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Abstract: In wireless sensor networks (WSNs), the problem of measurement origin uncertainty for
observed data has a significant impact on the precision of multi-target tracking. In this paper, a
novel algorithm based on least squares support vector machine (LS-SVM) is proposed to classify
measurement points for adjacent targets. Extended Kalman filter (EKF) algorithm is firstly adopted
to compute the predicted classification line for each sampling period, which will be used to classify
sampling points and calculate observed centers of closely moving targets. Then LS-SVM algorithm
is utilized to train the classified points and get the best classification line, which will then be the
reference classification line for the next sampling period. Finally, the locations of the targets will be
precisely estimated by using observed centers based on EKF. A series of simulations validate the
feasibility and accuracy of the new algorithm, while the experimental results verify the efficiency and
effectiveness of the proposal.

Keywords: wireless sensor networks (WSNs); measurement origin uncertainty; localization and
tracking; least square support vector machine (LS-SVM)

1. Introduction

Nowadays, with the development of precision sensors to monitor physical or environmental
conditions, the applications of WSNs have been motivated by various industrial and consumer
systems, as well as military usages [1–3]. Among the increasing research and applications of WSNs, an
important field is target localization and tracking [4,5]. Generally, the location problem in WSNs falls
into two categories: range-free or range-based method [6]. While the former, depending on a kind of
communication device (such as ZigBee, WiFi, Bluetooth, RF, and so on), has exhibited the advantage
of easy implementation without additional ranging sensors, the latter, tracking targets based on the
distance measurement sensors and angle sensor, demonstrates much better positioning accuracy. In
this paper, we will mainly focus on the range-based localization method.

Broadly speaking, the traditional methods of localization and tracking contain Kalman filter (KF),
extended-KF (EKF), Unscented-KF and so on [7–9]. The basic idea of these algorithms is to construct
suitable state equations and predict the location of targets for the next moment. Meanwhile, the
observed values will also be obtained from sensor systems, which are then utilized to estimate target
positions combined with predicted values. These algorithms are well suited to the case where one
object corresponds to one measurement per scan. However, in WSNs, it is quite common for one target
to generate multiple measurements, which is generally called extended target. There are many reasons
for this phenomenon, such as the improvement of sensor resolution, the target being close to the sensor,
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and multiple sensors working together. In WSNs, there exist some special features for acquisition
of observation values, which is a problem for the measurement of uncertain origin [10]. Although
multiple sensors have been applied to observe several targets in WSNs, it is still not clear whether a
measurement point belongs to a specific target or not, especially for adjacent targets. Obviously, in
order to get precise observation and estimation value for targets, it is a major requisite to accurately
classify these sampling points.

In general, there are two kinds of state-of-the-art methods dealing with sampling points for
respective targets: with or without the probability model [11–15]. While the computational complexity
of the former increases as the model becomes more complicated, the latter saves a large number of
complex calculations and includes two different methods: clustering and classification algorithms.
Clustering is a process of unsupervised machine learning without the training of sample data, and
group target data set by designing a suitable distance metric [16,17]. Besides, the clustering algorithm
is fairly effective and suitable for acquiring observations in WSNs. However, in cases where targets
move closely and their sampling points overlap each other, the performance of the clustering algorithm
would dramatically decrease due to different distributions of these overlapped points. In contrast, the
classification algorithms have favorable stability, and the most representative one among them is SVM
algorithm. As SVM avoids the traditional process from generalization to deduction, it largely simplifies
the usual classification problem. Especially, LS-SVM optimizes the algorithm solution and improves
computing efficiency [18,19]. Nevertheless, being a supervised machine learning algorithm, LS-SVM
trains the sample data before classification and has been rarely used in applications with dynamic
systems, such as tracking problems in WSNs. In this paper, a novel maneuvering targets classification
algorithm is developed by combining LS-SVM and EKF to classify sampling points, which are then
used to calculate the observed centers for targets and evaluate the positions of targets based on the
EKF algorithm.

The remainder of this paper is organized as follows. Section 2 mainly describes the related works.
In Section 3, we describe the principles of the proposed algorithm in detail. Section 4 is about the
simulation that verifies the classification and tracking performance, followed by the experiment and
discussion about the proposal in Section 5. At last, Section 6 concludes this paper.

2. Related Work

Recently, with the improvement of sensor resolution, the problem of extended target recognition
and positioning has attracted a lot of research attention. One of the key issues is how to identify two
adjacent extended targets and locate them separately.

Maximum Likelihood Probabilistic Multi-Hypothesis Tracker (ML-PMHT) can reliably
discriminate between the target and clutter, based on the calculation of peak point’s PDF in ML-PMHT
log-likelihood ratio (LLR) due to clutter and also the peak point’s Probability Density Function (PDF)
in LLR due to the target. In order to track the original target from measurement points generated
by both the original target and interfering target, Steven Schoenecker replaced the clutter with a
second, independently parameterizable target, on the basis of ML-PMHT [20]. However, sometimes
the peak of the LLR surface that it generates can merge with the original target peak, and the ability
to track the original target is limited, especially when an interfering target is strong enough or close
enough. Based on previous work, [21] developed a statistical method to watch how close two targets
were to each other, and the system still had the ability to recognize them, by checking whether
the LLR peaks of the two targets coincided. Li proposed an improved partitioning algorithm for a
Gaussian inverse Wishart probability hypothesis density (GIW-PHD) filter to solve the problem where
the sub-partitioning algorithm failed to handle cases where targets were of different sizes, and the
Mahalanobis distances was employed to distinguish among measurement cells of different sizes for
extended targets [22]. However, this approach seems to not be sensitive to either differences in target
size or target maneuvering.
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As the applications of extended targets quickly increase, the research on target location is gradually
developed for the method based on clustering. The probability-based method is used to classify
each measurement point, and the great number of equivalent measurement points will lead to very
large computational complexity. For this issue, adaptive weight Fuzzy C-Means clustering (AWFCM)
algorithm was used to track multi-targets under the cross tracks situation [23], where a distance
in new metric space was defined to restrain the error range of data association clustering centers
for samples with noise points and cross tracks. Besides, the improved weights dependent on dots’
density were introduced to reduce the negative effect of imbalanced data sets. Another method of
Clustering-Based Multiple Hypothesis Multi-target Localization was presented for the same purpose,
which divided a large number of hypotheses into several independent clusters, as well as hypothesis
update, hypothesis pruning and global hypothesis generation were completed independently in each
cluster [24]. Additionally, a clustering method-based Evolutionary Kernel Fuzzy C-Means clustering
(EKFCM) algorithm was adopted to identify and locate targets oriented to multi-target tracking in
wireless sensor networks [13], which firstly applied the clustering number recognition algorithm to
filter out outliers and then calculate initial cluster centers based on the density of each measurement
data. At last, the density factors of these measurement data were fused into the Gaussian kernel
function to improve the accuracy of the cluster center, and the accurate position of each target at the
current moment was calculated according to the predictive position and measurement data set of the
corresponding cluster.

Relatively speaking, the clustering algorithm could quickly and effectively classify the
measurement points and track the measurement points belonging to each extended target, so as
to solve the problem of measurement origin uncertainty. The accuracy of the clustering algorithm to
classification of measurement points will directly affect the accuracy of the target location. However,
when two objects are close to each other, the overlapping phenomenon of measurement points will
result in a classification error of the clustering algorithm and affect the positioning accuracy. In order
to solve this problem, we use the classification method based on LSSVM to classify the measurement
points for adjacent targets, which will further improve the accuracy of the target location.

3. The Proposed Algorithm

In this section, we will describe the proposed algorithm in detail.

3.1. Algorithm Overview

As shown in Figure 1, the whole process of our new algorithm consists of four portions:
initialization, predicting the classification line, obtaining the best classification line, and target tracking.
Initialization provides the initial values for EKF and the original sampling points for LS-SVM algorithm,
as well as the best classification line. The predicted positions of targets will be calculated based on the
EKF algorithm and then applied to predict the classification line. Besides, the measurement points
sampled by sensors in WSNs with noise points filtered out by using some simple filter would be
classified by the predicted classification line. Subsequently, the geometric centers of these classified
points will be regarded as observed centers of targets, which could be adopted to estimate the positions
of targets based on EKF algorithm. Meanwhile, the classified points will also be devoted to train the
best classification line based on LS-SVM algorithm, which will be taken as the reference classification
line for the next sampling period.

Here, to facilitate the description of the algorithm, we make a few points in advance. Firstly, the
classification line is used hereinafter to replace the classification surface, as it is a straight line in a 2-D
area. Secondly, because the sampling points always contain valid measurement points of targets and
also invalid noise points, we will filter out the noise points far from targets based on the density of
the sampling points. Thus, the sampling points can be considered as valid measurement points after
filtering. Finally, since it is the most common case that two targets move closely compared with more
targets, we will take two targets as the example to show the principle of the proposed algorithm.
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3.2. EKF algorithm for Target Tracking

In order to guarantee the algorithm works well under nonlinear systems, EKF algorithm is utilized
to track targets. Firstly, we build a state model for each target:

Z(k) =
[
x(k)

.
x(k) y(k)

.
y(k)

]T
(1)

where x(k) and y(k) represent the x-axis and y-axis positional coordinates of the target at time k
respectively,

.
x(k) and

.
y(k) indicate the speed of the target along the x-axis and y-axis directions at

moment k. According to EKF, the state equation of the target is:

Z(k + 1) = Φ(k + 1|k)Z(k) + G(k)W(k) + φ(k) (2)

where Φ(k + 1
∣∣∣k) represents the state transition matrix, and G(k) and W(k) denote the noise driving

matrix and input white noise. Here, φ is a nonrandom term. Besides, the initial value is set as:

Z(0) = E[Z(0)] (3)
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The prediction equation is:
_
Z(k + 1|k) = f

(_
Z(k|k)

)
(4)

and the prediction covariance matrix is:

P(k + 1|k) = Φ(k + 1|k)P(k|k)ΦT(k + 1|k) + Q(k + 1) (5)

where Q is the variance of W, and the initial value of the prediction covariance is:

P(0) = var[Z(0)] (6)

The predicted positions of targets will be adopted to predict the classification line, and the
observed centers O(k + 1) of targets will be obtained from Section 3.3. The estimation equation is:

_
Z(k + 1|k + 1) =

_
Z(k + 1|k) + K(k + 1)

[
O(k + 1) − h

_
Z(k + 1|k)

]
(7)

K(k + 1) = P(k + 1|k)HT(k + 1)
[
H(k + 1)P(k + 1|k)HT(k + 1) + R(k + 1)

]−1
(8)

P(k + 1) = [I−K(k + 1)H(k + 1)]P(k + 1|k) (9)

H(k) =
∂h

∂
_
X(k)

∣∣∣∣∣X(k)=_
X(k)

(10)

where h denotes the observation matrix.

3.3. Predicting the Classification Line

In this subsection, we use the predicted positions of targets from Section 3.2 to predict the
classification line, which will be devoted to classify sampling points, calculate observed centers,
and also estimate positions of targets. Figure 2 shows the geometric relationship between the best
classification line at time k and the predicted classification line at moment k + 1. Here, Ak|k and Bk|k are
the geometric centers of classified points, and lk|k is the best classification line at time k, which is also the
reference classification line at k + 1. Ck is the intersection point between lk|k and connection line Ak|kBk|k.
Similarly, Ak+1|k and Bk+1|k are the predicted positions of targets at time k + 1. lk+1|k is the predicted
classification line to be calculated below, with Ck+1 the intersection point between Ak+1|kBk+1|k and
lk+1|k. The specific process holds six steps.
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Step 1: Input the initial parameters.
The initial parameters mainly refer to the best classification line and observed centers at the very

beginning of the algorithm. For the following sampling periods, the best classification line at time
k will be regarded as the reference classification line at moment k + 1. Later, after predicting targets’
positions at time k + 1 based on EKF, the predicted classification line at time k + 1 will be obtained by
transforming the reference classification line according to the positional relationship between predicted
targets positions at time k + 1 and observed targets centers at k(through following steps 2–5).

Step 2: Calculate the intersection point Ck.
The intersection point Ck(x

(C)
k|k , y(C)k|k ) could be calculated by solving the straight line

equations below:

ωk|k ·
[
xk|k, yk|k

]T
+ bk|k = 0 (11)

yk|k = y(A)

k|k +

 y(B)k|k − y(A)

k|k

x(B)k|k − x(A)

k|k

[xk|k − x(A)

k|k

]
(12)

where (11) is the equation of the best classification line lk|k with normal vector ωk|k, and (12) is the
equation of line Ak|kBk|k. We would also compute the scaling factor αs, which denotes the proportion of
point Ck between Ak|k and Bk|k.

αs =
y(C)k|k − y(B)k|k

y(A)

k|k − y(B)k|k

(13)

Step 3: Compute the predicted intersection point Ck+1.
Assume that the relative position of predicted classification line lk+1|k between two targets is

persistent for two adjacent moments. Thus, the scaling factor αs for time k + 1 will be equal to the
one at moment k. According to predicted positions of targets Ak+1|k and Bk+1|k, we will calculate the

predicted intersection point Ck+1(x
(C)
k+1|k, y(C)k+1|k): x(C)k+1|k

y(C)k+1|k

 = αs

 x(A)

k+1|k

y(A)

k+1|k

+ (1− αs)

 x(B)k+1|k

y(B)k+1|k

 (14)

Step 4: Calculate the normal vector of lk+1|k.
The predicted classification line lk+1|k would be transformed from the best classification line lk|k at

time k. Thus, the normal vector of lk+1|k could be obtained by getting the rotation angle θ of two lines
ABk|k and ABk+1|k, which equals to the rotation angle between the normal vector of lk|k and normal
vector of lk+1|k.

cosθ =

−−−→
ABk|k ·

−−−−−−→
ABk+1|k

‖
−−−→
ABk|k‖‖

−−−−−−→
ABk+1|k‖

(15)

sinθ =

−−−→
ABk|k ×

−−−−−−→
ABk+1|k

‖

→

ABk|k‖‖
−−−−−−→
ABk+1|k‖

(16)

here
−−−→
ABk|k denotes the vector of point Ak|k to point Bk|k, and

−−−−−−→
ABk+1|k presents the vector of point Ak+1|k

to point Bk+1|k respectively. Then, the normal vector of lk+1|k is:

ωk+1|k =ωk|k

[
cosθ sinθ
− sinθ cosθ

]
(17)

Step 5: Obtain the predicted classification line.
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The predicted classification line lk+1|k can be described as below:

ωk+1|k ·
[
xk+1|k, yk+1|k

]T
+ bk+1|k = 0 (18)

where bk+1|k will be derived by taking point Ck+1(x
(C)
k+1|k, y(C)k+1|k) into (18).

Step 6: Calculate the observed centers of targets.
After obtaining the predicted classification line, each sampling point is put into the following

formula for classification.

M(Xi) = sgn(ωk+1|k ·
[
xk+1,i, yk+1,i

]T
+ bk+1|k) (19)

The sampling points will be classified into two groups, the geometric center of each group is
supposed to be the observed center for each target, which could be adopted to estimate the positions of
targets based on EKF (see Section 3.2).

The method for predicting the classification line is presented in Algorithm 1 below.

Algorithm 1 Predicting the classification line

Input: best classification line and observed centers of targets at time k;
Output: predicted classification line and observed centers of targets at moment k + 1;

1: Input the best classification line and observed centers of targets at time k as initial
parameters, get the reference classification line and predicted targets positions Ak+1|k
and Bk+1|k at moment k + 1;
2: Calculate the intersection point Ck and scaling factor αs according to the straight line
equations;
3: Compute the predicted intersection point Ck+1 on the basis of scaling factor αs and
predicted positions of targets Ak+1|k,Bk+1|k;
4: Calculate the normal vector of lk+1|k based on positions of targets at time k and k + 1;
5: Obtain the predicted classification line at moment k + 1 with intersection point Ck+1 and
normal vector of lk+1|k;
6: Calculate the observed centers of targets at time k + 1 after classifying the sampling points
with the predicted classification line, which will be utilized to track targets based on EKF.

3.4. Training the Best Classification Line

By using the predicted classification line to classify the sampling points, we could effectively
find the observed centers of targets at each time. However, the predicted classification line obtained
at time k may sometimes bring some classification errors for next moment k + 1. Subsequently, the
following classification is affected by the accumulated error before, namely misclassification. In
order to reduce the impact of the accumulated error, before the closing algorithm for the current
sampling period k and beginning of the new period k + 1, we will retrain the data set and get the best
classification line of classified points, which will be regarded as the reference classification line for
the next sampling period k + 1. In order to reduce computational complexity, we use the LS-SVM
to train the best classification line. The LS-SVM turns the inequality constraints of the original SVM
algorithm into equality constraints, thus the solving quadratic programming is replaced by solving
linear equations [18]. According to the classified sampling point set

{
xi, yi, zi

}l
i=1 with input data

{
xi, yi

}
and corresponding binary class labels zi ∈ {−1,+1}, the LS-SVM classifier is obtained by reformulating
the minimization problem as:

min
ω

Φ(ω, e) =
1
2
(ω ·ω) + γ

1
2

l∑
i=1

e2
i (20)
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subject to
zi(ω · [xi, yi]

T + b) = 1− ei, i = 1, . . . , l (21)

where ei denotes the slack variable, γ presents the weight to balance best hyperplane and minimum
deviation, and · presents the scalar product of two vectors. Subsequently, the Lagrangian function is
constructed as:

L(ω, b, e,α) = Φ(ω, e) −
l∑

i=1

αi
[
zi
(
ω · [xi, yi]

T + b
)
− 1 + ei

]
(22)

where αi ∈ R denote the Lagrange multipliers. The conditions for optimality are
∂L
∂ω = 0→ω =

∑l
i=1 αi[xi, yi],

∂L
∂b = 0→

∑l
i=1 αi = 0,

∂L
∂ei

= 0→ αi = γei, i = 1, . . . , l,
∂L
∂αi

= 0→ zi
(
ω · [xi, yi]

T + b
)
+ ei − 1 = 0, i = 1, . . . , l.

(23)

By solving the linear Equations (23), we can get the best classification line. The method for training
the best classificiation line is shown in Algorithm 2.

Algorithm 2 Training the best classification line

Input: predicted classification line and observed measure point set
{
xi, yi

}l
i=1 at time k + 1;

Output: best classification line at moment k + 1;
1: Input the predicted classification line and observed measure point set{
xi, yi

}l
i=1 at time k + 1;

2: Classify the observed measure point set
{
xi, yi

}l
i=1 by using the predicted

classification line according to Equation (19), which will get the classified
sampling point set

{
xi, yi, zi

}l
i=1 with the binary class labels zi ∈ {−1,+1};

3: Substituting
{
xi, yi, zi

}l
i=1 into Equation (23) to compute the parameter

ω and b, and finally get the best classification line at moment k + 1.

4. Algorithm Simulation and Validation

In this section, the classification and tracking performance of the presented method will be
simulated for algorithm validation.

4.1. Parameter Selection

The parameter γ, which is shown in (20), is needed to be determined before program running.
Theoretically, a bigger γ will increase the difficulty of calculation, while a smaller one will reduce the
balance effect. In order to determine a proper γ, we simulated a classification by using the measurement
points of two targets in different overlapping ranges and optimized the value of γ/2 from 1 to 10000.
The overlap range is set from 0% to 30% for simulation, with the simulation result listing in Figure 3.
The subfigure above shows the influence of the selection of γ on the running time and classification
accuracy under 10% of the overlapped range, and the subfigure below lists the test under 30% of the
overlapped range. Clearly, we get a balance between running time and classification accuracy when
the γ/2 will be assigned within 1000.

4.2. Simulation of Classification Performance

In order to verify the classification performance of the proposed algorithm, we firstly simulate the
classification of the two targets within 11 groups of continuous sampling periods, which is shown in
Figure 4. Here, L represents the best classification line for each sampling period. The whole simulation
process involves two different motion states of targets: parallel state (L2–L5) and crossing state (L9–L10).
Figure 4 reveals that the proposed algorithm can basically distinguish the sampling points of two
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targets, even though two targets are sometimes very close to each other. Besides, once two targets
move separately (L6–L8, L11), the best classification line will effectively reduce accumulative error.
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Moreover, a Monte Carlo simulation with 5000 s was taken to analyze the classification performance.
We have recorded the number of misclassified points and center distance between two targets. Figure 5
reports the probabilities of misclassification over center distances of two targets. As the radius of
targets is set to 20 cm, the classification performance of our proposed algorithm becomes increasingly
promising while the center distance is bigger than 30 cm, especially 50 cm (while two targets completely
separate from each other).

4.3. Simulation of Tracking Performance

In order to evaluate the performance of the proposed algorithm for tracking adjacent targets,
several simulations have been done and compared with some existing algorithms, namely K-means [16],
Fuzzy C-means(FCM) [14] and EKFCM [13] clustering algorithm, which are all combined with the
same tracking EKF algorithm. Besides, the root mean square error (RMSE) and Mean RMSE (MMSE)
of the position are chosen as performance metrics [25].
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The RMSE and MMSE of position are respectively defined as follows:
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where (xs
k, ys

k) and (x̂s
k, ŷs

k) represent true and estimated positions at time k of the s-th Monte Carlo
simulation, and M = 100 and T = 1000 s are the total number of Monte Carlo runs and simulation
time separately. Figure 6 shows the RMSEs of K-means, FCM, EKFCM and the proposed algorithm,
with Table 1 illustrating their MMSE. It is obvious that the RMSE of the proposed algorithm is almost
smaller than the ones of K-means, FCM and EKFCM algorithms in each Monte Carlo run, and the
MMSE of our proposal is reduced at least 20% and 10% compared with K-means and FCM algorithm.
Compared with EKFCM algorithm, the MMSE of the proposed method is reduced almost 10%. Besides,
we calculated the average running time of each algorithm shown in Table 1, where the proposed
method takes a little longer time to solve SVM equations rather than the addition-based clustering
algorithm. Therefore, in terms of feasibility and accuracy of tracking adjacent targets, the provided
algorithm will be more suitable than K-means, FCM and EKFCM.

Table 1. MMSE of the proposed and existing methods for two targets.

Target K-Means FCM EKFCM Proposed Method

A (cm) 15.7163 13.7165 13.7481 12.1711
B (cm) 15.8078 14.1137 13.4989 12.4182
Improvement rate (%) 21.99 11.65 9.75 -
Average Run Time (s) 0.1534 0.1674 0.1871 0.2162
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5. Experimental Evaluation

Besides algorithm simulation, a series of experiments are conducted to validate the efficiency and
effectiveness of our proposal. In this section, we firstly introduce the implementation of experiments
and then analyze and discuss experimental results.

5.1. Experimental Implementation

A WSN platform with 12 sensor nodes was set up (Figure 7) covering a surveillance area of 7 by 7
square meters. The positional coordinate for sensor node is SN1 (0,0), SN2 (0,2.33), SN3 (0,4.67), SN4
(0,7), SN5 (2.33,7), SN6 (4.67,7), SN7 (7,7), SN8 (7,4.67), SN9 (7,2.33), SN10 (7,0), SN11 (4.67,0), and
SN12 (2.33,0) in meters. Vertically, the sensor nodes are all placed at the height of 1.15 m.
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experimental scene.

The sensor node consists of five parts: infrared ranging (IR) sensor, angle control module, wireless
communication module, control module, and power supply module, which is shown in Figure 8.
Specifically, the effective detection distance of the IR sensor is up to 5 meters, and the angle control
module drives a stepping motor with a step angle of 7.2◦. Here, a sampling period is defined as the
time required by the sensor node to turn half a circle. Each sampling period is 0.5 s and includes 25
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sampling windows. All the sampling data will be sent to the host computer by wireless communication
module with model ESP8266. The control module here is hired to initialize and manage other modules.
Two people are the targets of the practical experiment. Once beginning, they enter the surveillance
region with a speed of approximately 1m/s and walk along the predefined routes. During the whole
experiment, they will move closely with each other and even cross several times. While two persons
keep walking, the sensor nodes sample target positions and then update the data to the host computer,
which will be analyzed by the proposed algorithm to track adjacent targets.Sensors 2019, 19, x FOR PEER REVIEW 12 of 16 
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Besides, in order to compare the tracking efficiency of these algorithms, it is necessary to obtain
true positions of each target. Therefore, a kind of device for recording time and imprinting on the
ground is installed on the shoes of every person. When people walk, a mark will be printed on the
ground for each footstep as well as the exact time will be recorded by the device. After the experiment
is completed, all the marks will be detected and the center between the two adjacent marks is perceived
as the true position of target. Then, the true positions will be coupled with the recorded time. Finally,
the actual positions for each sampling time can be calculated by the interpolation method according to
the detected positions and recorded time.

5.2. Experimental Analysis

Based on the above experimental setup, sequence data were collected from two closely moving
persons and then used to estimate the target trajectory by the presented algorithm, K-means, and FCM
methods separately, see Figure 9.

We counted the positional errors (PE) between the locations from each algorithm and truth
locations, as shown in Figure 10, which shows the PE of the new algorithm, and found that they are
basically less than that of other methods. In order to compare the performance of these algorithms
more intuitively, RMSE was calculated and shown in Table 2. Besides, we have done 60 experiments
and collected 60 trajectories which include the trajectory shown in Figure 9. We have calculated the
RMSE of these trajectories and shown them in Figure 11. At last, we also calculate the MMSE for these
trajectories, which is shown in Table 3. It demonstrates that MMSE of the new algorithm is still lower
than that of others, which keeps consistent with the results of the simulation. Moreover, under Matlab
R2014b with Intel(R) Core(TM) i5-4590 CPU at 3.3 GHz as well as 8 GB RAM, the average run time of
tracking is 0.328s, which will satisfy the real-time requirement of our system.
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Table 2. RMSE (cm) of proposed and existing methods for the experiment.

Target K-Means FCM EKFCM Proposed Method

A 20.9915 19.1967 17.8418 16.9961
B 18.2747 16.0483 15.9778 15.4728
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Table 3. MMSE of proposed and existing methods for the experiment.

Target K-Means FCM EKFCM Proposed Method

A (cm) 18.8562 18.1433 17.6606 15.6904
B (cm) 18.9090 17.8874 17.4856 16.1786
Improvement rate (%) 15.61 11.54 9.32 -

6. Conclusions and Future Work

This paper mainly focuses on the classification problem among the sampling points of two adjacent
targets. The proposed algorithm combined EKF and LS-SVM methods to obtain the best classification
line for each sampling period, which was then devoted to precisely classify sampling points and
calculate the observed centers of targets, as well as estimate the positions for closely moving targets
based on EKF. Several simulations were conducted to demonstrate the feasibility and accuracy of the
presented algorithm for tracking two closely moving targets in WSNs. Moreover, in contrast with
state-of-the-art K-means, FCM and EKFCM methods, experimental and quantitative results further
validate the efficiency and effectiveness of our proposal. In the near future, algorithm optimization
and its extension to track more than two targets will be fully investigated.
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