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Abstract: The existence of colored noise in kinematic positioning will greatly degrade the accuracy of
position solutions. This paper proposes a Kalman filter-based quad-constellation global navigation
satellite system (GNSS) navigation algorithm with colored noise mitigation. In this algorithm, the
observation colored noise and state colored noise models are established by utilizing their residuals
in the past epochs, and then the colored noise is predicted using the models for mitigation in the
current epoch in the integrated Global Positioning System (GPS)/GLObal NAvigation Satellite System
(GLONASS)/BeiDou Navigation Satellite System (BDS)/Galileo navigation. Kinematic single point
positioning (SPP) experiments under different satellite visibility conditions and road patterns are
conducted to evaluate the effect of colored noise on the positioning accuracy for the quad-constellation
combined navigation. Experiment results show that the colored noise model can fit the colored
noise more effectively in the case of good satellite visibility. As a result, the positioning accuracy
improvement is more significant after handling the colored noise. The three-dimensional positioning
accuracy can be improved by 25.1%. Different satellite elevation cut-off angles of 10º, 20º and 30º
are set to simulate different satellite visibility situations. Results indicate that the colored noise is
decreased with the increment of the elevation cut-off angle. Consequently, the improvement of the
SPP accuracy after handling the colored noise is gradually reduced from 27.3% to 16.6%. In the cases
of straight and curved roads, the quad-constellation GNSS-SPP accuracy can be improved by 22.1%
and 25.7% after taking the colored noise into account. The colored noise can be well-modeled and
mitigated in both the straight and curved road conditions.

Keywords: quad-constellation GNSS; colored noise; functional model fitting filter; single point
positioning; navigation

1. Introduction

The global navigation satellite system (GNSS) single point positioning (SPP) technology has been
widely used in navigation since the advent of the Global Positioning System (GPS) [1,2]. For a long
period of time, the SPP technology has been mainly implemented by a single constellation of GPS.
With the revitalization of the GLObal NAvigation Satellite System (GLONASS), along with two newly
emerging constellations, namely the BeiDou navigation satellite system (BDS) and the Galileo system,
the combined navigation by joint use of GPS, GLONASS, BDS, and Galileo constellations has become a
new trend [3–5].

The quad-constellation integrated positioning can make full use of the redundant observations to
enhance the positioning accuracy and improve availability and reliability of position solutions due to
the increased number of visible satellites [6,7]. But if the functional and stochastic models for the
combined quad-constellation positioning cannot be accurately established, errors such as residual
ionospheric, atmospheric, and multipath errors will severely affect the positioning solutions. These
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system errors can mostly be categorized as colored noise. Therefore, how to properly handle the
colored noise is an important issue in the navigation.

The Kalman filter is a commonly used method in navigation data processing. In the classic
Kalman filter, it is assumed that both the observation noise and state noise belong to the Gaussian
white noise. But in the navigation, most observation noise and state noise belong to colored noise due
to the complex observation environment [8]. Differing from the white noise, the colored noise has an
uneven power spectral density function [8]. The existence of the colored noise will greatly degrade the
accuracy and reliability of position solutions in the Kalman filter parameter estimation [9,10].

So far there have been a few methods developed to handle the colored noise. Generally, they
can be divided into two categories: functional model compensation filters and stochastic model
compensation filters. The functional model compensation filters include the state vector augmented
filter [11,12] and functional model fitting filter [13–15]. The stochastic model compensation filters
include the adaptive filter based on Sage windowing weights and variance component [16], and the
adaptive robust filter based on classified adaptive factor adjustment [17]. Among these methods, the
most straightforward way to deal with the colored noise is the state vector augmented filter [11,12],
which models the colored noise as a constant or follows a variation rule at a certain time interval.
In this method, the colored noise is estimated along with the other state parameters in the parameter
estimation process. As a result, the colored noise is absorbed by the state parameter and its effect
is mitigated. However, this method cannot be applied to handle the observation colored noise [12].
The functional model-fitting filter method establishes respective function models to fit the observation
colored noise and state colored noise, and then to forecast and mitigate these colored noises [13–15].
Generally, in the Kalman filter processing, the observation colored noise and the state colored noise will
mostly remain in their residuals. Thus, the observation residual sequence and state residual sequence
can be used to model these colored noises [16,17]. The adaptive filter based on the Sage window
weights and variance component directly estimates the covariance matrix of the observation colored
noise and the state colored noise by employing observation residuals and state residuals as sample
values of colored noise [16]. The method involving an adaptive robust filter based on classified adaptive
factor adjustment treats the observation colored noise as abnormal errors and state colored noise as
dynamic disturbance. By adjusting the observation weight to restrain the abnormal errors and using the
adaptive factor to suppress the dynamic disturbance, the effect of the colored noise is mitigated [17–20].
In addition to the above stated methods that are based on linear models, some nonlinear model
filter methods have also been proposed to deal with the colored noise [21,22]. Existing studies have
demonstrated that all these methods can reduce the effect of the colored noise effectively. Among
them, the functional model fitting filter can be simply and efficiently implemented. Additionally, the
observation colored noise and the state colored noise can be extracted for rational analysis.

In this study, GPS, GLONASS, BDS, and Galileo are jointly used for positioning solutions in
navigation. Based on the observation residuals and the state prediction residuals, a quad-constellation
SPP algorithm with colored noise mitigation is proposed. In this algorithm, the models of the
observation colored noise and state colored noise are established by applying a functional model fitting
filter method, and then the colored noises are compensated before the parameter estimation.

The remaining part of the paper is organized as follows. Section 2 describes the quad-constellation
GNSS-SPP algorithm with colored noise mitigation. In Section 3, kinematic positioning experiments
under different satellite visibility and different trajectory conditions are conducted to evaluate the
performance improvement of the quad-constellation SPP algorithm. Finally, conclusions are drawn in
Section 4.

2. Quad-Constellation GNSS-SPP Algorithm with Colored Noise Mitigation

The Kalman filter method is generally used for parameter estimation in the SPP. Since the
quad-constellation GNSSs use different time scales, it is necessary to estimate each satellite system’s
receiver clock offset with respect to their respective time scale, even if there is only one physical clock
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used in the multi-GNSS receiver. Instead of estimating receiver clock offset parameters by referring to
their respective system time, the system time difference parameters with respect to a reference time
scale can be introduced. If the GPS time scale is selected as this reference, the GPS receiver clock offset
is directly estimated as an unknown parameter, while the receiver clock offset parameters for the
other satellite systems can be depicted as the sum of the GPS receiver clock offset and the system time
difference parameter. The quad-constellation GNSS-SPP observation model can be written as [6]:

PG = ρG + c · δt− c · δtG
s + IG

i + TG
i + dG

orb + εG
P

PR = ρR + c · δt + c · δtR,G
sys − c · δts

R + IR
i + TR

i + dR
orb + εR

P
PE = ρE + c · δt + c · δtE,G

sys − c · δts
E + IE

i + TE
i + dE

orb + εE
P

PC = ρC + c · δt + c · δtC,G
sys − c · δts

C + IC
i + TC

i + dC
orb + εC

P

(1)

where the superscripts G, R, E, and C represent GPS, GLONASS, Galileo, and BDS, respectively; P is
the measured pseudorange in meters; ρ is the geometric range in meters; c is the speed of light, δt is
the GPS receiver clock offset in seconds; δts is the satellite clock offset in seconds; δtR,G

sys , δtE,G
sys , and δtC,G

sys
are the GPS-GLONASS, GPS-Galileo, and GPS-BDS system time differences in seconds, respectively.
Here, Ii is the ionospheric delay error in meters, Ti is the tropospheric delay error in meters, dorb is the
satellite orbit error in meters, εP is the measurement noise including multipath in meters. The hardware
delay on the receiver end will be absorbed by the receiver clock offset and the system time difference
parameters, whereas the hardware delay bias on the satellite end can be corrected by the group delay
provided in the broadcast ephemeris. Thus, the hardware delay biases do not show up in Equation (1).

As an efficient realization of the sequential least-squares adjustment, the Kalman filter has been
widely used in the GNSS navigation computations. In a discrete Kalman filter, the measurement
equation and state equation may be written as:

Lk = Hkxk + ek (2)

xk = Φk,k−1xk−1 + wk (3)

where Lk is the observation vector; k is the epoch; Hk is the design matrix; ek and wk are observation
noise and state noise, respectively. Here, xk is the state vector to be estimated, including the position
coordinates, velocity, receiver clock difference, and system time difference parameters; Φk,k−1 is the state
transition matrix; ∆t is the time interval. The state vector and state transition matrix are represented
as follows:

xk = [X Y Z VX VY VZ c · δt c · δtR,G
sys c · δtE,G

sys c · δtC,G
sys ]

T (4)

Φk,k−1 =



1 0 0 ∆t 0 0 0 0 0 0
0 1 0 0 ∆t 0 0 0 0 0
0 0 1 0 0 ∆t 0 0 0 0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



(5)

If the ek and wk are not zero-mean Gaussian white noise, they can be considered as colored noises.
A functional fitting model is adopted here to handle the colored noise. The functional models of
the observation colored noise and state colored noise can be expressed as first-order autocorrelation
models below [10]:

ek = Ψk,k−1 ek−1 + ηk (6)
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wk = Tk,k−1wk−1 + ξk (7)

where Ψk,k−1 and Tk,k−1 are diagonal coefficient matrices of the observation colored noise and state
colored noise, respectively, ηk and ξk are zero-mean Gaussian white noise sequences.

In the Kalman filter processing, the observation colored noise and the state colored noise mostly
remain in the observation residuals and state residuals, respectively [16,17]. Thus, the observation
residual sequence and state residual sequence can be used to predict the colored noise for correction in
the next epoch. The fitting process of the observation colored noise is illustrated as an example in the
following part.

Generally, the colored noise is correlated at consecutive epochs. Thus, the observation residuals of
the previous N epoch can be used as sample data of the observation colored noise for function model
fitting. For convenience of calculation, Equation (6) is transposed to:

eT
k = eT

k−1Ψk,k−1 + ηT
k (8)

Then, a moving window technique is applied to update the sample data. Suppose Vk−N . . .Vk−1
are N observation residuals before the current kth (k > N) epoch. In the navigation, the moving window
size N will affect the fitting effect of the colored noise. If the window size is too large, the error
correlation between the preceding epochs and the current epoch becomes weak, and thus the derived
colored noise is not accurate. If the window size is too small, it could be too random to model the
colored noise. Empirically, the window size can be set to 4–12. If these observation residuals are
substituted into Equation (6), the error equation can be written as follows:

r = BΨ̂k,k−1
−l (9)

where, r =


rk−1
rk−2

...
rk−N+1

, B =


VT

k−2
VT

k−3
...

VT
k−N

, l =


VT

k−1
VT

k−3
...

VT
k−N+1

, r is the error matrix of the fitted colored noise

sequence, l is the observation matrix for the observation colored noise, B is the matrix of colored
noise sequences at the epochs from k−2 to k−N, and Ψ̂k,k−1 is the correlation coefficient matrix of the
observation colored noise model. The sign above the Ψk,k−1 denotes estimated value.

According to the least-squares criterion, the error matrix r in Equation (9) should satisfy the
minimization condition in Equation (10), and the coefficient matrix Ψ̂k,k−1 can be obtained as Equation (11):

E
{
(r− E(r))T(r− E(r))

}
= min (10)

Ψ̂k,k−1 = (BTB)
−1

BTl (11)

where E ( ) is the statistical expectation. After the coefficient matrix of the observation colored noise is
obtained, the observation colored noise estimate can be predicted using Equation (8) by replacing the
observation colored noise ek−1 with the observation residual Vk−1.

êk = (BTB)
−1

BTlVk−1 (12)

Similarly, the state colored noise ŵk can also be predicted. After obtaining the colored noise, the
observation value and prediction state value are modified by applying the correction of the colored
noise accordingly. The observation equation and state equation with colored noise correction are
expressed as follows:

Lk + êk = Hkxk + ηk (13)

xk = (Φk,k−1xk−1 + ŵk) + ξk (14)
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The Kalman filter solution can be obtained using Equations (13) and (14). The flow chart of the
quad-constellation SPP solutions with mitigation of colored noise is shown in Figure 1. First, the
quad-constellation observation data and broadcast ephemeris are collected in the navigation. Then,
the ionospheric delay and tropospheric delay are corrected using the Klobuchar ionospheric model
and Saastamoinen tropospheric model, respectively [23,24]. The satellite position and satellite clock
offset are calculated using broadcast ephemerides. Next, the standard Kalman filter method is used
to get observation and state residuals. Subsequently, the observation colored noise and state colored
noise are predicted by a moving-window functional model, as shown in Equations (9)–(12). Finally,
the colored noise is corrected in the Kalman filter, as shown in Equations (13) and (14), and the Kalman
filter position solution is obtained.

Figure 1. Quad-constellation global navigation satellite system single point positioning (GNSS-SPP)
algorithm with mitigation of colored noise.

3. Navigation Test Results and Analysis

To test the quad-constellation GNSS-SPP algorithm with mitigation of colored noise, a kinematic
navigation experiment was conducted on March 28, 2018, in Changsha. The test started at the local
time of 09:30:45 (GPS time of 01:30:45) and lasted for about 2 h, using a land vehicle that carried
a Trimble Net R9 GNSS dual-frequency receiver, which can simultaneously collect datasets from
quad-constellations of GPS, GLONASS, BDS, and Galileo with a sampling interval of 1 s. The receiver
antenna type is a TRM55971.00, which is connected to the receiver via the sunroof and placed on the car
roof. The position reference values of the car route are calculated using the real-time kinematic (RTK)
technique [25]. RTKlib 2.4.3 software is used in a post-processing mode to obtain the position solutions
at a three-dimensional (3D) accuracy of a few centimeters. The base station for the RTK processing is
installed on the roof of the Wenfa building at Central South University. The receiver and antenna at the
base station are the same as the rover station. The distance between the base station and the rover
station is shorter than 16 kilometers. The sampling interval is set to 1s. The entire test route is shown
in Figure 2, which is produced by Google Earth. The equipment setup and road visibility are shown in
Figure 3. After staying for a period of time in front of the library on the main campus of Central South
University, the car started to move on the campus slowly. After 10 minutes, the car ran into a fast lane
(i.e. the South 2nd Ring road in Changsha). The Central South University campus is heavily wooded,
which causes serious signal blocking. By contrast, there are almost no obstructions on the South 2nd
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Ring road, whereas there exists signal loss when the car passes some overpasses. In order to test the
positioning performance in different road and visibility conditions, four different datasets are collected,
including datasets collected on the straight road, on the curved road, under good satellite visibility
and under poor satellite visibility. For all these quad-constellations datasets, the satellite elevation
cut-off angle is set to 10◦. In the implementation of the quad-constellation GNSS-SPP algorithm with
mitigation of colored noise, the window size will have an effect on the position solution. In order to
analyze this effect, different window sizes are adopted for testing using observations under the good
satellite visibility condition. The root mean squares (RMSs) of the 3D positioning errors for different
window sizes are shown in Table 1. It is obvious that the RMS error is the smallest when the window
size is set to six. Therefore, the window size is empirically set to six in this study.

Table 1. RMS statistics of positioning errors with different window sizes (m).

Window Sizes 4 5 6 8 10 12

3D 4.33 4.31 4.24 4.32 4.36 4.37

Figure 2. Vehicle running route produced by Google Earth for the quad-constellation navigation test.

Figure 3. Equipment setup and navigation test environment: (A) Base station; (B) Rover station;
(C) Open-sky road; (D) Signal blocked road.

3.1. SPP Result Analysis under Different Satellite Visibility Conditions

For the navigation test shown in Figure 2, the SPP results are presented under different satellite
visibility conditions. The number of satellites and position dilution of precision (PDOP) values for
different constellation combinations are shown in Figure 4, in which “G” represents a single GPS
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system, “G + C” is a combination of GPS and BDS, “G + C + R” is a combination of GPS, BDS,
and GLONASS, and “G + C + R + E” denotes the quad-constellation combination of GPS, BDS,
GLONASS, and Galileo. For the quad-constellation combined navigation on the open-sky road, the
number of satellites under good satellite visibility conditions is between 25 and 30, with an average
of 28.3; while their corresponding PDOP values are between 0.8 and 1.0, with a mean value of 0.9.
These numbers indicate good observation conditions. In comparison, on the road with poor satellite
visibility, as indicated by the red marks in Figure 2, the total number of visible satellites from all four
constellations is between 10 and 20, with an average of 14.2, and their PDOP mean value is 2.4, with a
maximum value of about 7.0. The increase of the PDOP value will amplify the measurement noise in
the state estimation. The poor visibility road is located on the main campus of Central South University,
where the GNSS signals are easily blocked by trees and buildings. As seen from the right subplot, the
quad-constellation combination greatly improves the satellite visibility and decreases PDOP values
when compared with the single constellation on the signal blocked road.

Figure 4. Number of satellites and position dilution of precision (PDOP) values under different satellite
visibility conditions.

Using the datasets under good satellite visibility, the colored noise model based on the approach
described in Equations (6)–(12) was established and the observation colored noise and the state colored
noise were obtained following the processing procedure shown in Figure 1. As a representative, the
acquired observation colored noise for four satellites from four different constellations, as well as state
colored noise, are shown in Figure 5. In this figure, "residual" represents the residual vector in the
Kalman filtering process, while "predicted noise" represents the colored noise predicted by the fitting
function model. As can be seen from Figure 5a, the observation colored noise is consistent with the
original residual sequence, indicating that the function fitting model can effectively model and predict
the colored noise. The root mean squares (RMSs) of the differences between the observation residuals
and the predicted colored noise are 0.64 m, 0.42 m, 0.25 m, and 0.57 m for satellites C10, E02, G10,
and R09, respectively. The state noise in the three coordinate components is obtained, as shown in
Figure 5b. The predicted state colored noise is basically consistent with the state residual. The RMS
values of the differences between the state residuals, and the predicted state colored noises are 1.19 m,



Sensors 2019, 19, 5563 8 of 13

1.20 m, and 1.08 m in the X, Y, and Z directions, respectively. The state colored noise exhibits larger
fluctuation than the observation colored noise due to relatively larger state residuals.

Similar to Figure 5, Figure 6 shows the residuals and the predicted colored noise using the datasets
under poor satellite visibility conditions. It can be seen from Figure 6a that the observations are not
complete due to the occlusion of obstacles, and so the observation residuals appear to be discontinued.
However, the quad-constellation combination can make up the deficiency of observation data caused
by the absence of visible satellites. As a result, the positioning results seem to be more continuous.
Although the observation colored noise can be predicted, it is not as good as the predicted effect when
the satellite visibility is good. The RMSs of the differences between the predicted observation colored
noise and the observation residuals are 0.76 m, 0.58 m, 0.39 m, and 1.02 m for satellites C10, E02, G10,
and R09, respectively. As can be seen from Figure 6b, when the visibility of the satellite is poor, the state
residual is significantly larger, and the predicted effect of the colored noise is affected. This is because
when the satellite visibility becomes worse, the measurement noise is magnified by the poorer satellite
geometry, resulting in larger state residuals. Consequently, the predicted colored noise is affected.

Figure 5. Residuals and colored noise under good satellite visibility condition: (a) Observation residuals
and predicted colored noise; (b) State residuals and predicted colored noise.

Figure 6. Residuals and colored noise under poor satellite visibility condition: (a) Observation residuals
and predicted colored noise; (b) State residuals and predicted colored noise.

Under different satellite visibility conditions, the quad-constellation SPP solutions are obtained
using the Kalman filter. The RTK solutions are used as coordinate references. The positioning errors
with or without applying colored noise correction are shown in Figure 7. As seen from the figure, when
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the satellite visibility is good, the positioning error is close to zero after applying the colored noise
correction. In comparison, the positioning errors are more fluctuant if the colored noise effect is not
taken into account. As seen from Table 2, the positioning accuracy increases by 19.1%, 26.5%, and 35.3%,
respectively, in three coordinate components, and the three-dimensional position accuracy increases
by 27.3% after considering the effect of the colored noise. When the satellite visibility is poor, the
horizontal and vertical position errors become larger. As a result, the improvement of the positioning
accuracy is not obvious after applying the colored noise correction, as seen from Figure 7 and Table 2.
The reason is that the satellite geometry condition plays a more important role than the colored noise
in the limited satellite visibility conditions. Simultaneously, the discontinued observations affect the
establishment of the functional fitting model of the colored noise.

Figure 7. Quad-constellation positioning errors with and without the correction of colored noise under
different satellite visibility conditions.

Table 2. Root mean square (RMS) statistics of positioning errors with and without colored noise
correction under different satellite visibility conditions (m).

Satellite Visibility Colored Noise East North Up 3D Improvement Rate

Good
No correction 0.96 2.65 4.31 5.15

27.3%Correction 0.57 1.37 3.43 3.74

Poor
No correction 27.17 30.17 18.22 44.50

0.4%Correction 27.11 30.05 18.06 44.32

It is well known that different satellite elevation angles will affect the signal-to-noise ratio of
observation data. The higher the satellite elevation angle is, the larger the signal-to-noise ratio.
To test the impact of the satellite elevation mask angles on positioning solutions with correction of
the colored noise, the quad-constellation datasets under the good satellite visibility conditions are
processed by setting different elevation cut-off angles, and the influence of the colored noise on the
quad-constellation positioning solutions is evaluated. When the elevation cut-off angles are set to
10◦, 20◦, and 30◦, the positioning errors with and without the colored noise correction are shown in
Figure 8. The corresponding RMS statistics of positioning errors are displayed in Table 3.

As can be seen from Figure 8, the positioning accuracy increases as the elevation cut-off angle
increases. This is because the residual errors, such as ionospheric and atmospheric delay errors, are smaller
when satellite elevation angles are higher, which leads to an improvement of positioning accuracy. It can
be seen from Table 3 that the 3D positioning accuracy improvement rate gradually decreases from 27.3%
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to 16.6% with the increment of the elevation cut-off angle. This is easily understood, since the magnitude
of colored noise is decreased with the increment of elevation cut-off angle in the case of sufficient satellite
number of quad-constellations.

Figure 8. Quad-constellation positioning errors with and without the correction of colored noise at
different elevation cut-off angles.

Table 3. RMS statistics of quad-constellation positioning errors with and without the correction of
colored noise at different elevation cut-off angles (m).

Elevation
Cut−Off Angle Colored Noise East North Up 3D Improvement Rate

10◦
No correction 0.96 2.65 4.31 5.15

27.3%Correction 0.57 1.37 3.43 3.74

20◦
No correction 1.21 2.08 2.72 3.64

21.1%Correction 0.95 1.61 2.17 2.87

30◦
No correction 1.15 1.31 3.08 3.54

16.6%Correction 0.89 1.50 2.38 2.95

3.2. Positioning Result Analysis Under Different Road Conditions

Kinematic data collected for different road patterns were processed to evaluate the influence of
colored noise on the positioning accuracy, including the straight and curved road patterns. These
different road patterns are shown in Figure 2. Since the used standard Kalman filter is a linear model,
the estimated position vector at the current epoch is a sum of the position solution at the last epoch
and the change value at the current epoch. Therefore, it is generally considered that the obtained
accuracy on the straight road is higher than that on the curved road. Using the colored noise mitigation
algorithm developed in Section 2, the positioning errors of the quad-constellation combined SPP with
and without colored noise correction are obtained under different road patterns, respectively. They are
shown in Figure 9.
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Figure 9. Quad-constellation SPP errors with and without correction of colored noise under different
road patterns.

Table 4. RMS statistics of quad-constellation SPP errors with and without correction of colored noise
under different road patterns (m).

Road Patterns Colored Noise East North Up 3D Improvement Rate

Curve
No correction 1.04 2.83 3.43 4.57

25.7%Correction 0.52 1.76 2.85 3.39

Straight No correction 0.91 2.70 4.50 5.32
22.1%Correction 0.65 1.53 3.72 4.08

It can be seen from Figure 9 that positioning errors can be effectively reduced after correcting the
colored noise for both the curved and straight road patterns. On both the straight and the curved roads,
some obviously larger positioning errors occurred, especially in the vertical coordinate component.
This is because the bumped road surface degrades the state prediction accuracy in the Kalman filter.
Simultaneously, at the moments that these large positioning errors appear, the observation residuals
and state residuals are abnormally larger, leading to an inaccurate modeling of the colored noise.
As a result, the correction of the colored noise cannot improve the positioning performance. Table 4
shows the RMS statistics of the quad-constellation SPP errors with and without correction of colored
noise under different road patterns. The positioning accuracy on the straight road after correcting the
colored noise is improved by 16.8%, 23.1%, and 35.2% in the east, north, and up directions, respectively.
The three-dimensional position accuracy is improved by 22.1%. On the curved road, the positioning
accuracy after taking the colored noise into account is correspondingly improved by 16.3%, 25.7%, and
44.5% in the three directions, respectively. The three-dimensional positional accuracy is improved by
25.7%. The horizontal position accuracy is comparable for both straight and curved road conditions,
suggesting that the state equation has well-modeled the car kinematic under the two different road
patterns. Further, the improvement rates of the positioning accuracy after correcting the colored noises
are also comparable with both straight and curved roads.

4. Conclusions

In the navigation, most observation noise and state noise belongs to colored noise, due to the
complex observation environment and unpredictable dynamics. The colored noise can significantly
affect the positioning accuracy of the navigation solutions. Based on observation residuals and
state prediction residuals, this paper develops a colored noise model to mitigate the colored noise
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in the quad-constellation SPP. Kinematic positioning experiments under different satellite visibility
conditions and road patterns were conducted to test the influence of the colored noise on the positioning
accuracy of quad-constellation navigation. The experimental results show that the colored noise
model can effectively predict the colored noise and then mitigate its effect on the positioning accuracy.
The three-dimensional positioning accuracy can be improved by 27.3% under the good satellite
visibility condition. When satellite visibility is poor, the large residual errors have a side effect on
the acquisition of the colored noise. As a result, the improvement of the positioning accuracy after
correcting the colored noise is not significant. For different satellite elevation cut-off angles, the colored
noise contained in the observations decreases with the increase of elevation angles. Consequently, the
improvement of positioning accuracy after considering colored noise gradually decreases from 27.3%
to 16.6% with the increment of the elevation cut-off angle. In the case of different road patterns, the
positioning accuracy after considering colored noise is improved by over 22% on both straight and
curved roads.
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