listed in Table 3: vehicle ID,
timestamp, longitude, latitude, and taxi status (0 for vacant, 1 for occupied). Check-in data applied in
this study was more than 1 million pieces of Sina Weibo check-in data from 1 May 2013 to 1 May 2015
in Wuhan. This data contains the information listed in Table 4: record ID, check-in time, longitude,
latitude, and POI.

Table 3. Examples of taxi GPS data.

Vehicle ID Timestamp Longitude Latitude Taxi Status

82***** 1411274295 114.***** 30.***** 0
82***** 1411342736 114.***** 30.***** 1

. . . . . . . . . . . . . . .
10***** 1411177122 114.***** 30.***** 1

Table 4. Examples of Weibo check-in data.

Record ID Longitude Latitude Check-In Time POIs

1 114.***** 30.***** 13:42:16 Primary schools
2 114.***** 30.***** 22:03:27 Shopping malls

. . . . . . . . . . . . . . .
10 114.***** 30.***** 20:25:59 Factories
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The preprocessing work was to extract PUPs/DOPs. We sorted trajectory data with the same
vehicle ID based on timestamps, and extracted PUPs/DOPs according to the change in taxi status.
If a taxi with the same vehicle ID changes from vacant status (0) to occupied status (1), then the GPS
waypoint recorded at this moment is a PUP; if it changes from occupied status (1) to vacant status (0),
then the GPS waypoint recorded at this moment is a DOP. After extraction, we removed ODs where
the interval between PUP and DOP was less than one minute.

4.2. Detecting and Evaluating Single-Temporal Urban Clusters

4.2.1. Comparing Detected Results with Planned Clusters

This case study applied the proposed method to detect urban clusters in the year 2014, and finally
grouped the divided grid cells into 13 clusters. The transparent grid cells did not group into any cluster
since the number of ODs originating from them were less than three (at least three ODs are required to
construct a SDE) or removed as outliers during clustering process. In addition, since Dong Lake Scenic
District is not a daily activity area, it is not discussed in this article.

By comparing Figure 2 with Figure 1b, we find that three clusters, Huangpu, Erqi, and Hanyang
Central Activity Zone were not detected. The grid cells where Huangpu is located did not take part in
clustering, illustrating that there are few trips starting or ending in those grid cells. A merger between
the Erqi or Hanyang Central Activity zone and adjacent clusters reflects that there is a large number
of cross-regional travels between them. The 13 detected clusters are classified into four types based
on the spatial inclusion relationships between the detected clusters and the corresponding planned
clusters shown in Table 5. The typical results from Table 5 are visualized in Figure 3, showing the four
types of classification.

Table 5. Classifications of detected clusters.

Type Category Corresponding
Planned Cluster Category Corresponding

Planned Cluster

Type 1
Detected clusters agree with

the corresponding
planned clusters.

C3 Gutian C11 Qingshan

Type 2
Detected clusters are smaller

than the corresponding
planned clusters.

C1 Baisha C7 Nanhu

C8 Luoyu C10 Sixin

Type 3
Detected clusters are larger

than the corresponding
planned clusters.

C4 Shisheng C9 Guanshan

C12 Yangyuan C13 Houhu

Type 4
Detected clusters deviate
from the corresponding

planned clusters.

C2 Wuchang Central
Activity Zone C5 Ta Zihu

C6 Hankou Central
Activity Zone
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Figure 3. The typical detected clusters for each type in Table 5, in which the purple grid cells represent
the detected clusters; the blue polygons represent the corresponding planned clusters; the green grid
cells represent the intersections. (a) The clustering result of Qingshan (Type 1); (b) the clustering result
of Baisha (Type 2); (c) the clustering result of Guanshan (Type 3); (d) the clustering result of Ta Zihu
(Type 4).

Table 5 shows that there are two detected clusters that agree with the corresponding planned
clusters in Type 1. Type 2 suggests that there are four detected clusters smaller than the corresponding
planned clusters. Further, the grid cells overlapped by Baisha and Nanhu show sparse distributions
like Figure 3b, as there are few trips beginning or ending there, indicating there might be few
residents; or these clusters contain lakes, railways, or expressways. This phenomenon reveals that our
method can detect urban clusters in more detail. Regarding Type 3, there are four detected clusters,
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Shisheng, Guanshan, Yangyuan, and Houhu, which are larger than the corresponding planned clusters.
In Type 4, there are three detected clusters that deviate from the corresponding planned clusters in
some directions, reflecting that some daily travel spaces do not belong to the area of corresponding
planned clusters. Through analysis of Table 5 and Figure 3, we qualitatively assessed the progress of
urban cluster construction in the year 2014.

4.2.2. Comparing the Differences in Land-Use Functions of the Three Towns of Wuhan

Based on the detected urban clusters, we computed the three indicators shown in Section 3.2.2,
to evaluate the rationality of land-use functions in each cluster, in Tables 6 and 7 and Figure 4. With
computed results, we further compared the differences in land-use functions of the three towns
of Wuhan from the perspective of a smaller unit, land-use multifunctional cluster, enabling us to
investigate land-use patterns of the three regions in greater detail.

Table 6. Cross-regional travel index.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 0.42 0.26 0.00 0.01 0.01 0.05 0.14 0.02 0.03 0.01 0.01 0.04 0.01
C2 0.04 0.53 0.00 0.01 0.01 0.07 0.08 0.05 0.04 0.01 0.01 0.14 0.01
C3 0.00 0.01 0.49 0.16 0.10 0.19 0.00 0.00 0.00 0.01 0.00 0.01 0.02
C4 0.00 0.02 0.07 0.49 0.04 0.22 0.00 0.00 0.01 0.11 0.00 0.01 0.02
C5 0.00 0.01 0.03 0.02 0.48 0.28 0.00 0.00 0.00 0.01 0.01 0.02 0.12
C6 0.00 0.03 0.02 0.03 0.07 0.68 0.01 0.00 0.01 0.04 0.01 0.03 0.08
C7 0.05 0.15 0.00 0.00 0.00 0.02 0.54 0.08 0.11 0.00 0.00 0.03 0.01
C8 0.01 0.16 0.00 0.00 0.00 0.03 0.11 0.36 0.19 0.01 0.01 0.10 0.01
C9 0.00 0.04 0.00 0.00 0.00 0.01 0.05 0.06 0.80 0.00 0.00 0.02 0.01

C10 0.00 0.03 0.01 0.09 0.02 0.27 0.01 0.00 0.01 0.53 0.00 0.01 0.02
C11 0.00 0.01 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.00 0.76 0.15 0.03
C12 0.01 0.12 0.00 0.00 0.01 0.08 0.02 0.03 0.02 0.01 0.07 0.58 0.06
C13 0.00 0.01 0.00 0.01 0.07 0.21 0.00 0.00 0.00 0.01 0.02 0.06 0.59

Table 7. Commuting direction index.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 – 0.74 0.60 0.54 0.36 0.83 0.59 0.95 0.65 0.45 0.48 0.64 0.56
C2 0.26 – 0.22 0.28 0.16 0.51 0.37 0.84 0.48 0.16 0.16 0.26 0.22
C3 0.40 0.78 – 0.66 0.40 0.70 0.52 1.00 0.55 0.47 0.50 0.57 0.53
C4 0.46 0.72 0.34 – 0.34 0.65 0.51 0.89 0.52 0.44 0.40 0.58 0.42
C5 0.64 0.84 0.60 0.66 – 0.78 0.64 0.95 0.73 0.54 0.58 0.63 0.60
C6 0.17 0.49 0.30 0.35 0.22 – 0.21 0.74 0.32 0.15 0.23 0.29 0.35
C7 0.41 0.63 0.48 0.49 0.36 0.79 – 0.96 0.60 0.46 0.42 0.56 0.52
C8 0.05 0.16 0.00 0.11 0.05 0.26 0.04 – 0.07 0.06 0.07 0.22 0.15
C9 0.35 0.52 0.45 0.48 0.27 0.68 0.40 0.93 – 0.41 0.35 0.41 0.41

C10 0.55 0.84 0.53 0.56 0.46 0.85 0.54 0.94 0.59 – 0.49 0.64 0.57
C11 0.52 0.84 0.50 0.60 0.42 0.77 0.58 0.93 0.65 0.51 – 0.54 0.57
C12 0.36 0.74 0.43 0.42 0.37 0.71 0.44 0.78 0.59 0.36 0.46 – 0.49
C13 0.44 0.78 0.47 0.58 0.40 0.65 0.48 0.85 0.59 0.43 0.43 0.51 –
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(g) C7, (h) C8, (i) C9, (j) C10, (k) C11, (l) C12, (m) C13, by five types of land-use functions.

The detected clusters in Wuchang relatively agree with planned clusters, but there are still
differences in land-use functions among each cluster. Specifically, when comparing Figure 2 with
Figure 1b, the number of detected clusters is equal to the planned clusters. But C1 and C8 have an
internal travel index below 0.5 in Table 6, suggesting that their internal land-use functions might be
poor, leading to a large number of cross-regional travels. Through analysis of Figure 4 and Table 7,
we find one interesting phenomenon about C8. The commuting direction index in Table 7 suggests
that commuting destinations of residents in Wuchang is mainly toward C8. But Figure 4 shows a low
fulfilled demand index for the business function of C8. The analysis seems diametrically opposite,
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indicating that there might be less residential land but more floating population. In addition, many
universities are concentrated there, such as Wuhan University. Hence, although there might be few
residents living here, the fulfilled demand index for the education function is still high.

C6 is the activity center of Hankou and Hanyang, with well-developed commercial and business
functions. Specifically, Table 6 shows that the main cross-regional travel destinations for C3, C4,
C5, C10, and C13 are all toward C6. Figure 4 shows that fulfilled demand indexes for commercial,
recreation, and business functions in C6 are more than 0.6, suggesting these functions can fulfill
the travel demands, while Table 7 shows that the commuting pattern of C6 is unbalanced—that
is, the commuting amount from surrounding clusters to C6 is greater than the amount from C6 to
surrounding clusters. These findings are consistent with Hankou Central Activity Zone in the urban
plan, which is a site for financial and commercial functions. The plan aims to build up this zone as a
modern central business zone with a professional and commercial employment environment [46].

Urban clusters in Hanyang are quite underdeveloped. Only C4 and C10, with a low internal travel
index (0.49 and 0.53), are detected in Hanyang with no activity center detected. Furthermore, according
to Figure 4, the residential function is the only high fulfilled demand index in C10. The education
function in C4 is high but the other indexes are all below 0.6, which indicates that residents need a
large number of cross-regional travels to fulfill their demands for other land-use functions. The results
suggest that the land-use functions in Hanyang need improvement.

4.3. Quantitatively Evaluating Progress of Urban Cluster Construction

We further applied our method to detect urban clusters in the years 2009 (Figure 5a) and 2015
(Figure 5c). The construction progress of 17 planned clusters can be analyzed based on the three-year
clustering results.
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Figure 5. Clustering results in the year 2009 (a), 2014 (b), and 2015 (c) with major highways, including
the third ring expressway.

As shown in Figure 5, there are nine detected clusters in Figure 5a, 13 in Figure 5b, and 13 in
Figure 5c, indicating that the number of detected clusters is approaching the number of planned clusters.
In addition, the number of grid cells participating in the clustering process was 1397, 1563, and 1637 in
Figure 5a–c respectively, also showing an increasing trend over time. This phenomenon is particularly
evident in the area close to the third ring expressway, as shown in Figure 5. More specifically, several
clusters close to the third ring expressway, such as Baisha, Nanhu, Sixin, and Shisheng, gradually
formed and approached the shape of the corresponding planned clusters in the period 2009–2015,
which suggests that the population of residents living there is increasing. This analysis reflects the
spatial expansion of Wuhan.

Based on these three-year clustering results, we further computed CR between the detected
clusters (Figure 5) and the planned clusters (Figure 1b). In addition, lakes, railways, and expressways
are not daily activity spaces, and thus they did not participate in computation. The computed CRs were
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55.7%, 63.0%, and 69.0% in the years 2009, 2014, and 2015 respectively, suggesting that the detected
clusters are gradually approaching the shape of planned clusters on the whole. The calculated CRs
for the three-year clustering results show the progress of urban cluster construction and indicate the
development of land-use functions, which can provide a basis for urban construction.

5. Conclusions

In this article, we proposed a DEUC method combining taxi trajectories with Sina Weibo check-in
data. In our method, we first constructed weighted SDEs to delineate daily travel spaces, and then
applied an AHC method to detect urban clusters based on the similarities in SDEs of each grid cell.
We next acquired the demands for land-use functions using a naïve Bayes’ theorem, and adopted
three indicators to evaluate the rationality of land-use functions in the detected clusters. Furthermore,
we evaluated the conformance between the detected clusters and planned clusters, assessing the
progress of urban cluster construction.

In the case study, urban clusters in Wuhan in the year 2014 were detected and analyzed.
The clustering results show that there were 13 detected clusters. By comparing the detected results
(Figure 2) with planned clusters (Figure 1b), we found that two of the 13 clusters agreed with the
planned clusters, but that the remaining clusters were smaller, larger, or deviated from the planned
clusters, qualitatively assessing the progress of urban cluster construction.

By computing the three indicators, we evaluated the land-use functions in each detected cluster,
and applied the results in comparing the difference in land-use functions in the three towns of Wuhan
from the perspective of a smaller unit. The analysis revealed that detected clusters in Wuchang
relatively agreed with planned clusters, but there were still differences in land-use functions among
each cluster; Hankou had well-developed commercial and business functions; and only two clusters
with low internal travel indexes were detected and no activity center detected in Hanyang, which
suggests that land-use functions need improvement.

We further detected urban clusters in the years 2009 and 2015. The three-year clustering
results show that the number of detected clusters increased from 9 to 13 in the period 2009–2015,
and the computed CRs were 55.7%, 63.0%, and 69.0% in the years 2009, 2014, and 2015 respectively,
quantitatively assessing the progress of urban cluster construction.

Our results have shown that spatiotemporal big data can provide a new lens for understanding
urban clusters in a natural and fine-grained way. Future work will focus on detecting urban clusters
using combined trajectory data to assess the progress of urban construction in more detail, which may
provide scientific evidence for decision-making in urban development.
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