
Article

Indexing Multivariate Mobile Data through
Spatio-Temporal Event Detection and Clustering

Reza Rawassizadeh 1,*, Chelsea Dobbins 2, Mohammad Akbari 3 and Michael Pazzani 4

1 Department of Computer Science, University of Rochester, NY 14620, USA
2 Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane 4072,

Australia; c.m.dobbins@uq.edu.au
3 Department of Computer Science, University College London, London WC1E 6BT, UK; m.akbari@ucl.ac.uk
4 Department of Computer Science, University of California, Riverside, CA 92507, USA; michael.pazzani@ucr.edu
* Correspondence: rrawassizadeh@acm.org

Received: 12 December 2018; Accepted: 18 January 2019; Published: 22 January 2019

Abstract: Mobile and wearable devices are capable of quantifying user behaviors based on their
contextual sensor data. However, few indexing and annotation mechanisms are available, due to
difficulties inherent in raw multivariate data types and the relative sparsity of sensor data. These issues
have slowed the development of higher level human-centric searching and querying mechanisms. Here,
we propose a pipeline of three algorithms. First, we introduce a spatio-temporal event detection algorithm.
Then, we introduce a clustering algorithm based on mobile contextual data. Our spatio-temporal
clustering approach can be used as an annotation on raw sensor data. It improves information retrieval
by reducing the search space and is based on searching only the related clusters. To further improve
behavior quantification, the third algorithm identifies contrasting events withina cluster content. Two
large real-world smartphone datasets have been used to evaluate our algorithms and demonstrate the
utility and resource efficiency of our approach to search.

Keywords: spatio-temporal; clustering; event detection; mobile sensing: contrast behavior mining;
human behavior

1. Introduction

The proliferation of mobile and wearable devices offers researchers opportunities to detect, identify,
and classify human behavior. New computational paradigms, in combination with wearable sensors have
powered the “quantified self” and “mobile health” movements, in addition to the renewal of interest
in underutilized paradigms, such as “lifelogging” and “personal informatics” among other terms for
self-tracking to improve personal performance. All of these systems benefit from sensor data that have
been collected by mobile and wearable devices from the user’s environment and behavior. These data are
multivariate (e.g., accelerometer and GPS), typically sparse and time-stamped [1].

However, despite the richness of this data, there remains a lack of appropriate searching and
information retrieval mechanisms that are able to filter sensor data within the resource limitations of
small mobile devices. Therefore, data analysis should be done on a remote host, such as on the cloud or
cloudlet [2]. However, this will raise network response time and privacy related issues [3].

We believe virtual assistance devices or applications with conversational agents could work in synergy
with human memory, enabling users to recall previous life events through lifelogging. For example, a user
can ask her virtual assistant “How many times did I visit the gym last month?” or “How long did I spend in

Sensors 2019, 19, 448; doi:10.3390/s19030448 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s19030448
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 448 2 of 27

traffic during my daily commute?”. In spite of the obvious utility of such a system, such search and querying
mechanisms for mobile health applications (e.g., Google Fit [4], Samsung Health [5] and FitBit [6]) on
personal assistants (e.g., SiRi [7] and Cortona [8]) do not yet exist. Existing mobile health applications
continuously collect data, but they only provide temporal browsing and graph based visualizations. Graph
illiteracy is a major challenge among individuals, even in developed countries [9], that has affected the
usability of mobile health applications [10].

Any requirement for manual intervention in these systems is a barrier to adoption [11]. Therefore,
frequently annotating the data manually is not useful. However, manual annotation is inevitable and we
cannot completely remove it. On the other hand, little work has addressed index creation from multivariate
temporal sensor data. An annotation/indexing mechanism can facilitate higher-level searching and querying
of datasets composed of temporal sensor data.

In response to these challenges, this paper is aimed at spatio-temporal indexing of multivariate temporal
data to reduce the search space for facilitating human-centric searching of queries.

Our approach is toward enabling mobile devices to search their collected data in a reasonable time
with less resource utilization. In particular, our contribution is a pipeline of three algorithms that improves
search execution time and resource-efficiency, as follows:

• We describe a spatial event detection algorithm to detect daily life events from raw data (mobile
sensor data). Daily life events are typically grounded in specific times and locations, and this
spatio-temporality can be extracted from sensor data. Converting daily activities into discrete spatial
events is our first step toward annotating and indexing the raw data. Since location data from mobile
devices are sparse and not always available, our algorithm should be able to cope with uncertainty
and sparsity. For instance, Figure 1 shows a visualization of three days of data from a user. It
shows that location data (•) and WiFi data (N), which could be used for location estimation, are not
always available.

• Given that human mobility behavior is known to be predictable, at least in the aggregate [12],
our second contribution is an unsupervised spatio-temporal clustering mechanism that identifies
similar daily life-events and annotates them based on their correlation with location changes and times.
In other words, life events during a routine behavior, e.g., commuting to a work at a specific time of
the day, or going to the movies on weekends, will tend to map to the same cluster.

This spatio-temporal clustering provides a higher level of annotation (index), and in turn reduces the
search space.

• Our third contribution is exploiting the content of each individual cluster to allow us to identify
contrasting events inside a cluster. The identification of contrasting events (behaviors) is a major step
toward the enrichment of sensor data inside a cluster, and thus refining the described spatio-temporal
indexes. For example, consider a user who visits a coffee shop for two purposes, either to chat
with friends or to work. Since both chatting and working take place in the same location, and, at
the same time, spatio-temporal event detection alone may not suffice to distinguish between these
two distinct user behaviors. However, data from the mobile or wearable device microphone can
differentiate between working and chatting (at the same location/time). Therefore, a contrast-set
detection [13] method is better positioned to delve deeper into the content of our spatio-temporal
clusters. Furthermore, first searching clusters with fewer contrasting events could improve search
execution time as well.

Sensors 2019, 19, 448 3 of 27

Figure 1. UbiqLog life log visualization of three days of data for a single user (best viewed in color).

To concretely ground these concepts, consider two application scenarios that would benefit from
using our algorithms:

(i) User 1 goes to the gym on a regular basis, and maintains her diet. Nevertheless, she starts gaining
weight. Using the contrast event detection algorithm, she realizes that she recently began spending
less time on cardio training in favor of weight training, which is a prime suspect for her weight gain.

(ii) User 2 has a flexible working schedule. Through the spatio-temporal event detection algorithm, he
can estimate how much time he spends commuting to work on average, and then find out the best
time/day to commute.

These two examples exhibit the utility of using the spatio-temporal annotation (indexing) within
higher-level applications. In other words, our algorithms facilitates searching through reducing the search
space based on clustering and analyzing clusters based on their contrasting events. Furthermore, prioritizing
the search based on clusters with a lower number of contrasting events could slightly improve the search
execution time. There are promising approaches for analyzing mobile data to extract behavioral patterns [1,
14,15]. However, based on our knowledge, this is the first work that relies on the spatio-temporality of
the mobile data for annotating other sensor data, clustering them and ordering the clusters based on
their contrasting events. In other words, this is the first work to employ such a facility toward enabling
on-device [3] search operations for end users.

Note that, except event detection, which does not have any new parameters, each of our algorithms
has only one parameter to configure (in total two parameters, one for spatial clustering and one for
contrast behavior detection) and, in the evaluation section, we report parameter sensitivity analysis in
detail. Parameters for the event detection are either constant or they have been chosen based on optimal
values from previous works. Each algorithm could be used separately as well. For instance, a user can
choose another event detection method, not using contrast behavior detection and only use the temporal
clustering algorithm.

Implementing the end-user application which hosts this search facility is not in the scope of this
paper. The end-user query parsing is the task of the application that hosts our methods. Moreover,
our algorithms are not able to completely remove the burden of manual location annotation, despite
mitigating it significantly. They can be used inside applications (as middleware) that require searching
mobile data or converting raw data to higher-level spatio-temporal information, and reducing the need for
manual annotation.

2. Problem Statements

Daily events in a person’s life (e.g., going to the gym) can be recognized by mobile and wearable
devices. Here our focus is on spatio-temporal daily life events, or in other words activities of daily life.

Sensors 2019, 19, 448 4 of 27

As such, this work does not directly support higher-level and longer term life events, such as getting
married or attending graduate school. Moreover, life events contain nested events, which are not covered
in this work, e.g., being at work may be associated with nested events such as drinking coffee, moving
to different offices, etc. Our work can distinguish discrete daily life activities, based on location changes,
such as driving to work or going to a restaurant.

Notwithstanding these limitations, we believe this work is among the first toward quantifying
spatio-temporal dynamics from sparse multivariate temporal data from smartphones.

2.1. Spatial Event Detection

Daily life events occur in a specific location at a specific time, and can be understood as a set of
actions from the device a user is carrying. Each action, a, can be modeled within a 4-tuple arrangement:
a =< S, D, T, L >. S denotes the context sensor name (or attribute name), D is sensor data (or value of the
attribute), T is the timestamp of the action, and L is location of the action. Geographical coordinates in
most real-world cases does not exist. Therefore, we focus only on location state and accurate geographical
coordinates, i.e., L. Each user life event can be formalized within a specific time T and specific location L.
Previous works [14,16] have proposed using spatial changes as a primitive. However, a single location can
be associated with disparate actions, i.e., home, work, etc. Thus, we need to consider the finer granularity
of actions used to model an event. In other words, an event e is composed of a finite set of actions:
e = {a1, a2, a3, ..., an} and all these actions have the same location state (specific constant location). If the
location has changed, it is the end of the current event and the beginning of a new event. L is the constant
in the following definition of an event: e = {< S1, D1, T1, L >,< S2, D2, T2, L >, . . . ,< Sn, Dn, Tn, L >}.
Therefore, the event e can be described as:

e = {ai : l(ai) ∈ (Θ ∨∅),∪l(ai) = l, Tmin ≤ t(ai) ≤ Tmax}, (1)

where l(a) is the location, and t(a) is the time of the action a, while each event is bounded by specific
temporal borders. By constant location, we do not mean the exact latitude and longitude of a location
(For the sake of simplicity, we refer to the movement state, location changes, as ’location state’); we
mean a movement state i.e., moving, stationary and unknown. Unknown is used when a location is not
available, e.g., in Figure 1 between ∼1:30 p.m. to ∼3:00 p.m. on 1 July 2014, because there is no WiFi and
geographical coordination data available. Here, the process of location annotation is manually assigning
labels to the identified location state, based on time of the day, which is used in our evaluation section. The
first question is to identify l(a), which represents the location. Since it is constant in each event, we use Θ
to denote the location, either “moving” or “stationary”. Due to pervasive device restrictions, e.g., GPS
does not work indoors, the user turns it off, etc., it is not possible to continuously get location, thus l(a) is
either null or Θ. In addition, the union of all locations of actions inside an event are a single location state.
At this point, Θ is a geographical coordinates object (if it exists). Later, it will be a location state, which we
will describe it in this section.

2.2. Temporal Clustering

To index events, the second challenge is to identify and cluster similar events that occur (i) at about the
same time interval in consecutive days and (ii) in the same location state (moving, stationary or unknown).
For instance, events that include “daily commute to work” will be assigned to one cluster, and events that
include “attending the gym in the evening” will be assigned to another cluster. Note that this clustering
will be done for each user separately and no information will be shared between users.

Routine human behaviors do not usually occur at a fine temporal granularity [1], and there is a
temporal uncertainty. For instance, a person may go for a coffee break one day at 4:34 p.m., the next day at

Sensors 2019, 19, 448 5 of 27

4:31 p.m. and the day after that at 4:20 p.m.. Given this, any model of human behavior should be flexible
enough to be invariant to such minor timing differences.

To handle this need for flexibility in our model, we define a temporal interval, λ. This interval will be
used to mitigate the inevitable time “slope” of the time of event occurrences. In other words, λ will be
used for comparison between the start of events (lower bound) and also the end of events (upper bounds).
Later, in Section 4, we will describe more about the use of λ. With this notation, we formally define the
task of temporal clustering of events as the following:

Definition: Given a set of events C and a temporal interval λ, the objective is to categorize events into k different
sub-groups, i.e., clusters, {Ci}k

i=1. For each pair of events ex, ey in any cluster Ci the following
constraint holds, where ex(a) presents an action a inside event ex.

∀(ex, ey) ∈ Ci :

{
|min(t(ex(a))−min(t(ey(a))| ≤ λ,

max(t(ex(a))−max(t(ey(a)) ≤ λ,
(2)

In other words, for each pair of events ex and ey, the temporal difference between their lower and upper
bounds should not exceed the λ temporal interval. However, there are events that could be routine, but
they occur at very different times of the day. Those events cannot be handled by our approach.

2.3. Contrasting Events Identification

One can argue that simply clustering based on spatio-temporal properties of activities is too much
of a generalization for human behavior. For instance, a user could go to the gym some times for cardio
training and sometimes for weight lifting. In these instances, the spatio-temporality of both events are
similar, i.e., they stay in the same cluster. However, they are different behaviors. This example shows that
we need to have a deeper overview of behaviors.

After temporal clustering, we go one step further and compare/contrast the contents of each
individual cluster. This is an important step toward augmenting cluster content. Consider the previous
example in which a person regularly visits the same place each weekend. Sometimes, she performs weight
lifting and sometimes she performs cardio training. Figure 2 is a toy example that visualizes a daily routine
behaviors of a user. In this scenario, the spatial and temporal similarity failed to distinguish the contents of
her activities inside the gym, and thus we need to examine more closely the activities that are happening
“inside” the cluster.

D
ay

 1
D

ay
 2

Figure 2. A presentation of constrasting activities bewteen two evetns of the gym cluster, i.e., cardio training
and weight lifting

Traditionally, contrast-set mining is used to identify meaningful differences between groups by
finding predictors that discriminate between the groups [13]. Inspired by this concept, we define that
two events em and en inside a cluster are contrasting/dissimilar if they fail to share at least ω number of
common actions, where ω denotes the dissimilarity threshold controlling the flexibility of the algorithm.

Sensors 2019, 19, 448 6 of 27

For example, in Figure 2, if ω = 1 the events in the gym cluster are all considered similar. However, if
ω = 2, then the two gym events in that cluster are considered to be dissimilar.

Contrasting events can be identified by the following Γc function:

Γc(em, en) =

1, i f ∑
i≤m,j≤n
i,j=1 em(ai) ∩ en(aj) ≥ ω,

0, otherwise,
(3)

where e(a) function denotes all actions inside the event e. If the comparison between two events returns
fewer than ω actions, then the Γc output is false (0), otherwise this function returns true (1). False output
means these events are not significantly different (i.e., not contrasting behaviors). Our experiments mostly
show that events inside a cluster have a similar number of actions; therefore, there is no need to use a
Jaccard similarity, just relying on the intersection is enough. Going back to the example of User1, if ω

number of actions (e.g., physical activities that can be measured via an accelerometer) that she performs in
her two gym sessions are different, then the two gym events are considered contrasting events, e.g., cardio
versus free weights. Therefore, the problem of contrast event detection can be formalized as:

Problem: Given a cluster of events Ci and a dissimilarity threshold ω, the objective is to identify contrasting events
inside the Ci cluster by detecting any pair of events em and en, which holds Γc(em, en) = 1.

This problem formulation exploits the intrinsic multivariety of the data. In particular, our experimental
datasets contain data objects from different resources (multivariate), but this model links them together
via timestamps and converts different timestamped data as fine-grained units.

3. Datasets

Two smartphone datasets have been used for our experiments, UbiqLog [17] and Device Analyzer [18].
We chose these two datasets because in the real-world there are many different makes and models of
smartphones, and each device has its own restrictions and specifications for hardware and software. This
affects the quantity and quality of the data. As we are demonstrating our algorithms in a real-world setting,
we have chosen these two datasets because both have collected data outside a lab setting in the real world.

UbiqLog [19]: An open source Android-based life logging tool [20] has been used to create the
UbiqLog dataset. It includes 9.78 million records of users’ detected WiFi, Bluetooth, application usage, SMS,
call, physical activity (based on Google Play Services) and geographical location. The capacity for location
extraction varies based on availability and device status, e.g., GPS, Cell-ID and Google Play Services
Location API. Figure 1 shows a visualization of three days of a single user’s data in the UbiqLog dataset.
The x-axis represents the time of the data, and each sensor has a different color. Table 1 provides details
about the UbiqLog dataset records, whilst another report [11] describes more about the data collection
experiment. All records are semantically rich and are human readable. Therefore, there is no raw sensor
data, such as accelerometer data, in this dataset.

Device Analyzer [21]: This is the largest smartphone data-set created and is based on hardware status
and device configuration of Android smartphones in which users have installed the Device Analyzer app.
It contains raw sensor data for more than 30,000 users. However, our interest is only in the data that is
common with the UbiqLog data. This is because UbiqLog is focused on human-centric data that can be
collected via smartphones. Device Analyzer is a more hardware-oriented approach and includes detailed
information about device status changes. Table 2 shows the number of records for the 35 random Device
Analyzer users.

Sensors 2019, 19, 448 7 of 27

Although the real focus of our algorithms is on user-centric data, to demonstrate the versatility of our
approach, we have performed our evaluations on both datasets. We have randomly selected 35 users from
Device Analyzer and 35 users from UbiqLog, which means in total we have experimented on 70 users.

Table 1. Number and types of sensors in the UbiqLog dataset.

Sensor Name Num. of Instances

WiFi 8,750,111
Location 725,560
SMS 28,849
Call 99,022
App. Usage 45,803
Bluetooth 117,236
Activity State 15,641

All Data 9,782,222

Table 2. Numbers and types of sensors for 35 random users’ data from Device Analyzer dataset.

Sensor Name Num. of Instances

WiFi 2,288,642
Application 98,392,622
Phone 15,719,384
SMS 104,643
Bluetooth 9620
Analytics 2910
Power 5,716,330
System 1,051,175
Audio 4,839,668
CPU 1,143,736
Image 2,281,293
Video 152,397
Memorycard 83,572
Net 232,954
HF 16,687

All Data 132,035,633

4. Algorithms

The first step of our approach is to extract events based on the spatio-temporal properties of sensor
data, for each user. To identify events from raw data, we introduce a spatial change point detection method.
Then, based on both temporal borders and spatial state, we introduce temporal interval based clustering
to group similar events together. As it has been described, spatio-temporal quantification alone may not
suffice for all application scenarios. Therefore, elements of each cluster are further analyzed to identify
dissimilar events. Since privacy issues currently appear insurmountable [22,23], all proposed algorithms
are completed separately for each user, and information is not shared among users.

4.1. Spatial Change Point Detection

Event identification is based on location state changes. As described, location refers to moving,
stationary or unknown. This notion of location is more limited than in other research efforts, which consider
geographical locations. However, in the real world, we do not have access to the geographical coordinates
24/7. Therefore, this definition has the advantage of greater availability, which is required in a real-world
application. Furthermore, Figure 1 shows a small time shift in routine human behavior. The displayed

Sensors 2019, 19, 448 8 of 27

dots are not just GPS data but a combination of Cell-ID, GPS and Google API. While a few research
efforts [24,25] focus on extracting locations from a combination of different location data sources (fusion),
several efforts focus on collecting and mining location traces from a single source of information [26,27]
and have demonstrated promising results.

Note that our approach is focused on the data that is being collected from the users’ device
(user-centric) and not service provider data, i.e., call detail records (CDR) [28]. Location data can also be
obtained from sources including Cell-ID, WiFi, wireless beacons, etc. Cell-ID is too imprecise to be used
for location estimation, and, due to limited battery power, users often do not enable GPS. Therefore, a
more reliable source, such as a combination of both WiFi and Cell-ID (which are more resource efficient in
comparison to GPS alone), should be used for estimating location. In other words, a location estimation
algorithm is assumed to extract location from a combination of sensors.

Our change point detection (location estimation) algorithm receives a set of actions and signal type as
inputs and it returns a list of events. Actions are a 3-tuple of attribute (sensor name), value (sensor data)
and timestamp. Signal type can be WiFi only (e.g., Device Analyzer data) or a combination of sensors.
An event includes a location state, start time, end time, and a finite set of actions. The following shows a
simplified example of raw sensor data in a time slot, i.e., between 12:00 p.m. to 12:30 p.m. Since the WiFi is
not repeated, we consider this time slot as “moving”.

{{name:"call",val:"1800xxx", time:"12:02-12:03"}},
{name:"WiFi",val:"BSSDID_1", time:"12:04"},
{name:"activity",val:"walk-910s.", time:"12:04-12:18"},
{name:"WiFi",val:"BSSDID_x", time:"12:26"}.

The following shows an example of an event with four actions, after change points have been
identified and annotated, i.e., “location state”.

{location_state:"moving",time:"12:00-12:30",
actions:{{name:"call",val:"1800xxx",

time:"12:02-12:03"},
{name:"WiFi",val:"BSSDID_1",
time:"12:04"},

{name:"activity",val:"walk-910sec.",
time:"12:04-12:18"},

{name:"WiFi",val:"BSSDID_x",
time:"12:26"} } }.

Note that the algorithm checks the signal type, either Wi-Fi or combination of all location signals. If
both Wi-Fi and geographical location exist, the algorithm prioritizes the geographical location over Wi-Fi
(due to its superior accuracy).

If it is only Wi-Fi, it searches for consecutive timestamped WiFi logs. If such a sequence exists, and
all its elements (i.e., BSSID of WiFi) are unique, this is a sign of a moving event. For example, a sequence
of not repeated WiFi BSSID as Wx, Wy, Wz is a sign of a moving event. Therefore, a moving event (with
its start time and end time) will be created and appended to the events list. Otherwise, if it is not a
moving event and there is a sequence of elements, but they are not unique (i.e., repeated BSSID), the
algorithm identifies them as a stationary event. For instance, a 60 min sequence of repeated WiFi BSSID as
Wx, Wy, Wa, Wx, Wb, Wy presents a stationary event. If in a time interval of 60 min no WiFi signal exists
at all, and all other location signals are not available either, the algorithm creates an unknown event. The
algorithm uses a time interval of 60 min because it has been identified [1] that the temporal granularity

Sensors 2019, 19, 448 9 of 27

of 60 min has the highest accuracy for routine behavior identification. In other words, this time interval
could be assumed as a smoothing factor.

All events include a start time and end time. In short, when the algorithm finds a number of WiFi
BSSIDs (let us say names for simplicity) repeated together, it creates a stationary event. However, if the
WiFi names changes and they are not repeated, it creates a moving event. If none of the described cases
exist, the algorithm creates an unknown event.

If the signal type is not just WiFi and it is a combination of GPS, Cell-ID and a 3rd party location service
such as the Google Play service, the algorithm takes a different approach. If geographical coordinates
exist (GPS or a similar 3rd party service), the location status is easily computed. To calculate this type of
location state, it computes the difference between two consecutive geographical coordinates. If two signals
have a distance more than the distance threshold δd and are equal to or more than the temporal threshold δt,
then the algorithm marks the target time frame (event) as moving. Otherwise, if the distance is less than δd
and more than δt, it marks them as stationary. If no location signal appears after δt time, then the algorithm
creates a new event and marks the event as unknown. This event continues until a new location change
appears. When a new location signal appears (that creates a different location state), it ends the previous
event. Ending an event means the algorithm closes the event with the timestamp of the last element in the
dataset. Then, a new event is created with the timestamp of the new location element that has been most
recently read.

Note that δd is a fixed number and varies between 800 to 1000 m in cell tower installations; e.g., in the
city of the UbiqLog experiment, it is fixed to 800 m.

The UbiqLog dataset shows that most of the time GPS is turned off (based on its real-world nature),
there are very few GPS logs and they occur mostly when users are navigating. Most location logs are from
Cell-ID; and thus it is not possible to precisely estimate location (because of relying on Cell-ID instead
of precise coordinate) [25]. In particular, when the location change is noted, there is an ambiguity as to
whether the location has truly changed or just the cell tower has changed (i.e., handoff). Nevertheless, there
is a fixed precision associated with the location extracted from the Cell-ID. Let us assume the precision
distance is δd, (in the city of the UbiqLog experiment, the precision distance between Cell towers was
800 m) and a temporal precision δt. To understand this problem, consider the example in Figure 3a. There
we have C1, C2, C3, C4. If dx1 + dx2 > δd, this means that the user is moving. If dx1 + dx3 > δd but the
distance between C1 and C4 : dx4 < δd, then the user is inferred to be stationary and not moving. Therefore,
when the algorithm calculates only the distance between two consecutive points, it might face a problem.
To resolve this issue, when the location is based on Cell-ID, the algorithm calculates the location distance
between three consecutive points rather than two. Figure 3b shows a trace, which has a combination of
GPS(G) and Cell-ID(C) locations. It shows that four Cell-IDs have been recognized and C4 has not been
categorized as the same event. Based on cell tower distribution [26], δd must be 800 to 1000 m (cell tower
distances) to check whether or not there is a location change or not, and five minutes has been assigned
to δt.

Setting δt to five minutes is extracted from the evaluation conducted in the data collection
experiment [11]. Therefore, in this paper, we do not evaluate the parameter sensitivity of δt, δd and
the time intervals.

The computational complexity of the this spatial change point detection algorithm is linear because,
even if we assume all locations are Cell-ID, there is a need for a comparison of each element with its two
previous ones and thus we require only 3n comparisons (worst case scenario).

Sensors 2019, 19, 448 10 of 27

4.2. Temporal Clustering

The second step is to cluster similar user events of a person based on their spatial and temporal
similarity. Events inside a cluster have the (i) same start time, (ii) same end time and (iii) same location
state, which was identified in the previous stage.

C1
C 2

C3
C4

dx1

dx2

dx3

dx4

G3G2G1 C1 C4C3C2 C5

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

G3G2G1 C1 C4C3C2 C5

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
1 2 3 4

a b
input:

output:

Figure 3. (a) four consecutive locations from Cell-ID; (b) four events have been detected, the first three
elements contain GPS, and then with two elements marked as unknown. Three later elements, C1, C2, C3
contain cell IDs and show another movement until the point C4. The geographical distance between C4
and both C3 and C2 is less than δd.

We interpret similar spatio-temporal events as an indicator for a routine behavior, e.g., commuting to
work, going to the park on weekends, etc. Similar events are collected in clusters. As it has been described
in Section 2, we need to handle the slope of human timing of similar events and thus use λ. λ can be
interpreted as a reasonable “slope interval” to calculate similarities between events. Figure 4 shows a λ

interval that covers the start times (lower bound) of two (visually) similar events S1-3 and S2-3 from two
consecutive days. Clusters are not overlapped.

Algorithm 1 describes our temporal clustering approach. λ and a list of events, inEvents, which are
ordered based on timestamps, are inputs. The algorithm iterates through all events; then, it selects the first
two days through the initiate method, line 3. ebase is the event list of the first day and esecond is the event
list of the next day. On line 5, similarST method compares the spatial and temporal data of two events
from each day. If they are similar, and a cluster with their spatio-temporal properties exists (checked by
existsSim) then the algorithm adds both events into their respective cluster, on line 7. Otherwise, if they
have similar spatio-temporal properties but no cluster exists with the similar spatio-temporal properties,
the algorithm creates a new cluster on line 9 and adds both events into this new cluster. If none of the
above conditions are met, both events will be added to tmpNS list (list of orphan events), line 11.

Days are compared sequentially, but there are events that do not occur every day but occur frequently,
such as going to the gym twice a week or events originating from weekend activities, e.g., going to the
movies. To cluster these events, dissimilar events will go into the tmpNS list (line 11). After the first loop,
which compares all events and assigns them to their cluster, the algorithm orders the content of tmpNS
based on time, on line 14. Then, it starts iterating through them on line 15. If two consecutive events
inside tmpNS are similar, and their spatio-temporal properties are similar to one of the exiting clusters
(existSim method on line 15 checks this condition), then these two events will be added to that existing
cluster, on line 18. Moreover, these events will be removed from tmpNS because now they have a cluster.
If they are not passed to any cluster but their spatio-temporal properties are similar, a new cluster to host

Sensors 2019, 19, 448 11 of 27

them will be created on line 20 and collect them. Nevertheless, if none of these conditions apply, these
events do not have any similar events and they will be added to a list of nonsimilar (anomalous) events.

Algorithm 1: Temporal clustering of events.
Data: inEvents, λ

Result: ClustList, nonsimilar
1 while (!inEvents.isNull) do
2 // create 2 event lists (base,second) from current 2 days.
3 ebase[_], esecond[_]← initiate(inEvents.currentDay, inEvents.nextDay); ct← 0; //ct is a counter
4 forall events in ebase do
5 if (similarST(ebase[ct], enext[ct], λ) = t)
6 AND (existsSim(ebase[ct], ClustList) = t)) then
7 ClustList.update(ebase[ct], enext[ct]) ;

8 else if (similarST(ebase[ct], enext[ct], λ) = t) then
9 ClustList.addNew(ebase[ct], enext[ct]) ;

10 else
11 tmpNS.add(ebase[ct]) ;

12 ct ++;

13 ct← 0 ;
14 tmpNS.order() ;

15 forall events in tmpNS do
16 if ((similarST(tmpNS[ct], tmpNS[ct + 1], λ) = t)
17 AND (existsSim(tmpNS[ct], ClustList) = t)) then
18 ClustList.update(tmpNS[ct], tmpNS[ct + 1]); tmpNS.remove(tmpNS[ct], tmpNS[ct + 1]);

19 else if ((similar(tmpNS[ct], tmpNS[ct + 1], λ) = t) then
20 ClustList.addNew(tmpNS[ct], tmpNS[ct + 1]); tmpNS.remove(tmpNS[ct], tmpNS[ct + 1]);

21 else
22 nonsimilar.add(tmpNS);

23 ct ++;

24 return (ClustList);

Human behavior slowly evolves over time [1], which means, among other phenomena, similar events
and their timings will change over time. To resolve this issue, λ will be moved between days, but it is a
fixed variable. In particular, the algorithm will not use one day as a benchmark and then compare the
other days to that single day. Figure 4 neglects the spatial property of an event for the sake of readability,
and visualizes the problem of not moving λ. The example shows four days within their temporal events
identified. S1-3 and S2-3 could stay in the same cluster, but S4-3 is not covered by the λ threshold, despite
the fact that we can see it belongs to the same cluster. In addition, S1-2 and S2-2 have a similar end time,
but if we do not move λ, S4-2 also lacks a similar end time.

Because of a minor time variety of daily routine behaviors, the λ is changing. If two events are similar,
which means their upper bound and lower bound are ≤ λ, then λ will be updated as the average of upper
bound or lower bound between two similar events. Otherwise, λ will be not changed.

Each day will be compared with another day, which requires n number of comparisons. In the worst
case, the content of orphan event list (nsimilar) is equal to n− 1 and again we have about 2(n− 1) number
of comparisons. This means that the complexity of this algorithm is O(2(n− 1)), which is linear.

Sensors 2019, 19, 448 12 of 27

S1-3

S1-2

S2-3

tn

Day 1
t0

S1-1

ti

ti+2

S2-4

S2-2

S 2-1

S4-3

S4-2

S4-1

S4-4S3-1S1-4

Day 2 Day 3 Day 4

Not Covered
 by λ

Ti
m

e
of

 d
ayλ

Figure 4. An example of four days with spatio-temporal change points, Day 3 is on a weekend. The fix λ

disables the algorithm from recognizing Day 4 events properly in their cluster. In particular, S1-3, S2-3 and
S4-3 should belong to the same cluster. However, by not moving λ, S4-3 can not fit into the cluster of S1-3
and S2-3.

4.3. Detecting Contrasting Events

An individual’s frequent presence in the same location state at the same time does not mean she
necessarily engages in exactly the same behavior. In addition, an event may be too prolonged to quantify
its content. For instance, a user could stay at home for a day but have significantly different activities,
such as recuperating from an illness or working from home. To identify such differences, we propose a
novel contrast behavior (CB) detection approach for events inside a cluster. Our CB detection algorithm
is inspired by contrast-set mining algorithms [13]. Some research considers contrast-set mining as a
rule discovery [29], but we have a different interpretation, tailored for mobile data that are multivariate
temporal data.

Algorithm 2 presents a method to compare the actions of each event inside a cluster. The algorithm
receives a cluster, inC, and ω. As previously described, ω is the threshold for uncommon actions in each
event. The algorithm identifies the contrasting events in each cluster and at the end reports for each cluster
how many of its members (events) are contrasting and how many of them are similar. The result of this
algorithm is useful for searching because it enables the search algorithms to prioritize the clusters, based
on the number of similar events.

Algorithm 2: Contrast behavior identification from events inside a cluster.
Data: inC, ω

Result: eventList
1 ct← 0; //ct & 2ct are counters
2 forall (events in inC) do
3 //get an event and compare it with others
4 eventM← inC.event[ct] ; 2ct← 0 ;
5 forall (events in inC) do
6 if (eventM.actions! = inC.event[2ct]) then
7 if (di f f (eventM.actions, inC.event[2ct]) > ω) then
8 result.add(eventM.actions, inC.event[2ct]);

9 2ct ++;

10 ct ++;

11 return (Result);

Sensors 2019, 19, 448 13 of 27

On line 2, the algorithm iterates through the number of events in a cluster (line 5) and compares each
event (eventM) actions with other events inside that cluster, on line 6. The di f f method (line 7), compares
two events and, if the number of different actions is larger than the ω threshold, then those events are
counted as contrasting behaviors. This comparison is measuring the exact similarity between each action.
We did not use other similarity metrics such as Jaccard coefficient because our empirical experiments
show that the number of actions of events inside the cluster are either equal or the difference is very
insignificant. At the end, they are collected in the Result set and returned. This comparison is measuring
the exact similarity between each action.

A large number of dissimilar events indicates that the user’s activities are not routine. The ω value is
application dependent. It also depends on the temporal event size, the purpose to which outputs are used,
and how that benefits from our approach. For instance, if an event size is about a day (e.g., a device is
stationary during the day) contrasting behaviors do not reveal much about the underlying semantics of
the data. Assuming n number of events are inside a cluster, each event inside a cluster is compared with
other events in the cluster. Therefore, the algorithm has n2 comparisons and its complexity will be O(n2).
However, the number of comparisons is limited to only the number of events inside a cluster. Therefore,
the number of comparisons is small (e.g., two to eight in a UbiqLog dataset) and thus the performance
overhead is insignificant. Section 5.3 reports this cost in detail.

Note that the contrast behavior detection provides a minor semantic improvement, i.e., annotation,
on the actions inside a cluster and still more knowledge extraction is required on the data. In particular,
contrast behaviors will be used mainly to order clusters for the search. The implementation of the
annotation, such as geo-fencing, drives the conversion of sensor data to a higher level of information in
the task of the application that uses our algorithms. Therefore, there is still a need for manual annotation,
but our approach significantly reduces it. For instance, for the ground truth dataset, we have implemented
a simple annotation, based on users’ manual labels, e.g., home, gym, work, etc. Users annotate one event
only once in a cluster, and then it will be distributed among other events in that cluster.

5. Experimental Evaluation

This section demonstrates the utility and efficiency of the proposed algorithms in detail. In addition,
we report about the spatio-temporal clustering impact on search execution time reduction and battery
utilization, which is our main objective. Firstly, we begin by evaluating the event detection. Then, we
demonstrate our experiment for cluster detection, its impact on search time and energy use. Afterwards,
we demonstrate the contrast behavior detection accuracy and its impact on searching.

5.1. Event Detection

To evaluate the efficiency of the event detection algorithm, first we have built a ground truth dataset.
This dataset will help us to analyze the accuracy of detected events and finding the optimal value for λ.

5.1.1. Ground Truth Dataset

We have created a ground truth dataset that includes manual labels. In particular, 10 participants
have used UbiqLog, and 10 other participants have used a Device Analyzer for two weeks. Participants
included 7 females and 13 males, (mean age = 27.3, SD = 4.5). Participants have manually labeled their
location state changes. They label only one event in each cluster, i.e., first event, and the rest of the labels
will be distributed automatically to the other events in each cluster. Participants can choose between one
of these predefined labels [30]: “Commute”, “Sport”, “Home”, “Work”, “Leisure” and “Other”. They
have installed a simple tool that enables them to choose their location state changes manually from the
given list.

Sensors 2019, 19, 448 14 of 27

The resulting dataset, with λ=30’, contains 34 distinct clusters (not shared between users). Our
algorithms have extracted 237 events, 69 of them were contrasting events, ω = 2. Later in the evaluation
section, we describe the policy of choosing ω = 2.

5.1.2. Accuracy of Detected Events

The first question for the event detection evaluation is whether the identified location state of the
event is correct. Based on real-world settings, the location state could be detected from three different
states: (i) there are no geographical coordinates, and only WiFi data can be used, i.e., WiFi Location
(WL); (ii) WiFi combined with geographical coordinates, i.e., WiFi/Geographical Location (WGL); (iii) the
GPS sensors on the phone are always on, and location is stored using only geographical coordinates,
i.e., Geographic Location (GL). It is unrealistic to assume uninterrupted 24/7 sensing of geographical
coordinates. Nevertheless, participants were asked to implement all three statuses during the experiment
and never turn off their phone or use airplane mode. Their labels have been used to calculate “precision”,
“recall” and “F-score” for the evaluation. In particular, “true positives” are location states that are similar
both in user labels and the system, and they are not “unknown”. “False positives” are location states that
are identified by the system and not “unknown”, but users have labeled them differently. “False negatives”
are location states that have been identified by the system as “unknown” and the users have labeled them
either as “moving” or “steady”. Clearly, they did not use the “unknown” as a label. Figure 5 reports
about the accuracy of these three described states. The low number of false positives leads precision to
be higher than recall in WGL and GL. Due to several false negatives, WL has a lower recall than other
methods, which is due to the WiFi sensor that is mostly turned off to preserve the smartphone battery.
In other words, in the absence of WiFi and GPS, the system marks these data as “unknown”, but clearly
participants have provided labels.

0.63

0.82
0.9

0.6

0.8
0.88

0.61

0.81
0.89

0

0.2

0.4

0.6

0.8

1

WL WGL GL

Precision
Recall
F-Score

Figure 5. Accuracy of the three different location state estimation approaches based on available data
type(s); Wifi Location (WL), Wifi/Geographic Location (WGL) and Geographic Location (GL).

Furthermore, Table 3 reports the accuracy of location states based on the type of location state
(stationary vs moving). In other words, Figure 5 presents the accuracy of different sensor settings, whilst
Table 3 presents how accurate each sensor setting can measure the location state (moving vs stationary). It
shows that using GPS significantly increases the accuracy of detecting moving events. As expected, WiFi
alone (WL) has the lowest accuracy because of the lack of geographical coordinates. Note that, since the

Sensors 2019, 19, 448 15 of 27

number of movement and steady (stationary) events are not always equal, we can not average results of
Table 3 to get the result of Figure 5. Therefore, we have asked participants to label each event individually.

Table 3. Average accuracy of different sensor settings for each location state.

WL GL WGL

Moving Steady Moving Steady Moving Steady

F-score 0.26 0.91 0.90 0.78 0.90 0.92
Precision 0.48 0.88 0.85 0.74 0.93 0.94

Recall 0.11 0.93 0.96 0.79 0.92 0.92

5.2. Clustering

To evaluate the utility of the proposed clustering algorithm, first we compare scalability with other
clustering methods along with a comparison of quality. To compare our algorithm with representative
algorithms, we have converted the combination of sensor name and its value to the number, and we
have normalized time of day with five minutes precision (temporal granularity [1]) and converted it to a
number.

Through parameter sensitivity analysis, we get the most accurate results with the following
parameters for clustering algorithms: K = 9 for k-mean, minPts = 3, eps = 5 for DBSCAN and k = 8
for the hierarchical clustering.

Moreover, to demonstrate the capability of the clustering algorithm to handle non-daily routines,
we analyze the accuracy of our clustering algorithm in two different modes (neglecting orphan events
versus using them). Then, we report about the parameter sensitivity of λ. Afterwards, we demonstrate the
significant clustering impact on search.

5.2.1. Scalability of Clustering Algorithm

The execution time and maximum memory usage are indicators of the scalability of an algorithm.
Here, we compare our clustering execution time and memory usage to well-known clustering algorithms,
i.e., K-means, Hierarchical clustering (HCA) and DBSCAN. We have chosen these algorithms because
most existing works on mining mobile data were focused on using one of these representative algorithms.

Note that there is no state-of-the-art spatio-temporal clustering developed for smartphone data, i.e., to
extract location from WiFi and geographical coordinates. Therefore, we have chosen to compare our
clustering approach with well-known methods.

Since the algorithm should run on small devices, this experiment ran on a smartphone using an SPMF
library [31] to implement the clustering algorithm. The test device was a Moto G 2nd Gen. (Motorola,
Chicago, IL, USA) with a quad-core 1.2 GHz CPU and 1 GB RAM. Our clustering algorithm is abbreviated
as ST (Spatio-Temporal) in Table 4. This table summarizes the execution time and the maximum memory
used for each clustering algorithm. Table 4 reports the average numbers from both datasets. The λ were
set to its optimal value, i.e., 30 min, which will be analyzed later.

Results in Table 4 show significant improvements over other algorithms in both maximum memory
use and execution time, for both datasets.

Sensors 2019, 19, 448 16 of 27

Table 4. Execution time (in seconds) and maximum used memory (in MB) comparison between our
clustering algorithm (ST) and other algorithms.

Algorithm
UbiqLog Device Analyzer

Exec. Time Memory Exec. Time Memory

HCA 206.7 135.81 314.3 297.18
DBSCAN 39.51 34.77 45.21 38.50
K-means 56.83 36.48 59.84 41.06
ST 27.19 34.24 39.37 38.23

5.2.2. Quality of Clustering Results

In order to measure the quality of our ST clustering algorithm, we have used the Dunn Index (DI) [32],
entropy (EN) [33] and distance comparison (WB). To calculate the WB, we have divided the average
distance within the clusters to the average distance between the clusters. Table 5 reports data for all users in
both datasets.

Table 5 shows that our clustering algorithm (ST) outperforms others in WB and EN, on both datasets.
Only the DI, with the HCA algorithm in the UbiqLog dataset, returns a higher value (better) than ST. As
previously stated, our clustering algorithm handles nondaily routines as weekend behaviors. Table 6
compares the quality of our clustering algorithm in two modes (i.e., ST1 and ST2). ST1 neglects the orphan
events analysis in the clustering algorithm. ST2 takes into account orphan events and thus its accuracy
should be higher. Table 6 shows the higher accuracy in ST2 compared to ST1 and thus demonstrates the
ability of our algorithm to correctly identifying non-daily behaviors. In particular, at the first iteration of
clustering 33% of events were orphan events, which do not stay in a cluster. During the next iteration, only
11% of events remained as anomalous events, and 22% were assigned to existing clusters. Calculating
orphan events does not have any impact on quantitative results, including execution time and battery
utilization. Its only impact is on the quality of clustering.

Table 5. Quality comparison between ST and representative clustering methods in two datasets.

Algorithm
UbiqLog Device Analyzer

DI EN WB DI EN WB

HCA 0.0124 1.342 0.626 0.0092 1.146 0.482
DBSCAN 0.0070 2.827 0.187 0.0052 2.931 0.153
K-means 0.0085 2.149 0.174 0.0065 3.149 0.144
ST 0.0103 1.284 0.742 0.0120 1.137 0.592

Table 6. Comparision of the clustering approach by analyzing orphan events (ST1) and not analyzing
them (ST2).

Clustering
Algorithm Precision Recall F-Measure

ST1 0.78 0.72 0.75
ST2 0.81 0.74 0.78

Analysis in Tables 4 and 5 has been conducted on all 70 users. However, results of Table 6 require
subjective annotation. Therefore, we have conducted this experiment on 20 ground truth users and not on
all users.

Sensors 2019, 19, 448 17 of 27

5.2.3. Parameter Sensitivity of Lambda

λ is the configurable parameter that has been used as a boundary for identifying similar events and
clustering them together. In order to analyze the sensitivity of λ, we report on four different values for
λ: 15, 30, 60 and 90 min. Figure 6 reports about the number of events that have been identified in each
dataset, based on different λ values and time of the day (from 12:00 a.m. to 11:59 p.m.). This figure reports
on all users as well.

In particular, increasing λ results in a fewer number of clusters because of short time events, which
are neglected (less than 60’ or 90’). However, at some specific times, a larger λ can identify more events,
which appears as spikes in Figure 6. For instance, λ with large values, i.e., 60’, 90’ and 120’, can identify
more events near bed time and commuting times. There are three main spikes in both datasets including
leaving for work/school, arriving home and near bed time. The first spike, which is bedtime around 00:00’,
is connected to the last spike, which started around 11:00 p.m. Therefore, we can observe three major
spikes and not four spikes.

Based on Figure 6, different values of λ (except 15 min) do not have significant differences on the
number of events. Setting lambda to 15 min leads to a fewer number of events in a cluster. Other λ have
approximately similar results. On the other hand, the ground truth dataset users have evaluated the
precision of different λ settings. Table 7 reports the WGL settings with different λ. In particular, 30 and
then 60 min have the highest accuracy, followed by 90 and 15 min. Therefore, based on the identified
accuracy in Table 7, we identify that the optimal value of lambda is 30 min, followed by 60 min. Note that
all routine events are not associated with 30’ temporal differences. For instance, calling a friend every day
is not precise to fit into a 30’ slope. Nevertheless, there are more precise events, such as arriving at work,
which neutralizes the impact of those imprecise routine events. λ is a parameter that reports a single best
estimator for all behaviors.

Results in Figure 6 were based on using all users’ data. However, results in Table 7 are from 20 ground
truth users because it requires manual labeling to be able to identify the accuracy.

Sensors 2019, 19, 448 18 of 27

0
2
4
6
8
10
12
14
16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

λ	=	30 λ	=	60 λ	=	90 λ	=	120

a

b

Time of Day

Id

en
tifi

ed
 E

ve
nt

s

Figure 6. Impact of different λ values on the number of events detected during the day. (a) is the UbiqLog
dataset and (b) is the Device Analyzer (best viewed in color)

Table 7. Accuracy of different values for λ

Lambda Values

15′ 30′ 60′ 90′

F-Score 0.77 0.91 0.85 0.78
Precision 0.77 0.90 0.87 0.83
Recall 0.78 0.92 0.85 0.82

5.2.4. Search and Battery Impact

The cluster-based search mechanism can be understood as a one-dimensional ‘index’ that has been
used to accelerate searching. Clustered data are amenable to further indexing (e.g., bitmap, B-trees,
etc.), but here we confine our attention just to the improvements obtained by our re-representation of
the data. As previously noted, the problem of searching sensor data has not been widely explored for
mobile and wearable devices. Mobile/wearable sensing applications can collect large amounts of data;
however, searching them is a resource intensive process and thus a simple brute force search on raw data
is not feasible.

Since all 70 users can not annotate their data, we only use our ground truth users. Participants of the
ground truth dataset manually segmented their daily events with the following words: “Commute”,
“Home”, “Work”, “Leisure” and “Other”. We have implemented a Wi-Fi and location geo-fencing
component to automatically replicate labels to the other events in the same cluster. Then, we assign
the described labels to all 70 users (based on labels’ distribution in the time of day) by using our ground
truth labels as a template, e.g., morning events are usually ‘commute’ or ‘work’, evening events are ‘Home’
or ‘Leisure’. Label assignments are not necessarily correct, but the objective here is to prepare them for
searching by disregarding their semantics.

Sensors 2019, 19, 448 19 of 27

To test searching on the labeled data, we have considered two search algorithms. One is brute force,
used as a baseline, which has been compared to our clustering algorithm. These experiments have used
the same device with annotated location data. Figure 7 shows two samples from the Device Analyzer
dataset and the UbiqLog dataset. We have considered four types of search for each user sample, which
includes both time and location (due to spatio-temporality of clusters):

(i) search with time (T), location state (L), sensor name (S) and sensor data (D) (Figure 7a, e.g., How long
on average do I spend playing games, while at home, after 9:00 p.m.?

(ii) search with L, S, D, Figure 7b, e.g., How many SMS do I receive, on average, while at work?
(iii) search with T, S and D Figure 7c, e.g., When was the last time I went running?
(iv) search with S, D, Figure 7d, e.g., How often did I call my parents?

To parse the user input, we have used a light query engine [34] that can parse Quantified-Self queries
on mobile and wearable devices. Numbers presented in Figure 7 are averaged among all users in each
dataset, i.e., they present an average user time required for queries on the smartphone. However, Figure 7d
has no notion of time or location. Figure 7 demonstrates the significant impact of the clustering algorithm
on search execution time for both datasets. The improvement increases with the size of the data. However,
query (d) that does not include either a notion of time or location does not have any significant difference
with the brute force method.

0

5000

10000

15000

20000

25000

10 20 30 40 50 60
0

5000

10000

15000

20000

10 20 30 40 50 60

0

5000

10000

15000

20000

10 20 30 40 50 60

a b

c

0

5000

10000

15000

20000

10 20 30 40 50 60

days

d

0

5000

10000

15000

20000

25000

10 20 30 40 50 60

Clustering

Brute3 Force

0

5000

10000

15000

20000

25000

10 20 30 40 50 60

0

5000

10000

15000

20000

25000

10 20 30 40 50 60

a b

c

Ex
ec

ut
io

n
Ti

m
e

(m
illi

se
co

nd
)

0

5000

10000

15000

20000

25000

10 20 30 40 50 60

days

d

UbiqLog Device Analyzer

Figure 7. Four different search execution time samples for UbiqLog and Device Analyzer. The y-axis shows
execution time in milliseconds and the x-axis shows the number of days that will be searched.

Note that there is no space overhead, since the clustering merely changes the storage file structure.
The only overhead is the time required for the cluster calculation, which can be done at off-peak times,
e.g., when the device is charging. Moreover, the improvements in speed do not come at a cost of accuracy;
the search of our condensed data is admissible, producing identical results to the search over the original
raw data.

As noted previously, battery utilization is a major challenge in small devices [35]. Here, we also
demonstrate the battery utilization differences between our cluster-based search versus the brute force
search (baseline). Table 8 shows the impact of our cluster based search on battery efficiency, as measured
in microWatts (mW) and significant improvements over brute force search. This table reports the averaged
battery utilization among all four types of aforementioned queries.

Sensors 2019, 19, 448 20 of 27

Table 8. Energy use in micro-Watt (mW) comparing brute force and our cluster based search operations.

Days
Device Analyzer UbiqLog

Clustering BruteForce Clustering BruteForce

10 183 354 098 257
20 280 401 120 285
30 284 417 145 332
40 325 446 196 374
50 357 507 217 398
60 401 580 279 404

5.3. Contrast Behaviors

Three experiments have been used to evaluate our Contrast Behavior (CB) detection approach. First,
the parameter sensitivity of ω and its impact on the quantity of CBs was analyzed. Second, characteristics
of CBs were determined by analyzing the correlation between time of the day and event duration. The
third experiment examined the search execution time based on prioritizing clusters ordered by their
number of CBs.

5.3.1. Parameter Sensitivity of Omega

It is notable that the Device Analyzer dataset contains only hardware configuration or changes
in the hardware properties, thus its data objects are not necessarily correlated with human behaviors.
Therefore, the second evaluation used the UbiqLog dataset (35 users). ω is a configurable parameter we
have introduced to be used for CB identification. Similar to that for other clustering algorithms, such as
K-means, there can not be an optimal value for ω. This variable is open to settings by developers using this
algorithm. For instance, a user might frequently go to a coffee shop in the evenings (similar spatio-temporal
event, assigned to the same cluster) either for work, or chatting with friends. Both scenarios take place in
the coffee shop at about the same time, but her other actions could be different. If the goal of the target
application is to detect only appearances in the coffee shop, and not other actions, ω could be set to zero.
However, if the goal of the target application is to detect reasons for being in a coffee shop, ω should be set
to more than zero, to detect dissimilar actions. As another example, a user either goes bird watching or
golfing to a golf course. These activities could be identified via a comparison between wrist movement
data, in which case ω can be equal to one.

To gain a deeper understanding about the events inside each cluster, we have tested five different
variables for ω: 1,2,3,4 and 5. Figure 8a reports about the number of detected events among all users in the
UbiqLog dataset and Figure 8b reports on the Device Analyzer dataset. As it has been shown, increasing
the value of ω decreases the number of similar events, thus resulting in more events from each cluster
being considered as CBs. Figure 8 shows that the boundary for setting ω is different between two datasets.
For instance, setting ω to three and larger creates more CBs than similar events, in the Device Analyzer
dataset. Nevertheless, ω is not dataset dependent, increasing it simply reduces the chance of having more
similar entities and vice versa.

5.3.2. Characteristics of Contrasting Events

Our CB identification algorithm is capable of identifying dissimilar actions for routine behaviors. We
begin with the observation that for most people, their range of behaviors is very limited between 12:00
a.m.–8:00 a.m. (while sleeping), more varied between 8:00 a.m.–4:00 p.m. (during work or school) and
highly varied after 4:00 p.m. (during leisure time). To show this, we use an approach similar to [36] and
segment days into three temporal divisions: 12:00 a.m.–8:00 a.m., 8:00 a.m.–4:00 p.m. and 4:00 p.m.–11:59

Sensors 2019, 19, 448 21 of 27

p.m. We consider only events shorter than 16 h. Figure 9b which is done for ω = 3, shows the average
distribution of the ratio between similar and dissimilar actions belonging to events from a single cluster.
Morning events have the fewest number of CBs, perhaps because behaviors following sleep tends to be
routine. In contrast, evening events have a higher number of CBs, supporting our initial hypothesis.

In order to evaluate these findings, we have created a contingency table of temporal segments (8 h and
16 h segments) and dissimilar and similar actions. Similar to [13], we use the chi-square test to statistically
evaluate our interpretation. The result (p < 0.05) supports our assumptions about the distribution of
contrasting behaviors among different temporal segments.

Another interesting finding (Figure 9a) shows that the distribution of dissimilar actions is highly
concentrated on short temporal events. In contrast, events longer than three hours have far fewer dissimilar
actions. This maps to our intuition that routine spatio-temporal behaviors are longer by their nature,
e.g., staying 9 h at work, sleeping 7 h per day, etc. To validate this observation, we have calculated the odds
ratio of the number of similar actions versus dissimilar actions, and the number of actions, which have
less than three versus more than three hours duration. The result of the odds ratio calculation indicates
clusters that last less than three hours are 8.2 times more likely to have contrasting behaviors than clusters
with events longer than three hours.

85
74 71 68

35

51 54 57

0

20

40

60

80

100

1 2 3 4

Similar0Events Contrast0Behaviors 102 96 92
84

73
84 88 92

0

20

40

60

80

100

120

1 2 3 4

Ev

en
ts a b

#Omega

40

74

95
81 84

Figure 8. Parameter sensitivity of ω in (a) UbiqLog dataset and (b) Device Analyzer dataset.

Sensors 2019, 19, 448 22 of 27

0

200

400

600

800

1000

0.00 3.00 6.00 9.00 12.00 15.00

0

200

400

600

800

1000

0.00 3.00 6.00 9.00 12.00 15.00
Event Duration

Ac

tio
ns

a

88%

90%

92%

94%

96%

98%

100%

Dissimilar0Actions Similar0Actions

b

Figure 9. (a) distribution of similar actions (not events); (b) distribution of dissimilar actions; both (a,b) were
based on event duration using ω = 3; (c) ratio of similar actions inside events of each cluster, distributed
among different temporal segments.

5.3.3. Contrast Behavior Impact on Search

Understanding the characteristics of contrasting behaviors could improve the search execution time
by prioritizing clusters, i.e., first, the system searches clusters with a lower number of CBs and then
searches clusters with a higher number of CBs. In order to evaluate this hypothesis, we have ordered the
clusters based on the number of their CB ratio to similar events, i.e., a cluster with a higher number of CBs
gets a lower rank. There is a small cost of ordering clusters, but, due to the small number of clusters, it is
insignificant. In Section 5.2.4, we execute two different search commands for each of the described search
conditions. The first search command gets the data from the cluster with the largest number of CBs, and
the second command, in contrast to the first one, gets the data from the cluster with the highest number of
similar events.

Figure 10 shows the differences between searching clusters ordered by number of CBs versus not
ordered. As it has been shown, there is a slight improvement in the search execution time, especially when
the number of days increases. This result is in line with our initial hypothesis, and thus ordering clusters
based on their CBs can reduce the search execution time.

Sensors 2019, 19, 448 23 of 27

0

1000

2000

3000

4000

5000

10 20 30 40 50 60

Ordered,Cluster
not,Ordered

0

1000

2000

3000

4000

5000

10 20 30 40 50 60

Ex
ec

ut
io

n
Ti

m
e

(m
illi

se
co

nd
)

#days

a b

Figure 10. Improvement of search execution time (in milliseconds) by ranking clusters based on their
number of contrast behaviors. (a) UbiqLog and (b) Device Analyzer dataset.

6. Related Work

Based on our contributions reported in this paper, we categorize related works into three different
categories. First, we review works that focus on spatio-temporal segmentation or clustering from mobile
devices and their sensors, i.e., WiFi, GPS and Cell ID. Then, we review works that focus on detecting
patterns of location changes or location of interests. Afterward, we review works that try to extract events
from daily life events. These works either rely on sensor data or are user-centric and focus on daily
activities of users. There are several works that attempt to estimate users’ behavior from cell tower data,
but since our approach is focused on data from users‘ devices, we do not list them here. For example,
Ghahramani et al. [37] focuses on identifying geographical hotspots based on smartphone concentrations,
by analyzing spatial information of cell IDs collected from a telecom provider. In addition, there are some
works that employ other mediums for location information mining, such as social media [38], which we
do not list them here.

6.1. Spatio-Temporal Segmentation

Zhou et al. [26] provide one of the earliest works in spatio-temporal clustering of daily location
changes. To address sparse and noisy GPS data, they provide a density-based algorithm for clustering
because density based algorithms can remove noise in the final clustering results. There are several
works that have focused on geographical location. For instance, Mokbel et al. [39] propose a three-phase
algorithm (hashing, invalidating and joining) to parse continuous spatio-temporal queries. Zhang et
al. [40] use text as a raw material for location with an index structure that reduces the search space using
spatial and keyword base pruning. A recent example is introduced by Christensen et al. [41] which focuses
on facilitating accessing spatio-temporal through interactive spatial online sampling techniques. There are
other indexing methods that operate on multi-metric characteristics of data [42], such as location or time.
However, our work uses spatio-temporal similarity of data for indexing.

6.2. Location and Spatial Information Mining

There are several examples of research that benefit from smartphone location logs, i.e., GPS, WiFi,
Cell ID, to identify locations of interest and daily movement patterns. Reality mining [16], is one of the
first efforts toward identifying behavior from smartphone sensor data and so created a benchmark dataset
that is still in use, e.g. [14]. For instance, Farrahi et al. [14] use distant n-gram topic modeling to mine latent
location data and avoid parameter dimension explosion. Recently, the uncertainty of a realistic deployment
has been taken into account and there are some works that try to support uncertainty while mining for
location data originating from unreliable smartphone sensors too [43]. Placer [44] is another work that

Sensors 2019, 19, 448 24 of 27

labels location data in geographical coordinates based on individual demographics, the timing of visits,
and nearby businesses. Our approach uses a combination of sensors rather than just location as a unit of
human behavior. Furthermore, our approach does not focus on location itself and relies on the movement
of the user. Ma et al. [36] describe a normalization algorithm that transforms low level geographical
coordinates to location terms, i.e., “work” or “home”, based on time of day. Their results are promising,
but our generalization of location is more detailed than the work/home approach. ePeriodicity [45] is
another more recent algorithm that uses probabilistic measures to identify temporal periodic behavior
from GPS data. It can tolerate sparsity and noise, but it is limited only to GPS data. Note that our work is
not about trajectory partitioning. Our approach is focused on user behavior and the events are mutually
exclusive, and independent from the trajectory of movement.

6.3. Daily Event Detection

There are promising works that try to understand daily life events from continuously collecting images.
Doherty et al. [46] have provided one of the initial works in this area with their event segmentation of
digital photographs. Gomi and Itoh [47] propose a method to categorize and annotate personal photograph
collections based on location, time and individuals appearing on the photos. Kelly and Jones [48] describe
the problem of searching large personal archives and use Galvanic Skin Response (GSR), a marker of
emotional arousal, to index life events. In particular, a fluctuation of GSR, with temporal correlation to
images, highlights related life events in the life log dataset. There are context sensing approaches toward
data collection from multiple sensors and to identify human behavior such as JigSaw [49] or Lasagna [50].
Lasagna enables searching physical activities. It extracts common bases of motion data by analyzing
similarities between raw sensor data, and, by using deep neural networks, it identifies and annotate
activities. Separate from images, there is another group of works that tries to detect holistic daily patterns
from raw mobile data [30,51,52]. For instance, Lifestream [52] proposes general statistical change point
detection based on the distribution of behavior. Our work focuses on annotating raw data based on their
spatio-temporal properties and pattern detection using spatio-temporal annotation as the building blocks
of clusters.

7. Conclusions and Future Work

In this work, we propose a pipeline of three algorithms specifically designed to extract spatio-temporal
knowledge from mobile data. The algorithms exploit the spatio-temporality of human behavior to identify
and cluster daily spatial events based on their temporal similarities. We also suggest a contrast behavior
detection algorithm that offers semantic enrichment of mobile data.

Spatio-temporal annotation, demonstrated on two large real-world datasets: (i) significantly improves
search execution time, especially when searching a large number of days; (ii) improves battery efficiency
while searching for data two real-world context sensing smartphone datasets. The clustering and contrast
behavior detection algorithms each have only one parameter to configure and we report about the optimal
parameter for each algorithm as well.

Future work will attempt to quantify the temporal variability of human behavior over longer periods
(to model concept drift) and integrate this clustering facility into an end-user application. Then, we will
study user experience while using such a personal data searching facility.

Author Contributions: R.R. contributed to formalizing the problem, designing the algorithms and experiments,
conducting the experiment and writing the paper. C.D. contributed to designing the experiment and algorithms. M.A.
contributed to formalizing the problem and writing the paper. M.P. contributed to managing the project and designing
the contrast behavior mining algorithm.

Funding: This research received no external funding.

Sensors 2019, 19, 448 25 of 27

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rawassizadeh, R.; Momeni, E.; Dobbins, C.; Gharibshah, J.; Pazzani, M. Scalable Daily Human Behavioral
Pattern Mining from Multivariate Temporal Data. IEEE Trans. Knowl. Data Eng. 2016, 28, 3098–3112.

2. Jararweh, Y.; Tawalbeh, L.; Ababneh, F.; Dosari, F. Resource Efficient Mobile Computing Using Cloudlet
Infrastructure. In Proceedings of the IEEE Ninth International Conference on Mobile Ad-hoc and Sensor
Networks (MSN ’13), Dalian, China, 11–13 December 2013; pp. 373–377.

3. Rawassizadeh, R.; Pierson, T.; Peterson, R.; Kotz, D. NoCloud: Experimenting with Network Disconnection by
Design. IEEE Pervas. Comput. 2018, 17, 64–75.

4. Google Fit: Health and Activity Tracking. Available online: https://play.google.com/store/apps/details?id=
com.google.android.apps.fitness (accessed on 18 January 2019).

5. Samsung Health. Available online: https://play.google.com/store/apps/details?id=com.sec.android.app.
shealth (accessed on 18 January 2019).

6. Fitbit. Available online: https://itunes.apple.com/us/app/fitbit/id462638897?mt=8 (accessed on 18 January
2019).

7. SiRi. Available online: https://www.apple.com/ios/siri (accessed on 18 January 2019).
8. Cortona. https://www.microsoft.com/en-us/mobile/experiences/cortana (accessed on 18 January 2019).
9. Galesic, M.; Garcia-Retamero, R. Graph Literacy: A Cross-Cultural Comparison. Med. Decis. Mak. 2011,

31, 444–457.
10. Sharit, J.; Lisigurski, M.; Andrade, A.; Karanam, C.and Nazi, K.; Lewis, J.; Ruiz, J. The Roles of Health Literacy,

Numeracy, and Graph Literacy on the Usability of the VA’s Personal Health Record by Veterans. J. Usability Stud.
2014, 9, 173–193.

11. Rawassizadeh, R.; Momeni, E.; Dobbins, C.; Mirza-Babaei, P.; Rahnamoun, R. Lesson Learned from Collecting
Quantified Self Information via Mobile and Wearable Devices. J. Sens. Actuator Netw. 2015, 4, 315–335.

12. Giannotti, F.; Nanni, M.; Pedreschi, D.; Pinelli, F.; Renso, C.; Rinzivillo, S.; Trasarti, R. Unveiling the Complexity
of Human Mobility by Querying and Mining Massive Trajectory Data. VLDB J. 2011, 20, 695–719.

13. Bay, S.; Pazzani, M. Detecting Change in Categorical Data: Mining Contrast Sets. In Proceedings of the Fifth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’99), San Diego, CA,
USA, 15–18 August 1999; pp. 302–306.

14. Farrahi, K.; Gatica-Perez, D. A Probabilistic Approach to Mining Mobile Phone Data Sequences. Pers. Ubiquitous
Comput. 2014, 18, 223–238.

15. Zheng, J.; Ni, L. An Unsupervised Framework for Sensing Individual and Cluster Behavior Patterns from
Human Mobile Data. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA,
USA, 5–8 September 2012.

16. Eagle, N.; Pentland, A. Reality Mining: Sensing Complex Social Systems. Pers. Ubiquitous Comput. 2006,
10, 255–268.

17. Rawassizadeh, R.; Tomitsch, M.; Wac, K.; Tjoa, A. UbiqLog: A generic mobile phone-based life-log framework.
Pers. Ubiquitous Comput. 2013, 17, 621–637.

18. Wagner, D.; Rice, A.; Beresford, A. Device analyzer: Large Scale Mobile Data Collection. ACM Sigmetr. Perform.
Eval. Rev. 2014, 41, 53–56.

19. Ubiqlog. Available online: https://archive.ics.uci.edu/ml/datasets/UbiqLog+(smartphone+\lifelogging)
(accessed on 18 January 2019).

20. Ubiqlog Tool. Available online: https://github.com/rezar/ubiqlog (accessed on 18 January 2019).
21. Device Analyzer. Available online: https://deviceanalyzer.cl.cam.ac.uk/ (accessed on 18 January 2019).
22. Rawassizadeh, R.; Tjoa, A. Securing Shareable Life-Log. In Proceedings of the IEEE Second International

Conference on Social Computing (SocialCom’10), Minneapolis, MN, USA, 20–22 August 2010; pp. 1105–1110.
23. Rawassizadeh, R. Towards Sharing Life-log Information with Society. Behav. Inf. Technol. 2012, 31, 1057–1067.

https://play.google.com/store/apps/details?id=com.google.android.apps.fitness
https://play.google.com/store/apps/details?id=com.google.android.apps.fitness
https://play.google.com/store/apps/details?id=com.sec.android.app.shealth
https://play.google.com/store/apps/details?id=com.sec.android.app.shealth
https://itunes.apple.com/us/app/fitbit/id462638897?mt=8
https://www.apple.com/ios/siri
https://www.microsoft.com/en-us/mobile/experiences/cortana
https://archive.ics.uci.edu/ml/datasets/UbiqLog+(smartphone+\lifelogging)
https://github.com/rezar/ubiqlog
https://deviceanalyzer.cl.cam.ac.uk/

Sensors 2019, 19, 448 26 of 27

24. Deblauwe, N.; Ruppel, P. Combining GPS and GSM Cell-ID Positioning for Proactive Location-based Services.
In Proceedings of the Fourth Annual International Conference on Mobile and Ubiquitous Systems: Networking
& Services (MobiQuitous ’07), Philadelphia, PA, USA, 6–10 August 2007.

25. Paek, J.; Kim, K.; Singh, J.; Govindan, R. Energy-efficient Positioning for Smartphones Using Cell-ID Sequence
Matching. In Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services
(MobiSys ’11), Bethesda, MD, USA, 28 June–1 July 2011; pp. 293–306.

26. Zhou, C.; Shekhar, S.; Terveen, L. Discovering Personal Paths from Sparse GPS Traces. In
Proceedings of the 1st International Workshop on Data Mining in Conjunction with 8th Joint Conference
on Information Sciences (JCIS ’05), 2005. Available online: https://pdfs.semanticscholar.org/1bb9/
21aded7824aee6e55003454eb4200aa86ed9.pdf (accessed on 18 January 2019).

27. Noulas, A.; Scellato, S.; Lathia, N.; Mascolo, C. Mining User Mobility Features for Next Place Prediction in
Location-Based Services. In Proceedings IEEE 12th International Conference on Data Mining (ICDM ’12), 2012;
pp. 1038–1043.

28. Wang, D.; Pedreschi, D.; Song, C.; Giannotti, F.; Barabasi, A. Human Mobility, Social Ties, and Link Prediction.
In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’11), San Diego, CA, USA, 21–24 August 2011; pp. 1100–1108.

29. Webb, G.; Butler, S.; Newlands, D. On detecting differences between groups. In Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’03), Washington, DC, USA,
24-27 August 2003; pp. 256–265.

30. Chon, Y.; Cha, H. LifeMap: A Smartphone-Based Context Provider for Location-Based Services. IEEE Pervas.
Comput. 2011, 10, 58–67.

31. Fournier-Viger, P.; Gomariz, A.; Gueniche, T.; Soltani, A.; Wu, C.W.; Tseng, V.S. SPMF: A Java Open-source
Pattern Mining Library. J. Mach. Learn. Res. 2014, 15, 3389–3393.

32. Dunn, J. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters.
J. Cybern. 1973, 3, 32–57.

33. Meilă, M. Comparing Clusterings? An Information based Distance. J. Multivar. Anal. 2007, 98, 873–895.
34. Rawassizadeh, R.; Dobbins, C.; Nourizadeh, M.; Ghamchili, Z.; Pazzani, M. A Natural Language Query Interface

for Searching Personal Information on Smartwatches. In Proceedings of the IEEE International Conference on
Pervasive Computing and Communications, WristSence Workshop, Kona, HI, USA, 13–17 March 2017 .

35. Ferreira, D.; Dey, A.; Kostakos, V. Understanding Human-Smartphone Concerns: A Study of Battery Life.
In Proceedings of the International Conference on Pervasive Computing, San Francisco, CA, USA, 12–15 June
2011; pp. 19–33.

36. Ma, H.; Cao, H.; Yang, Q.; Chen, E.; Tian, J. A Habit Mining Approach for Discovering Similar Mobile Users.
In Proceedings of the 21st international conference on World Wide Web (WWW ’12), Lyon, France, 16–20 April
2012; pp. 231–240.

37. Ghahramani, M.; Zhou, M.; Hon, C.T. Mobile Phone Data Analysis: A Spatial Exploration Toward Hotspot
Detection. IEEE Trans. Autom. Sci. Eng. 2018.

38. Lv, Y.; Chen, Y.; Zhang, X.; Duan, Y.; Li, N.L. Social Media based Transportation Research: The State of The Work
and The Networking. IEEE/CAA J. Autom. Sin. 2017, 4, 19–26.

39. Mokbel, M.; Xiong, X.; Aref, W. Sina: Scalable Incremental Processing of Continuous Queries in Spatio-temporal
Databases. In Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’04), Paris, France, 13–18 June 2004.

40. Zhang, C.; Zhang, Y.; Zhang, W.; Lin, X. Inverted Linear Quadtree: Efficient Top k Spatial Keyword Search.
In Proceedings of the IEEE 29th International Conference on Data Engineering (ICDE ’13), Washington, DC, USA,
8–12 April, 2013.

41. Christensen, R.; Wang, L.; Li, F.; Yi, K.; Tang, J.; Villa, N. STORM: Spatio-Temporal Online Reasoning and
Management of Large Spatio-Temporal Data. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’15), Melbourne, VIC, Australia, 31 May–4 June 2015.

https://pdfs.semanticscholar.org/1bb9/21aded7824aee6e55003454eb4200aa86ed9.pdf
https://pdfs.semanticscholar.org/1bb9/21aded7824aee6e55003454eb4200aa86ed9.pdf

Sensors 2019, 19, 448 27 of 27

42. Franzke, M.; Emrich, T.; Zỳfle, A.; Renz, M. Indexing Multi-Metric Data. In Proceedings of the IEEE 32th
International Conference on Data Engineering (ICDE ’16), Helsinki, Finland, 16–20 May 2016.

43. Bhattacharya, T.; Kulik, L.; Bailey, J. Automatically Recognizing Places of Interest from Unreliable GPS Data
Using Spatio-temporal Density Estimation and Line Intersections. Pervas. Mob. Comput. 2014.

44. Krumm, J.; Rouhana, D. Placer: Semantic Place Labels from Diary Data. In Proceedings of the 2013 ACM
International Joint Conference On Pervasive and Ubiquitous Computing, 2013; pp. 163–172.

45. Li, Z.; Wang, J.; Han, J. ePeriodicity: Mining Event Periodicity from Incomplete Observations. IEEE Trans. Knowl.
Data Eng. 2015, 27, 1219–1232.

46. Doherty, A.; Smeaton, A. Automatically Segmenting Lifelog Data into Events. In Proceedings of the Ninth
International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS ’08) , Washington, DC,
USA, 7–9 May 2008; pp. 20–23.

47. Gomi, A.; Itoh, T. A Personal Photograph Browser for Life Log Analysis Based on Location, Time, and Person.
In Proceedings of the 2011 ACM Symposium on Applied Computing (PSAC ’11), TaiChung, Taiwan, 21–24
March 2011; pp. 1245–1251.

48. Kelly, L.; Jones, G. An Exploration of the Utility of GSR in Locating Events from Personal Lifelogs for Reflection.
In Proceedings of the 4th Irish Human Computer Interaction Conference (iHCI ’10), Dubin, Ireland, September
2010.

49. Lu, H.; Yang, J.; Liu, Z.; Lane, N.; Choudhury, T.; Campbell, A. The Jigsaw Continuous Sensing Engine for Mobile
Phone Applications. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems
(SenSys ’10), Zurich, Switzerland, 3–5 November 2010; pp. 71–84.

50. Liu, C.; Zhang, L.; Liu, Z.; Liu, K.; Li, X.; Liu, Y. Lasagna: Towards Deep Hierarchical Understanding and
Searching over Mobile Sensing Data. In Proceedings of the 22nd Annual International Conference on Mobile
Computing and Networking (MobiCom ’16), New York, NY, USA, 3–7 October 2016; pp. 334–347.

51. Nath, S. ACE: Exploiting Correlation for Energy-Efficient and Continuous Context Sensing. In Proceedings of
the 10th International Conference on Mobile Systems, Applications, and Services (MobiSys ’12), Low Wood Bay,
UK, 25–29 June 2012.

52. Hsieh, C.; Tangmunarunkit, H.; Alquaddoomi, F.; Jenkins, J.; Kang, J.; Ketcham, C.; Longstaff, B.; Selsky, J.;
Dawson, B.; Swendeman, D.; Estrin, D.; Ramanathan, N. Lifestreams: A modular sense-making toolset for
identifying important patterns from everyday life. In Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems (Sensys ’13), Roma, Italy, 11–15 November 2013.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statements
	Spatial Event Detection
	Temporal Clustering
	Contrasting Events Identification

	Datasets
	Algorithms
	Spatial Change Point Detection
	Temporal Clustering
	Detecting Contrasting Events

	Experimental Evaluation
	Event Detection
	Ground Truth Dataset
	Accuracy of Detected Events

	Clustering
	Scalability of Clustering Algorithm
	Quality of Clustering Results
	Parameter Sensitivity of Lambda
	Search and Battery Impact

	Contrast Behaviors
	Parameter Sensitivity of Omega
	Characteristics of Contrasting Events
	Contrast Behavior Impact on Search

	Related Work
	Spatio-Temporal Segmentation
	Location and Spatial Information Mining
	Daily Event Detection

	Conclusions and Future Work
	References

