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Abstract: Advanced chemometric analysis is required for rapid and reliable determination of physical
and/or chemical components in complex gas mixtures. Based on infrared (IR) spectroscopic/sensing
techniques, we propose an advanced regression model based on the extreme learning machine (ELM)
algorithm for quantitative chemometric analysis. The proposed model makes two contributions to the
field of advanced chemometrics. First, an ELM-based autoencoder (AE) was developed for reducing
the dimensionality of spectral signals and learning important features for regression. Second, the fast
regression ability of ELM architecture was directly used for constructing the regression model. In this
contribution, nitrogen oxide mixtures (i.e., N2O/NO2/NO) found in vehicle exhaust were selected as a
relevant example of a real-world gas mixture. Both simulated data and experimental data acquired
using Fourier transform infrared spectroscopy (FTIR) were analyzed by the proposed chemometrics
model. By comparing the numerical results with those obtained using conventional principle
components regression (PCR) and partial least square regression (PLSR) models, the proposed model
was verified to offer superior robustness and performance in quantitative IR spectral analysis.

Keywords: gas sensing; quantitative spectrum analysis; feature selection; ELM-AE

1. Introduction

With the development of advanced technologies in medical, industrial, and environmental
applications, gas sensing has been applied to play an essential role in many areas [1,2]. Currently,
researches on gas sensing can mainly be divided as two parts: qualitative analysis and quantitative
analysis [3]. Compared to aiming at only recognizing the components of a gas mixture, the latter
obtains the concentration of gas components, which is relevant for industrial measurements, e.g., in
the manufacturing industry, as well as transportation, environmental, and food security.

Quantitative gas analysis could benefit from a variety of technologies [4,5], among which
gas chromatography (GC) and spectroscopic sensing are two frequently applied methods [6].
Gas chromatography is time consuming and operates discontinuously, whereas spectroscopic methods
stand out due to their rapid response, compactness, and accuracy [7]. Moreover, spectroscopic methods
can identify gases according to their more or less pronounced spectral signatures across the entire
electromagnetic spectrum, and especially in near-infrared (NIR), mid-infrared (MIR), and Raman
spectroscopy, which are commonly used for real time and in-field gas sensing applications [8–11].
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Because of the intrinsic molecular selectivity, high sensitivity, and rapid response [12], spectroscopic
gas sensing (usually based on recording emission or absorption spectra) are attractive for quantitative
spectral analysis even in complex mixtures.

The principle of quantitative analysis in infrared spectroscopic gas sensing is based on the
relationship between the magnitude of the absorptions in the spectrum and the gas concentration [13].
Regression models are built based on statistics or machine learning algorithms to quantitatively
describe this relationship and to derive gas concentrations from that. The simplest models are so-called
single-linear-regression (SLR) and multiple-linear-regression (MLR) models that utilize the intensity
of absorption lines as input for the regression. These models have been successfully applied for,
e.g., determining the total amount of carbon in unknown soil samples [14]. MLR was also used to
analyse the Pb content of navel oranges [15], and to measure the quantity of trace metals in infant
formula premixes [16]. Modern spectral analysis methods aim at extracting more in-depth features
from spectra, and then construct a so-called multivariate regression model considering two key issues.
The first one relates to the extraction of useful features from a complex pattern of spectral lines; the
other concerns the construction of an effective regression model. For the first issue, generic methods
are based on principle components analysis (PCA), which aims at extracting the most important
features from raw data while reducing the dimensionality at the same time [17]. Principle components
regression (PCR) and partial least square regression (PLSR) are the two most commonly used models
in multivariate quantitative spectral analysis [18,19]. For instance, PCR and PLSR were used to
predict the protein content and hardness value of Canadian wheat [20]. They were also reported to
extract multi-elemental concentrations from stainless-steel samples using laser-induced-breakdown
spectroscopy [21]. In PCR and PLSR models, the regression analysis is realized via simple linear
regression. With the advancement of machine learning algorithms, the combination of PCA with these
techniques enables the development of advanced regression models. For example, a support vector
regression model (SVR) combined with PCA for the quantitative elemental analysis of solid samples
based on microwave plasma atomic emission spectrometry [22,23].

In this paper, we propose an advanced regression model to enhance the performance with respect
to the linear regression methods mentioned above. Contributions of this paper are concluded as
the following: (i) A fast and advanced machine learning model is proposed for IR spectra analysis
in this paper. The proposed model is based on the so-called extreme learning machine algorithms
(ELM) [24,25], which is based on a single-hidden-layer-feedback-network. Compared with other
machine learning algorithms, ELM offers fast learning speeds, and excellent feature learning abilities.
It is also ideal for handling large data sets, such as high-resolution spectral data; (ii) An advanced
feature learning method is proposed. A new ELM architecture is applied in the proposed model
for dimension reduction and feature learning, namely ELM-based auto-encoder (ELM-AE) [26].
Compared with PCA methods, ELM-AE was able to learn linear and nonlinear features with fast
random projection. By setting the direction to fit the objective, the newly learned features could then
enhance the regression ability; (iii) Fast and direct regression modelling method is applied in this
paper. Considering parameters of the conventional ELMs are trained based on least square methods,
ELM-AE also provided superior linear learning abilities. Therefore, combined with features learned
from ELM-AE, the ELM architecture could be directly utilized for regression analysis in gas sensing.
Based on the proposed method, both simulated data and experimental data were studied for validating
the performance quantitative gas mixture analysis.

2. Background Knowledge

According to the above description, the work determining the concentration of individual gas
components in mixtures mainly involves with quantitative analysis in IR gas spectra. The methodology
used herein relies on three main parts of background knowledge: (i) data pre-processing, (ii) predictive
regression modelling, and (iii) performance evaluation. Some general work on these parts are presented
as below.
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2.1. Data Pre-Processing

Data pre-processing of complex IR spectra not only aims at extracting useful information
discriminatory from interferences, e.g., data de-noising, normalization, and feature selection, but
also specific processes such as baseline correction, optimizing the input spectral range, etc. [27].
In regression analysis, data pre-processing is expected to generate a reliable database for constructing
a precise and robust relationship between input and output. Therefore, feature selection or variable
selections is highly relevant. It is known that generic IR gas spectra may be composed of thousands of
emission/absorption lines (i.e., variables), especially if high-resolution data is recorded [28]. However,
it is detrimental to use all available variables for modelling, as a large number of variables not
only increases the complexity and computation time, but also considers noise. Therefore, suitable
variable selection is relevant to filter out noise, and build models using only variables carrying
essential analytical information. A commonly-applied method is based on the selection of the suitable
wavelength regimes, while avoiding spectral segments that do not provide molecularly relevant
signatures, thereby also reducing computational expense. In addition, dimension reduction algorithms
are usually applied, such as PCA which could be realized by Karhunen–Loeve transform (KLT) [29,30]
generating orthogonal and independent feature vectors of the original data. By taking eigenvectors
with the former largest eigenvalues to construct a transform matrix, the important features (then
called ‘principal components’) [19] are selected with dimensionality reduction and having great
explanation ability to the original data matrix. Thus, PCA is widely used for dimensional reduction
and for de-noising.

2.2. Regression Analysis

Based on the pre-processed data, one may then focus on establishing predictive models for
qualitative analysis (i.e., classification) and/or quantitative analysis (i.e., regression) of unknown
samples. Since the prediction of the component concentration (i.e., quantitative analysis) is the focus of
the present study, only regression modelling is considered in the following. Given the wide variety of
applicable regression models including SLR, MLR, PCR, PLSR, SVR, NN, etc. [18], PCR and PLSR are
considered among the most useful ones for the analysis of IR gas phase spectra.

2.2.1. PCR

PCR is a linear regression model based on PCA [31]. Compared with SLR/MLR using the most
important variables in the original feature matrix directly, PCR regresses the target based on the
principal components of the feature matrix, namely, transformed features, which may then be used to
reproduce the original data. The expression of a PCR model is as follows:

X = SX · FX + EX (1)

Y = SX ·C + E (2)

whereby Equation (1) is the expression of PCA decomposition; X is the original spectral matrix; and FX

and SX represent the loadings and score matrix of X, respectively. Equation (2) is the final regression
model, where Y represents the concentration matrix in gas mixtures; C is the regression coefficient
matrix; and EX and E represent residual errors in the two equations.

2.2.2. PLSR

PLSR model is another useful model for the quantitative analysis of complex spectra. Different
from PCR, PLSR extracts latent variables of both the original spectrum X and the target Y, and then
constructs the regression model between latent variables. The PLS models are implemented as follows:

(1) Extracting latent variables
Y = SY · FY + EY (3)
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The latent variables of X are still extracted via Equation (1), and those of Y are extracted via
Equation (3) whereby FY and SY represent the loadings and score matrix respectively, and EY is the
residual error matrix.

(2) Modelling the regression relationship

Assuming that these two latent variable matrices (SX and SY) are correlated to each other, then
one may construct a regression model describing this relationship as:

SY = SX ·C+E (4)

whereby C is the matrix reflecting the regression coefficients between SX and SY, and E is the residual
error. From the description above, it is evident that the aim of PLS modelling is to decompose both X
and Y into two loadings and scores matrices, and build a regression model between the score matrices
of X and Y with maximum covariance.

Based on the PCR and PLSR described in Equations (2)–(4), it is evident that these two models are
linear in describing the relationship between concentration and spectral signals, and that by using
the obtained regression coefficients one may predict the concentration of a gas component of interest
within an unknown sample.

2.3. Evaluation Metrics

Next to establishing a useful model, it is essential evaluating the performance of regression
models via appropriate evaluation metrics. A wide variety of metrics are defined for regression
and prediction analysis [27], e.g., regression error metrics like root mean square error (RMSE), mean
absolute percentage error (MAPE), mean absolute error (MAE), and other correlation metrics like the
coefficient of determination values (R2). Considering that conventional error metrics are generally
correlated, they are all expected to be close to 0 for well-performing regression models. R2 describes
how the variance of the dependent variable is influenced by the independent variable(s). Hence,
the independent variables are regarded as significantly important when the value of R2 is close to
1. Therefore, in this study two typical metrics were selected, namely RMSE and R2 for evaluating
performance of quantitative analysis.

RMSE =

√∑n
i=1 (yi − ŷi)

2

n
(5)

R2 = 1−
SSres

SStot
,

 SSres =
∑n

i=1 (yi − ŷi)
2

SStot =
∑n

i=1 (yi − yi)
2 (6)

whereby yi and ŷi represent the ith measured and predicted concentration of the given gas component,
and n is the number of gas samples.

3. ELM-AE-Based Regression Model (ELM-AE-R)

In this study, we propose an advanced regression model based on ELM and ELM-AE, as described
in detail below.

3.1. ELM Architecture

ELM was developed by Huang et al. [32] based on the architecture of single hidden layer
feed forward networks (SLFNs). This novel machine learning algorithm has been successfully
employed in a wide variety of fields, e.g., feature learning, dimension reduction, classification, and
regression. Compared with conventional neural networks, its success mainly results from the following
three aspects.
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(1) With randomly generated weights in the input layer, ELM shows excellent generalization
performance, and lends itself to real-world application scenarios.

(2) Compared with conventional neural networks whose parameters, e.g., learning rate, learning
epochs, and local minima are tuned iteratively, ELM fixes the input weights to obtain extremely
fast learning speed.

(3) ELM can be easily implemented to achieve both the smallest training error and the smallest norm
of weights.

According to the topological structure of SLFNs, a generic ELM network can be constructed.
Assuming there are N data samples (xi, ti), where xi = [xi,1, xi,2, . . . , xi,c] ∈ Rc is the input vector and ti
is the target, then the ELM network with L hidden nodes can be modelled as follows:

oi =
L∑

k=1

βkgk(xi) =
L∑

k=1

βkg(xi ·wk + bk); i = 1, 2, · · ·N; (7)

where, W = [w1, w2, . . . , wL] is the weight matrix between input layer and hidden layer; b = [b1, b2,
. . . , bL] is the bias vector; g(*) is the active function which could be linear or nonlinear; β = [β1, β2, . . . ,
βL]T is the output weight matrix; oi is the ith ELM output. By transforming the above formula into
matrix form, Equation (7) is rewritten as below.

O=Hβ (8)

where, O = [o1, o2, . . . , oN]T is the final output matrix; H is the hidden layer output matrix, expressed as

H =


g(x1 ·w1 + b1) · · · g(x1 ·wL + bL)

...
. . .

...
g(xN ·w1 + b1) · · · g(xN ·wL + bL)


N×L

(9)

To train the optimal ELM network, we assume the objective is to minimize the error between
model outputs and targets, expressed as

Minimize ‖O− T‖2 =
N∑

i=1

‖oi − ti‖
2 (10)

where, T = [t1, t2, . . . , tN]T is the target matrix. By plugging Equation (8) into the objective function
Equation (10) and adopting the least square method for solution, the output weights β can be calculated
as the follows:

min
β
‖Hβ-T‖2 → β=H†T (11)

where H† is the Moore-Penrose generalized inverse of the hidden layer output H, that can be calculated
as H† = (HTH)−1HT.

3.2. ELM-AE

Based on the description of modelling ELM networks, if we set the target T = X, then ELM becomes
a self-learning network as auto-encoder (AE) [33], which is called ELM-based auto-encoder (ELM-AE).
Conventional AEs are formed by a pair of encoder and decoder: the encoder for new features learning,
and the decoder for feature reconstruction, such that the new ELM-AE can be constructed as shown in
Figure 1.
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Figure 1. Architecture of the proposed extreme learning machine-based auto-encoder (ELM-AE).

It is evident from Figure 1 that there is a single hidden layer in ELM-AE, which has randomly
generated weights and biases for encoding. Therefore, the hidden outputs (encoder outputs) of a given
data x can be expressed as

h(x) = [h1(x), · · · , hL(x)] = [g(〈a1, x〉+ b1), · · · , g(〈aL, x〉+ bL)] (12)

To improve the generalization performance of ELM-AE, these randomly generated parameters A
and b are usually chosen to be orthogonal, {

ATA=I
bTb = 1

(13)

Via these orthogonal random parameters, the Euclidean information of input data is retained by
ELM-AE, as described in Johnson–Lindenstrauss Lemma [34].

Then, as the description of AE, one can re-represent the original feature space through the decoders
of ELM-AE. As ELM is a universal approximator, the output layer (decoder) of ELM-AE can be utilized
to approximate any given function. According to the description above, the objective of ELM-AE
decoder is to retain the information of input features as more as possible, i.e., approximating the
original input, namely T = X. Therefore, the objective function in (11) can be expressed as:

Minimize
βAE

:
∣∣∣∣∣∣HβAE −X

∣∣∣∣∣∣2 (14)

where, βAE is the output weights; H is the hidden layer matrix consisting of h(x) in ELM-AE. According
to the assumption of zero bias (bi = 0), the output weights βAE could be simply calculated through (11).
Then, the new architecture of ELM-AE is constructed based on the randomly generated parameters
(A, b) and the optimal output parameters βAE.

While, considering that the purpose of AE is to learn features as described above, one may utilize
the optimal output weights βAE to construct a new network for feature representation, as shown in
Figure 1. The final representation of the original data is then expressed as

Xnew = XβT
AE (15)

where, Xnew represents the newly learned features which can replace the original data for future analysis.
On the other hand, by setting different values of L, we can see from (15) that ELM-AE can project

the input data into a higher (L > m), equal (L = m) or lower (L < m) dimension space of Xnew. Especially,
if L < m, ELM-AE also can be utilized for dimension reduction analysis such as PCA.
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3.3. ELM-AE-R for Quantitative Analysis of IR Spectra

According to the description above, by capitalizing on the advantages of ELM-AE and its
pronounced feature learning and dimension reduction ability, one can also resemble the utility of PCA
in spectroscopic gas sensing. As the ELM architecture offers fast computation speeds for large data
sets, as well as linear and nonlinear learning abilities, we propose herein a new ELM-based model for
quantitative IR spectra analysis, as shown in Figure 2.
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Figure 2. Framework of the proposed model for quantitative IR spectra analysis.

In Figure 2 it is illustrated that the framework of the proposed quantitative analysis contains
two parts: feature selection and regression. In the first part, we propose to utilize ELM-AE for
feature selection given the complexity of IR spectra across a broad wavelength regime, especially
in high-resolution laser spectroscopies. This situation requires dimensionality reduction for input
data facilitated by a feature selection process. Compared with conventional spectra analysis using
PCA for dimension reduction, the proposed ELM-AE can not only realize dimension reduction while
satisfying L < m, but simultaneously learns features within the original data matrix. Furthermore, for
achieving high performance at calculating the concentration of gas components, some modifications
of the generic ELM-AE are considered in this study. One modification targets the selection of the
active function in hidden layers of ELM-AE. PCR and PLSR both perform well in a linear data space.
Therefore, it is worthwhile also in ELM-AE using linear functions for the active function g(*). The
other modification concerns the input parameters A. Different from generic ELM-AE using randomly
generated parameters, during the present study the parameter matrix A was generated in a supervised
way following:

A = Orthogonalize(Para);{
Para = [X†Y, Rm];
ATA=I

(16)

where X and Y are the original spectral data and concentration matrix, X†Y reflects the correlation
between input and output, and Rm is randomly generated matrix. By initializing the parameter matrix
A via (16), the finally learned features in ELM-AE offer substantial self-learning abilities in PCR, and
target-learning abilities in PLSR. Finally, as described in Figure 2 the second part was to realize the
regression analysis. Considering that ELM may equally well perform regressions, the ELM architecture
was directly adapted also to regression analysis.

4. Experiments

4.1. Generation of Simulated Data

To study the performance of the proposed approach in calculating gas concentrations, in a first
step simulated spectral datasets were used. In this study, three gas components—N2O, NO2 and
NO—were targeted for quantitative analysis. To obtain simulated datasets, pure gas spectra were
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calculated based on the HITRAN Database [35]. Then, a simulated spectrum of a mixture of gases was
generated by adding pure spectra of the constituents with different multiplication factors.

Considering the standard spectra in HITRAN are calculated per mol, the concentration of gas
components in the simulated datasets are also expressed by the number of molecules. By assuming
the wavelength range 0–4000 cm−1 as the spectral range of interest at a spectral resolution of 1 cm−1,
60 simulated mixture sample spectra of N2O/NO2/NO were generated serving as the training dataset.
In order to make these training samples discriminative, the concentration of three components were
set in the range from 10 mol to 90 mol in increments of 20 mol; all three components had therefore
different concentrations in any given mixture sample (Table 1 and Figure 3).

Table 1. Concentration of gas components in the training dataset.

NO/mol NO2/mol N2O/mol

1 10 30 50
2 10 50 30
3 30 10 50
4 30 50 10
5 50 10 30
6 50 30 10
...

...
...

...
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Table 1 summarizes the concentration of gas components N2O/NO2/NO in the training mixture
samples, while Figure 3 shows selected simulated spectra (i.e., six selected examples) from the
training dataset.

4.2. Analysis on Simulated Data

To calculate the concentration of the gas components, one needs to build regression models. Here,
three models (PCR, PLSR, and the proposed ELM-AE-R) were compared. First, the simulated datasets
were considered for evaluating the feature selection process along with dimensionality reduction prior
to the regression analysis.
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Figure 4 shows the feature loadings of the three investigated regression models. For PCR and
PLSR, the loadings were the principle components. For ELM-AE-R, the loadings were the learned
feature vectors. Based on these feature loadings, latent variables of spectral signals could be calculated.
Then, three regression models were constructed according to the description in Section 2.3.
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Figure 4. Feature loadings in the three investigated models; (a) principle components regression
(PCR); (b) partial least square regression (PLSR); (c) ELM-AE-based regression (ELM-AE-R). Here, PCi

means the ith most important principle component, and Ci means the ith feature component learned
by ELM-AE.

To discuss the performance of the constructed models, 40 samples of NO/NO2/N2O mixtures
with random concentrations were separately generated based on standard spectra in HITRAN. The
results of the regression analysis on predicting the concentrations of the gas components in these quasi
unknown samples are shown in Figure 5. It is immediately evident that the data points fall on the red
line indicating ideal prediction. These ideal results are expected, as simulated data are free from noise
or interferences. Consequently, the performance of the three models was also identical.
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Figure 5. Results of the regression analysis for simulated quasi unknown spectra.

4.3. Actual Spectra Collection and Processing

To collect real spectra, Fourier transform infrared (FTIR) spectroscopy was used in combination
with substrate-integrated hollow waveguide (iHWG) technology simultaneously serving as highly
efficient gas cell [36–38]. Compared with other sensor technologies such as electrochemical and
semi-conductor-based devices, IR spectroscopy/sensing enables monitoring multiple gas components
even in complex mixtures. In essence, IR techniques operating in the 3–15 µm (i.e., mid-infrared)
wavelength band are capable of distinguishing polyatomic and hetero-nuclear diatomic molecules
providing a unique “fingerprint” for each component within mixture IR spectra [39], as shown herein
for the absorption spectra of mixtures of N2O/NO2/NO.

Using the IR sensing configuration shown in Figure 6, spectral data of 356 N2O/NO2/NO mixtures
were collected across a wide variety of concentrations. Figure 7 shows selected exemplary spectra.
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Figure 6. IR gas sensing system. (a) schematic; (b) physical device: 1) HgCdTe detector (FTIR-16−2.00
MSL-12, InfraRed Associates Inc., Stuart, FL, USA; kept at 77 K via liquid nitrogen; 2) iHWGs (fabricated
from either brass or aluminum. The assembled iHWGs had dimensions of 250 × 25 × 20 mm3 or
150 × 25 × 20 mm3 (L × W × H); 3) Compact FT-IR spectrometer (Alpha OEM, Bruker Optics Inc.,
Ettlingen, Germany).
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Figure 7. Examples of experimentally collected IR spectra.

The collected wavelength range was 1000–4000 cm−1. It is evident from Figure 7 that the raw IR
spectra are affected by several parameters including, e.g., baseline drifts, background signals, noise,
molecular interferants such as CO2, etc. Therefore, data pre-processing is required to obtain useful
input data for the regression analysis including baseline correction. In this study, asymmetric least
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squares smoothing (ALS) was applied [40]. ALS aims at obtaining a smooth baseline, which follows
the main baseline trend of the original spectrum. The objective function of ALS is defined as:

S =
n∑

i=1

αi(yi − yb,i)
2 + λ

n−1∑
i=1

[(yb,i+1 − yb,i)−(yb,i − yb,i−1)]
2 (17)

where y is the original spectra signal; yb is the calculated baseline; n is the number of spectral elements;
αi is the weight for the ith point in spectrum; and λ is a balance factor, whose values generally are
set as 102 < λ < 109. By minimizing the objective function in Equation (17), one may extract a useful
baseline for correction, as shown in Figure 8.Sensors 2020, 20, x FOR PEER REVIEW 12 of 20 
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Figure 8. Baseline correction shown for an exemplary IR spectrum recorded during the present study.
(a) original spectrum; (b) spectrum after baseline correction.

Figure 8 shows IR spectra of an exemplary dataset for a mixture of N2O (30 ppm), NO2 (100 ppm),
and NO (600 ppm) before and after baseline correction. All collected spectra were then processed by
ALS prior to the regression analysis.

4.4. Regression Analysis and Concentration Prediction of Measurd Spectra

To construct a regression model analysing the concentration of gas components, the dataset was
divided into a training dataset for modelling, and a test dataset for evaluation, i.e., 189 and 167 samples,
respectively. Feature selection and dimension reduction were implemented before modelling to
reduce computational cost. Again, the performance of PCR, PLSR, and the proposed ELM-AE-R
were compared.

Figure 9 depicts the feature loadings of the three regression models. Three principle components
were selected in PCR and PLSR, while the number of nodes in the hidden layer of ELM-AE was
also set as three. Based on the feature loadings evident in Figure 9, latent variables for training data
were calculated, and three regression models were established. The performance of predicting the
concentration of the three gas components in the test data set is shown in Figures 10 and 11.
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Figure 9. Feature loadings for the three models. (a) PCR; (b) PLSR; (c) ELM-AE-R.
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Figures 10 and 11 illustrate the performance of predicting concentrations for the training and
the test dataset, respectively. The diagonal red line represents an ideal prediction; conversely, points
located close to the diagonal line indicate better performance. It is evident that all models perform
better on predicting the concentration of N2O and NO2 vs. NO. In order to quantitatively discuss the
performance of these models, RMSE and R2 were calculated and summarized in Table 2.

Table 2. Results of evaluation metrics during regression analysis (three PCs).

Training Data RMSE R2

N2O NO2 NO N2O NO2 NO

PCR 2.2417 17.6933 99.5121 0.9716 0.9819 0.5335
PLSR 3.2259 18.0488 44.0656 0.9413 0.9812 0.9085

ELM-AE-R 1.7082 18.5939 89.4675 0.9835 0.9801 0.6229

Testing Data RMSE R2

N2O NO2 NO N2O NO2 NO

PCR 2.2966 14.3814 121.2787 0.9900 0.9823 0.6129
PLSR 3.2336 14.3355 86.3352 0.9803 0.9824 0.8038

ELM-AE-R 1.8801 14.5293 74.5609 0.9933 0.9819 0.8537

From the results in Table 2, determining the best performing model is not immediately evident.
To analyse the relative performance of the proposed ELM-AE-R, the improvement coefficient [41] was
calculated as a percentage vs. PCR and PLSR serving as references, respectively. The improvement
coefficient of RMSE is defined as:

I =
Ere f − E

Ere f
× 100% (18)
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where I represents the improvement coefficient. For I > 0, the ELM-AE-R outperforms the reference
model; if I < 0, the ELM-AE-R is worse than PCR or PLSR. For R2, the improvement coefficient could
be determined by the difference vs. the reference model, which results in the degree of improvement
of ELM-AE-R vs. PCR and PLSR as summarized in Table 3.

Table 3. Relative improvement coefficients of ELM-AE-R vs. PCR and PLSR.

ELM-AE-R vs. PCR ELM-AE-R vs. PLSR

Training Testing Training Testing

RMSE 9.60% 18.54% −19.67% 18.05%
R2 3.32% 8.12% −8.15% 2.08%

The results in Table 3 show that PLSR performs best on the training data, however, the proposed
ELM-AE-R outperformed both PCR and PLSR on the test dataset, which corresponds to the real-world
scenario of an unknown sample containing the three components. Moreover, the improvement
coefficients of ELM-AE-R vs. PCR were larger than of ELM-AE-R vs. PLSR implying that ELM-AE-R
performed best, while PLSR performed still better than PCR.

4.5. Improvement Analysis

The regression analysis discussed in Section 4.4 is not perfect, as using only three principal
components (PCs) may lead to a loss in information. In order to improve the performance, in a next step
more principle components were extracted and the number of PCs used for modelling was optimized.

In Figure 12a, the contribution of an increasing number of PCs in PCA is shown. In Figure 12b, the
average regression error of the three models with increasing number of PCs is shown. While RMSEs of
predicting different gas components have different magnitudes, the average of these RMSEs directly
will hide the influence of good prediction models, e.g., that of N2O herein. Therefore, we propose to
use MAPE to calculate the average regression error, which keeps the same variance trend as RMSE.
According to results in Figure 12b, one may derive that predictive errors in PCR decreased with the
number of PCs, yet remained constant beyond eight PCs. PLSR showed the best nominal performance
if 17 PCs were selected. The proposed ELM-AE-R achieved the smallest regression error using around
11 PCs. It is again obvious that ELM-AE-R outperformed PCR and PLSR in most cases, and that PLSR
outperformed PCR. Considering less PCs (not enough features) and more PCs (may introduce noise)
were not suitable in modelling; using 11 PCs for modelling the target analyzes appeared most suitable.
The corresponding results of the regression analysis are shown in Figures 13 and 14.
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Figure 13. Performance of the regression analysis for the training dataset using 11 PCs.
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Figure 14. Performance of the regression analysis for the test dataset using 11 PCs.

Figures 13 and 14 show the performance of the three models for predicting the concentration of
the three gas components. Evidently, all models perform better on training data and test data vs. using
only three PCs (cf. Figures 10 and 11). The performance values are summarized in Table 4.
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Table 4. Results of evaluation metrics during regression analysis (11 PCs).

Training Data RMSE R2

N2O NO2 NO N2O NO2 NO

PCR 0.7841 12.9753 18.1921 0.9965 0.9903 0.9844
PLSR 0.8372 7.95820 12.3824 0.9960 0.9963 0.9912

ELM-AE-R 0.8000 10.2871 13.3505 0.9964 0.9950 0.9916

Testing Data RMSE R2

N2O NO2 NO N2O NO2 NO

PCR 0.8533 19.3015 59.1022 0.9986 0.9681 0.9081
PLSR 0.9415 31.0466 24.8107 0.9983 0.9176 0.9838

ELM-AE-R 0.9529 16.5519 23.1046 0.9983 0.9766 0.9860

When using 11 PCs, PCR performed well when predicting the concentration of N2O. ELM-AE-R
achieved excellent performance on the test dataset, while PLSR had advantages on the training process,
yet, remained less robust vs. ELM-AE-R when evaluating test data. To comprehensively analyse the
performance of the proposed ELM-AE-R model, averages of the relative improvement coefficients
were again calculated by taking PCR and PLSR as reference respectively. On the training dataset, the
average improvement coefficients of ELM-AE-R compared to PCR and PLSR on RMSE were 15.10%
and −10.88%, and on R2 0.39% and −0.02%. On the test dataset, ELM-AE-R outperformed PCR and
PLSR at 21.16% and 17.45% on RMSE, respectively, and at 2.87% and 2.04% on R2. These results
illustrated that the proposed ELM-AE-R indeed achieves a better overall performance vs. PCR and
PLSR for quantitative IR spectral data analysis, and represents an excellent alternative vs. conventional
multivariate data evaluation techniques in complex gas sensing scenarios.

5. Conclusions

In this study, an innovative ELM-based regression model is proposed for the quantitative analysis
of infrared spectra obtained via sensing gas mixtures. An ELM-based autoencoder has been applied
for feature selection. Compared with conventional feature selection methods based on PCA, ELM-AE
achieves both dimension reduction and simultaneous feature learning abilities. Then, by using the
reduced features from ELM-AE, an ELM-based regression model was established and tested using
simulated IR spectra as well as experimentally obtained data for a mixture of three gases —N2O, NO2,
and NO, respectively. The proposed ELM-AE-R has demonstrated good comprehensive performance
with particular benefit of improved robustness when predicting concentrations of the three target
gas components. When compared with PCR using PCA for dimension reduction, both PLSR and the
proposed ELM-AE-R learned dimensionality-reduced features via supervised learning toward to the
target, so they can achieve better performance than PCR. On the other hand, ELM-AE-R have the
learning ability of generating quantities of potential features, but PLSR cannot, therefore the proposed
model could be robust to reach the best regression accuracy in all models.

However, besides the above contributions achieved in this paper, some potential issues are worth
for studying. For example, how and where to apply the proposed model. Making use of gas sensing
technologies could benefit a lot to our industries and society, e.g., applying the research in this paper
for measurement of vehicle exhaust. Moreover, from the perspective of algorithms, how to improve
model’s stability is also important, since random projection would be hidden bugs weakening the
prediction performance. Therefore, more work could be executed in our following study.

Author Contributions: T.O. completed the writing the original draft and data analysis; C.W. and Z.Y. completed
experiments and data collection. R.S. contributed to experimental design. G.-B.H. and Q.-J.W. were responsible
for supervision and methodology; B.M. was responsible for IR-iHWG sensing technology, and along with B.L.
reviewed the results and edited the manuscript.



Sensors 2019, 19, 5535 18 of 20

Funding: This work is supported by funding from National Research Foundation, Competitive Research Program
(NRF-CRP18-2017-02).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sun, Y.F.; Liu, S.B.; Meng, F.L.; Liu, J.Y.; Jin, Z.; Kong, L.T.; Liu, J.H. Metal oxide nanostructures and their gas
sensing properties: A review. Sensors 2012, 12, 2610–2631. [CrossRef] [PubMed]

2. Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A survey on gas sensing technology. Sensors 2012,
12, 9635–9665. [CrossRef] [PubMed]

3. Haas, J.; Mizaikoff, B. Advances in mid-infrared spectroscopy for chemical analysis. Annu. Rev. Anal. Chem.
2016, 9, 45–68. [CrossRef] [PubMed]

4. Liana, D.D.; Raguse, B.; Gooding, J.J.; Chow, E. Recent advances in paper-based sensors. Sensors 2012,
12, 11505–11526. [CrossRef] [PubMed]

5. Tedford, C.E.; DeLapp, S.; Jacques, S.; Anders, J. Quantitative analysis of transcranial and intraparenchymal
light penetration in human cadaver brain tissue. Lasers Surg. Med. 2015, 47, 312–322. [CrossRef] [PubMed]

6. Fonollosa, J.; Rodríguez-Luján, I.; Trincavelli, M.; Vergara, A.; Huerta, R. Chemical discrimination in
turbulent gas mixtures with mox sensors validated by gas chromatography-mass spectrometry. Sensors 2014,
14, 19336–19353. [CrossRef] [PubMed]

7. Eranna, G. Metal Oxide Nanostructures as Gas Sensing Devices; CRC Press: Boca Raton, FL, USA, 2016.
8. Bernardoni, F.; Halsey, H.M.; Hartman, R.; Nowak, T.; Regalado, E.L. Generic gas chromatography flame

ionization detection method using hydrogen as the carrier gas for the analysis of solvents in pharmaceuticals.
J. Pharm. Biomed. Anal. 2019, 165, 366–373. [CrossRef]

9. Rodriguez-Saona, L.E.; Giusti, M.M.; Shotts, M. Advances in infrared spectroscopy for food authenticity
testing. In Advances in Food Authenticity Testing; Woodhead Publishing: Sawston, UK; Cambridge, UK, 2016;
pp. 71–116.

10. Haghi, R.K.; Yang, J.; Tohidi, B. Fourier Transform Near-Infrared (FTNIR) Spectroscopy and Partial
Least-Squares (PLS) Algorithm for Monitoring Compositional Changes in Hydrocarbon Gases under In Situ
Pressure. Energy Fuels 2017, 31, 10245–10259. [CrossRef]

11. Via, B.; Zhou, C.; Acquah, G.; Jiang, W.; Eckhardt, L. Near infrared spectroscopy calibration for wood chemistry:
Which chemometric technique is best for prediction and interpretation. Sensors 2014, 14, 13532–13547.
[CrossRef]

12. Lakowicz, J.R. Topics in Fluorescence Spectroscopy: Probe Design and Chemical Sensing; Springer Science and
Business Media: Berlin/Heidelberg, Germany, 1994; Volume 4.

13. Swinehart, D.F. The beer-lambert law. J. Chem. Educ. 1962, 39, 333. [CrossRef]
14. Ayyalasomayajula, K.K.; Yu-Yueh, F.; Singh, J.P.; McIntyre, D.L.; Jain, J. Application of laser-induced

breakdown spectroscopy for total carbon quantification in soil samples. Appl. Opt. 2012, 51, B149–B154.
[CrossRef] [PubMed]

15. Chen, T.B.; Yao, M.Y.; Liu, M.H.; Lin, Y.Z.; Li, W.B.; Zheng, M.L.; Zhou, H.M. Quantitative Analysis of Laser
Induced Breakdown Spectroscopy of Pb in Navel Orange Based on Multivariate Calibration. Acta Phys. Sin.
2014, 63, 104213.

16. Cama-Moncunill, R.; Casado-Gavalda, M.P.; Cama-Moncunill, X.; Markiewicz-Keszycka, M.; Dixit, Y.;
Cullen, P.J.; Sullivan, C. Quantification of trace metals in infant formula premixes using laser-induced
breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2017, 135, 6–14. [CrossRef]

17. Nicolodelli, G.; Romano, R.A.; Senesi, G.S.; Cabral, J.; Watanabe, A.; Telli, S.; Milori, D.M. Evaluation of
Nitrogen Fertilization in Sugarcane Leaves Using Laser-Induced Breakdown Spectroscopy (LIBS) Coupled
with Principal Component Analysis (PCA). In Proceedings of the Latin America Optics and Photonics
Conference, Lima, Peru, 12–15 November 2018.

18. Wang, H.; Peng, J.; Xie, C.; Bao, Y.; He, Y. Fruit quality evaluation using spectroscopy technology: A review.
Sensors 2015, 15, 11889–11927. [CrossRef] [PubMed]

19. Ye, Q.; Spencer, P. Analyses of material-tissue interfaces by Fourier transform infrared, Raman spectroscopy,
and chemometrics. In Material-Tissue Interfacial Phenomena; Woodhead Publishing: Sawston, UK; Cambridge,
UK, 2017; pp. 231–251.

http://dx.doi.org/10.3390/s120302610
http://www.ncbi.nlm.nih.gov/pubmed/22736968
http://dx.doi.org/10.3390/s120709635
http://www.ncbi.nlm.nih.gov/pubmed/23012563
http://dx.doi.org/10.1146/annurev-anchem-071015-041507
http://www.ncbi.nlm.nih.gov/pubmed/27070183
http://dx.doi.org/10.3390/s120911505
http://www.ncbi.nlm.nih.gov/pubmed/23112667
http://dx.doi.org/10.1002/lsm.22343
http://www.ncbi.nlm.nih.gov/pubmed/25772014
http://dx.doi.org/10.3390/s141019336
http://www.ncbi.nlm.nih.gov/pubmed/25325339
http://dx.doi.org/10.1016/j.jpba.2018.12.006
http://dx.doi.org/10.1021/acs.energyfuels.7b01677
http://dx.doi.org/10.3390/s140813532
http://dx.doi.org/10.1021/ed039p333
http://dx.doi.org/10.1364/AO.51.00B149
http://www.ncbi.nlm.nih.gov/pubmed/22410913
http://dx.doi.org/10.1016/j.sab.2017.06.014
http://dx.doi.org/10.3390/s150511889
http://www.ncbi.nlm.nih.gov/pubmed/26007736


Sensors 2019, 19, 5535 19 of 20

20. Mahesh, S.; Jayas, D.S.; Paliwal, J.; White, N.D.G. Comparison of partial least squares regression (PLSR) and
principal components regression (PCR) methods for protein and hardness predictions using the near-infrared
(NIR) hyperspectral images of bulk samples of Canadian wheat. Food Bioprocess Technol. 2015, 8, 31–40.
[CrossRef]

21. Singh, M.; Sarkar, A. Comparative Study of the PLSR and PCR Methods in Laser-Induced Breakdown
Spectroscopic Analysis. J. Appl. Spectrosc. 2018, 85, 962–970. [CrossRef]

22. Niu, G.; Shi, Q.; Yuan, X.; Wang, J.; Wang, X.; Duan, Y. Combination of support vector regression (SVR)
and microwave plasma atomic emission spectrometry (MWP-AES) for quantitative elemental analysis in
solid samples using the continuous direct solid sampling (CDSS) technique. J. Anal. At. Spectrom. 2018,
33, 1954–1961. [CrossRef]

23. Moncayo, S.; Manzoor, S.; Rosales, J.D.; Anzano, J.; Caceres, J.O. Qualitative and quantitative analysis of
milk for the detection of adulteration by Laser Induced Breakdown Spectroscopy (LIBS). Food Chem. 2017,
232, 322–328. [CrossRef]

24. Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and multiclass
classification. IEEE Trans. Syst. Man Cybern. Part B 2011, 42, 513–529. [CrossRef]

25. Ouyang, T.; He, Y.; Huang, H. Monitoring Wind Turbines’ Unhealthy Status: A Data-Driven Approach.
IEEE Trans. Emerg. Top. Comput. Intell. 2018, 3, 163–172. [CrossRef]

26. Kasun, L.L.C.; Yang, Y.; Huang, G.B.; Zhang, Z. Dimension reduction with extreme learning machine.
IEEE Trans. Image Process. 2016, 25, 3906–3918. [CrossRef] [PubMed]

27. Torrione, P.; Collins, L.M.; Morton, K.D., Jr. Multivariate analysis, chemometrics, and machine learning in
laser spectroscopy. In Laser Spectroscopy for Sensing; Woodhead Publishing: Sawston, UK; Cambridge, UK,
2014; pp. 125–164.

28. Li, Z.; Deen, M.J.; Kumar, S.; Selvaganapathy, P.R. Raman spectroscopy for in-line water quality
monitoring—Instrumentation and potential. Sensors 2014, 14, 17275–17303. [CrossRef] [PubMed]

29. Biagetti, G.; Crippa, P.; Falaschetti, L.; Orcioni, S.; Turchetti, C. Multivariate direction scoring for
dimensionality reduction in classification problems. In Proceedings of the International Conference
on Intelligent Decision Technologies, Puerto de la Cruz, Spain, 15–17 June 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 413–423.

30. Gianfelici, F.; Biagetti, G.; Crippa, P.; Turchetti, C. A novel KLT algorithm optimized for small signal sets.
In Proceedings of the (ICASSP’05) IEEE International Conference on Acoustics, Speech, and Signal Processing,
Philadelphia, PA, USA, 23 March 2005.

31. Haney, R.; Siddiqui, N.; Andress, J.; Fergus, J.; Overfelt, R.; Prorok, B. Principal Component Analysis
(PCA) Application to FTIR Spectroscopy Data of CO/CO2 Contaminants of Air. In Proceedings of the 41st
International Conference on Environmental Systems, Portland, OR, USA, 17–21 July 2011; p. 5091.

32. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing
2006, 70, 489–501. [CrossRef]

33. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006,
313, 504–507. [CrossRef]

34. Kasun, L.L.C.; Zhou, H.; Huang, G.B.; Vong, C.M. Representational learning with extreme learning machine
for big data. IEEE Intell. Syst. 2013, 28, 31–34.

35. High-Resolution Spectral Modeling. Available online: https://www.spectralcalc.com/spectral_browser/db_
data.php (accessed on 20 November 2019).

36. Tütüncü, E.; Nägele, M.; Fuchs, P.; Fischer, M.; Mizaikoff, B. iHWG-ICL: Methane sensing with
substrate-integrated hollow waveguides directly coupled to interband cascade lasers. ACS Sens. 2016,
1, 847–851. [CrossRef]

37. Wilk, A.; Carter, J.C.; Chrisp, M.; Manuel, A.M.; Mirkarimi, P.; Alameda, J.B.; Mizaikoff, B. Substrate-integrated
hollow waveguides: A new level of integration in mid-infrared gas sensing. Anal. Chem. 2013, 85, 11205–11210.
[CrossRef]

38. Da Silveira Petruci, J.F.; Fortes, P.R.; Kokoric, V.; Wilk, A.; Raimundo, I.M.; Cardoso, A.A.; Mizaikoff, B.
Monitoring of hydrogen sulfide via substrate-integrated hollow waveguide mid-infrared sensors in real-time.
Analyst 2014, 139, 198–203. [CrossRef]

39. Jackson, M.; Mantsch, H.H. The use and misuse of FTIR spectroscopy in the determination of protein
structure. Crit. Rev. Biochem. Mol. Boil. 1995, 30, 95–120. [CrossRef]

http://dx.doi.org/10.1007/s11947-014-1381-z
http://dx.doi.org/10.1007/s10812-018-0746-x
http://dx.doi.org/10.1039/C8JA00219C
http://dx.doi.org/10.1016/j.foodchem.2017.04.017
http://dx.doi.org/10.1109/TSMCB.2011.2168604
http://dx.doi.org/10.1109/TETCI.2018.2872036
http://dx.doi.org/10.1109/TIP.2016.2570569
http://www.ncbi.nlm.nih.gov/pubmed/27214902
http://dx.doi.org/10.3390/s140917275
http://www.ncbi.nlm.nih.gov/pubmed/25230309
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1126/science.1127647
https://www.spectralcalc.com/spectral_browser/db_data.php
https://www.spectralcalc.com/spectral_browser/db_data.php
http://dx.doi.org/10.1021/acssensors.6b00238
http://dx.doi.org/10.1021/ac402391m
http://dx.doi.org/10.1039/C3AN01793A
http://dx.doi.org/10.3109/10409239509085140


Sensors 2019, 19, 5535 20 of 20

40. Eilers, P.H.C.; Boelens, H.F.M. Baseline Correction with Asymmetric Least Squares Smoothing. Leiden Univ.
Med. Centre Rep. 2005, 1, 5.

41. Ouyang, T.; Zha, X.; Qin, L.; He, Y.; Tang, Z. Prediction of wind power ramp events based on residual
correction. Renew. Energy 2019, 136, 781–792. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.renene.2019.01.049
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background Knowledge 
	Data Pre-Processing 
	Regression Analysis 
	PCR 
	PLSR 

	Evaluation Metrics 

	ELM-AE-Based Regression Model (ELM-AE-R) 
	ELM Architecture 
	ELM-AE 
	ELM-AE-R for Quantitative Analysis of IR Spectra 

	Experiments 
	Generation of Simulated Data 
	Analysis on Simulated Data 
	Actual Spectra Collection and Processing 
	Regression Analysis and Concentration Prediction of Measurd Spectra 
	Improvement Analysis 

	Conclusions 
	References

