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Abstract: This article discusses various approaches to the control of autonomous underwater vehicles
(AUVs) with the aid of different velocity-position estimation algorithms. Traditionally this field is
considered as the area of the extended Kalman filter (EKF) application: It became a universal tool
for nonlinear observation models and its use is ubiquitous. Meanwhile, the specific characteristics
of underwater navigation, such as an incomplete sets of measurements, constraints on the range
metering or even impossibility of range measurements, observations provided by rather specific
acoustic beacons, sonar observations, and other features seriously narrow the applicability of common
instruments due to a high level of uncertainty and nonlinearity. The AUV navigation system, not being
able to rely on a single source of position estimation, has to take into account all available information.
This leads to the necessity of various complex estimation and data fusion algorithms, which are
the matter of the present article. Here we discuss some approaches to the AUV position estimation
such as conditionally minimax nonlinear filtering (CMNF) and unbiased pseudo-measurement
filters (UPMFs) in conjunction with velocity estimation based on the seabed profile acoustic sensing.
The presented estimation algorithms serve as a basis for a locally optimal AUV motion control
algorithm, which is also presented.

Keywords: AUV navigation; position estimation; motion control; conditionally minimax nonlinear
filtering; pseudo-measurements

1. Introduction

Navigation of AUVs (autonomous underwater vehicles), being essentially different from
the navigation of UAVs (unmanned autonomous vehicles) due to the principal difference between
the sources of navigation information, nevertheless shares several characteristic features with the latter.
Indeed, in both cases, the INS (inertial navigation system) plays the main role in determining
the position-velocity state of the vehicle. Navigation with the aid of INS is usually based on the dynamic
model of the vehicle motion with inputs from various sensors of linear and angular velocities and uses
filters (usually of Kalman type) for calculation of the position and attitude. However, all types of
velocity sensors used in INS are subject to drift, which must be systematically compensated to keep
the position estimation accuracy at an acceptable level. In UAV navigation such compensation may
be accomplished with the aid of satellite positioning systems (GPS or GLONASS), or in the case of
a so-called GPS denied environment, with the aid of specific video survey tools [1]. In an underwater
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environment, all electromagnetic (and therefore video tools) have a very restricted range of operation,
and only acoustic waves permit sensing and communication for rather long distances. The problem is
that acoustic measurements are notably barren in comparison with the electromagnetic ones: They do
not have such features as color or contrast and just measure the direction of arrival (DOA) and/or
the distance from the vehicle to the reflecting surface, such as obstacle, seabed, or ship. Therefore,
even using multiple irradiating sensors like acoustic sonars, one can only obtain an image of distances
to the seabed relief. An introduction of acoustical beacons with known positions can help to determine
the own AUV position by using an angular observation filter, and this is the area of the (short and/or
long) baseline methods application [2]. These methods are especially effective in the limited area of
operation; moreover, they may be used in the case of a moving baseline established on a ship [3]
and even in docking maneuvering [4]. Acoustic methods used in active mode give access to the distance
measurements, which make the position estimation problem much easier, though in some areas of
application such measurements are not acceptable or must be restricted due to the energetic or masking
constraints [5].

The possibility of the sonar employment in AUV navigation has already been mentioned by
some authors either in application to the situation, when an accurate seabed map is available, or in
the case of presence of significant seabed features [6]. Moreover, the active pinging can be used to
determine one’s speed over the seabed by tracking its features or by measuring the Doppler shift
of returns [7], the same idea is used in the well-known DVL (Doppler velocity log) [8]. Moreover,
acoustic sonars admit the usage of phased array technology, which permits to achieve the angular
resolution up to 0.1◦ [9]. Angular measurements and particularly the bearing-only observations which
are inherent to underwater acoustics lead to the necessity of special type algorithms for the position
and velocity estimation in AUV navigation and tracking underwater targets [10]. All such algorithms
are inevitably the modifications of the Kalman filter, especially in the problems dealing with the fusion
of different sources of navigation information such as INS and DVL [11], INS and various geo fields,
and INS and sonars [12,13]. In the present work, the approach to sonar terrain matching [14] will
be investigated by analogy to the UAV optical flow. The principal difference from the standard
Lucas-Kanade [15] algorithm is the presence of the AUV velocity components in observations only in
implicit form, fortunately in a linear one, but the coefficients depend on the surface slope and must be
estimated also via observation of the range profile. This means the problem is nonlinear and therefore
the evaluation of the quality of the velocity estimation is possible via simulation only. Some preliminary
results have already been obtained in [16,17]; below we discuss the extension of this approach.

The great majority of external navigation sensors provide nonlinear measurements of position-
velocity parameters. That is the reason why in most cases the linear filtering theory does not apply.
A common way to overcome this issue is the usage of various modifications of the Kalman filter, such as
the extended Kalman filter (EKF) [18], particle filter (PF) [19], and unscented Kalman filter (UKF) [20].
However, careful analysis shows that all these filters, even if different from the viewpoint of complexity,
give almost the same level of the AUV position estimation accuracy, especially in the case of bearing-only
observations [21]. An alternative to traditional Kalman filtering is the conditionally optimal nonlinear
filter proposed by V. S. Pugachev and developed by his successors into the conditionally minimax
nonlinear filter (CMNF) [22]. This theory permits to develop the estimation procedure with given
properties, for example, either with minimum dispersion or without bias, which is extremely important,
for example, in target tracking based on bearing-only observations [23,24].

In acoustic position estimation and target tracking, the bearing-only observation plays
the principal role. As it was observed many years ago, the bearing angles may be transformed
into linear observation, but with bias [25]. This approach is called pseudo-measurements. In recent
work, an unbiased modification of this method was proposed for UAV navigation based on radio
beacons [26] and on a video recording of terrain objects with known coordinates [27].

In the present article, we consider new approaches to AUV navigation and control and compare
them with traditional ones. Both the problems of control and position estimation are considered in
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the locally optimal formulation since the stochastic problems with nonlinear observations do not have
explicit globally optimal solutions. The model is described in Section 2. In Section 3 the following
problem of nominal trajectory is formulated as a control problem and its locally optimal solution is
presented. Section 4 contains a position estimation algorithm based on dead reckoning with speed
evaluated from the evolution of the “acoustic images”—the seabed distances registered with the aid
of acoustic sonar. Section 5 is devoted to the filtering algorithms based on the dynamic model of
the vehicle motion and DOA measurements. In Section 6 the performance of the locally optimal control
based on the discussed filtering algorithms is evaluated through simulation.

2. The AUV Navigation System Model

Let the coordinates of the AUV at time instant tk be Xk = X(tk) = (X(tk), Y(tk), Z(tk))
T =

(Xk, Yk, Zk)
T , where (·)T is the transposition operator. The sequence tk, k = 0, . . . , N, t0 = 0, tN = T is

known, and the interval between the consequent time instants is assumed to be the same for the sake
of simplicity: tk+1 − tk = ∆t, k = 0, . . . , N − 1. The initial condition X0 is a random vector with

known expectation m0 and covariance matrix S0, the distribution X0 ∼ PX0 is assumed unknown.

Denoting by P(m, S) the set of all distributions with expectation m and covariance S, we can write

PX0 ∈ P(m0, S0).
Let the controlled motion model of the AUV be defined by the following vector equation:

Xk+1 = Xk + Vk∆t + Wk, (1)

where Vk is the vector of the AUV speed at the moment tk and Wk = (WX
k , WY

k , WZ
k )

T is a sequence

of independent and identically distributed (i.i.d.) random vectors with zero mean and covariance
matrix SW independent from the initial condition: Wk ∼ PWk ∈ P(0, SW). The exact distribution of
these vectors is assumed unknown.

The AUV speed vector is defined by its absolute value Vk = ‖Vk‖ and two angles γk, θk shown

in Figure 1. The angle γk, is the angle between Vk and the horizontal plane x0y, and θk is the angle

between the projection of Vk on the horizontal plane x0y and the axis 0x. Thus, the components of

the speed vector are defined by Vk = Vk(cos γk cos θk, cos γk sin θk, sin γk)
T and vector model given by

Equation (1) can be rewritten in the form of a system of scalar equations:
Xk+1 = Xk + Vk cos γk cos θk∆t + WX

k ,
Yk+1 = Yk + Vk cos γk sin θk∆t + WY

k ,
Zk+1 = Zk + Vk sin γk∆t + WZ

k .
(2)

Xk

Vk

γk

θk

x

y

z

Figure 1. Control parameters uk = (γk, θk, Vk).
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The vector of three parameters uk = (γk, θk, Vk)
T that define the direction and the absolute value

of the speed vector Vk = Vk(uk) (and hence the whole dynamics of the AUV), is further called
the control vector.

3. Locally Optimal AUV Path Control

We define the control problem for the AUV as a problem of following some predefined path X̊k,

k = 0, . . . , N, which is given by the control sequence ůk = (γ̊k, θ̊k, V̊k)
T and calculated in the absence

of any noise: 
X̊k+1 = X̊k + V̊k cos γ̊k cos θ̊k∆t,
Y̊k+1 = Y̊k + V̊k cos γ̊k sin θ̊k∆t,
Z̊k+1 = Z̊k + V̊k sin γ̊k∆t.

(3)

We first consider the optimal control problem with full information, where the real coordinates of
the AUV Xk and its speed Vk are known at all times tk, k = 0, . . . , N.

The quality of the control at time instant tk is defined by the following criterion:

J(uk) = E
{∥∥∥X̊k+1 − Xk+1(uk)

∥∥∥2
}

= E
{(

X̊k+1 − Xk+1
)2

+
(

Y̊k+1 −Yk+1

)2
+
(
Z̊k+1 − Zk+1

)2
}

(4)

The control u∗k = (γ∗k , θ∗k , V∗k )
T that minimizes Criterion (4) is called locally optimal since at any

time instant tk it provides the least deviation from the nominal path on the next step tk+1.

Lemma 1. Let ∆X̊k = (∆X̊k, ∆Y̊k, ∆Z̊k) = (X̊k − Xk, Y̊k − Yk, Z̊k − Zk)
T denote the deviation of the real

path of the AUV from the nominal one at the time instant tk. Let also V̊k = (V̊X
k , V̊Y

k , V̊Z
k )T =

V̊k(cos γ̊k cos θ̊k, cos γ̊k sin θ̊k, sin γ̊k)
T denote the nominal speed vector and its components. Then the solution

to the optimization problem:
u∗k = argmin

uk

J(uk) (5)

is given by the following relations:

θ∗k = atan2(∆Y̊k + ∆tV̊Y
k , ∆X̊k + ∆tV̊X

k ),
γ∗k = atan2(∆Z̊k + ∆tV̊Z

k , (∆X̊k + ∆tV̊X
k )/ cos θ∗k ),

V∗k =
∥∥∥∆X̊k + ∆tV̊k

∥∥∥ /∆t,
(6)

where atan2(y, x) is the angle between the positive direction of axis 0x and the vector (x, y)T .

The proof of Lemma 1 is given in Appendix B.
The relations for the optimal angles and the absolute value have straightforward geometrical

interpretation. From Figure 2, it follows that the locally optimal control at the time instant tk determines

the AUV movement speed V∗k = V∗k (cos γ∗k cos θ∗k , cos γ∗k sin θ∗k , sin γ∗k )
T aiming towards the point of

the nominal path X̊k+1 and possessing the magnitude V∗k , which is necessary to reach that point

at the next time instant tk+1.
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X̊k

X̊k+1

Xk

∆X̊k + ∆tV̊ Xk

∆Y̊k + ∆tV̊ Yk

∆Z̊k + ∆tV̊ Zk
V∗k

γ∗k θ∗k

x

y

z

Figure 2. Optimal control geometrical interpretation.

The last observation provides the justification for a control policy, which is derived from
Relations (6) by substituting the real AUV coordinates Xk by an unbiased estimate X̂k:

θ̂∗k = atan2(Y̊k − Ŷk + ∆tV̊Y
k , X̊k − X̂k + ∆tV̊X

k ),
γ̂∗k = atan2(Z̊k − Ẑk + ∆tV̊Z

k , (X̊k − X̂k + ∆tV̊X
k )/ cos θ∗k ),

V̂∗k =
∥∥∥X̊k − X̂k + ∆tV̊k

∥∥∥ /∆t
(7)

The original optimal control problem for the nonlinear stochastic System (2) with incomplete
information is rather hard for analysis. Moreover, it does not have an explicit solution even in the case
of the quadratic criterion. In these circumstances, suboptimal control policies like Relations (7) seems
reasonable substitution for the unattainable optimum.

Another feature of the optimal control in Relations (6) is that in general, it is unbounded,
whereas for the real AUV navigation system the limits on the instantaneous course and speed change
(or acceleration constraints) would be natural. Nevertheless, this does not affect the applicability of
the estimation methods, which are the primary focus of this study. In presence of such constraints,
optimization Problem (5) no longer has a solution in an explicit form, but since it is a well-known
quadratic optimization problem with linear (box) constraints, the solution can be calculated using
numerous effective numerical methods [28].

4. Position Estimation with Seabed Sensing

In this section, we present an approach to the position estimation based on dead reckoning with
speed evaluated from the evolution of the “acoustic images". Each image consists of the seabed
distance measurements Lij

k = L(Xk, uk, γi, θ j) made at the same time instant tk by acoustic sensors

aimed at different angles (γi, θ j) with respect to the AUV attitude, given by its movement direction uk.

The information about the AUV position shift ∆Xk+1 = Xk+1 − Xk, or the speed Vk is then derived

from the difference between the values of correspondent distance measurements Lij
k and Lij

k+1 made

at the consecutive time instants tk+1 and tk. The way this is done is close to the Lucas-Kanade method

for optical flow estimation [15] with the set of acoustic measurements treated as an image and a single
distance to the seabed treated as a pixel intensity.

In detail, the model of acoustic measurements is presented in Figure 3. Let (γi, θ j), i, j = 1, . . . , M
be the set of aiming angles at which the sensors of the AUV emit the acoustic beams and acquire
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the distance to the seabed. These angles are defined with respect to the AUV attitude, which means
that the absolute beam (i, j) direction is given by the angles (γk + γi, θk + θ j). Thus the coordinates

of the point xij
k = (xij

k , yij
k , zij

k )
T , where the beam (i, j) reaches the seabed at the time instant tk are

expressed as:
xij

k = Xk + Lij
k ek, (8)

where ek = (eX
k , eY

k , eZ
k )

T = (cos (γk + γi) cos (θk + θ j), cos (γk + γi) sin (θk + θ j), sin (γk + γi))T

defines the direction of the beam. It should be noted that this model differs from the one considered
in [16,17] since it takes into account the controlled AUV attitude, whether in the mentioned works
the beam directions were assumed constant. Note also, that the number of aiming angles γi and θ j

could be assumed different with no effect on the further derivations.

Xk

Lijk

xijk

seabed

V∗k

γk + γi

θk + θj

x

y

z

Figure 3. Acoustic beam (i, j) reaching the seabed surface at xij
k .

Let the seabed profile be defined by the equation ψ(x) = 0, where ψ(·) is some smooth function.
Then considering x as a function of variables X, L, and e, each of which in turn depends on the time t:

x(t) = X(t) + L(t)e(t),

and calculating the total derivative dψ(x)
dt = dψ(x(X(t),L(t),e(t)))

dt , we get:

δψ

δx

(
dX
dt

+
deX

dt
L + eX dL

dt

)
+

δψ

δy

(
dY
dt

+
deY

dt
L + eY dL

dt

)
+

δψ

δz

(
dZ
dt

+
deZ

dt
L + eZ dL

dt

)
= 0, (9)

where the actual functions’ arguments were omitted for the sake of simplicity. Assume that the partial
derivatives of the function ψ(·) are known at any point of the seabed which could be reached with
an acoustic beam. Rewriting Equation (9) in discrete time with substitution of the differentials with
corresponding increments:
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∆Xk+1 = Xk+1 − Xk = (∆Xk+1, ∆Yk+1, ∆Zk+1)
T ,

∆Lij
k+1 = L(Xk+1, uk+1, γi, θ j)− L(Xk, uk, γi, θ j),

∆ek+1 = (∆eX
k+1, ∆eY

k+1, ∆eZ
k+1)

T

∆eX
k+1 = −∆γk+1

(
sin(γk + γi) cos(θk + θ j)

)
− ∆θk+1

(
cos(γk + γi) sin(θk + θ j)

)
, (10)

∆eY
k+1 = −∆γk+1

(
sin(γk + γi) sin(θk + θ j)

)
− ∆θk+1

(
cos(γk + γi) cos(θk + θ j)

)
,

∆eZ
k+1 = ∆γk+1

(
cos(γk + γi)

)
,

∆γk+1 = γk+1 − γk,

∆θk+1 = θk+1 − θk,

we have the following equation:

δψ

δx
(xij

k )
(

∆Xk+1 + ∆eX
k+1Lij

k + eX
k ∆Lij

k+1

)
+

δψ

δy
(xij

k )
(

∆Yk+1 + ∆eY
k+1Lij

k + eY
k ∆Lij

k+1

)
+

δψ

δz
(xij

k )
(

∆Zk+1 + ∆eZ
k+1Lij

k + eZ
k ∆Lij

k+1

)
= 0,

which in turn can be expressed with unknowns ∆Xk+1, ∆Yk+1, ∆Zk+1 collected on the left-hand side:

δψ

δx
(xij

k )∆Xk+1 +
δψ

δy
(xij

k )∆Yk+1 +
δψ

δz
(xij

k )∆Zk+1 = Bij
k , (11)

with

Bij
k = − δψ

δx
(xij

k )
(

∆eX
k+1Lij

k + eX
k ∆Lij

k+1

)
− δψ

δy
(xij

k )
(

∆eY
k+1Lij

k + eY
k ∆Lij

k+1

)
(12)

− δψ

δz
(xij

k )
(

∆eZ
k+1Lij

k + eZ
k ∆Lij

k+1

)
.

The unknowns ∆Xk+1, ∆Yk+1, ∆Zk+1 can not be derived from a single equation, but assuming

that these shifts are the same for all the acoustic sensors, we have a set of Equation (11) for different

aiming angle values (γi, θ j), i, j = 1, . . . , M. Finally it is possible to estimate the unknowns with

the least-squares method:

∆X̂k+1 = argmin
∆Xk+1

M

∑
i,j=1

(
δψ

δx
(xij

k )∆Xk+1 +
δψ

δy
(xij

k )∆Yk+1 +
δψ

δz
(xij

k )∆Zk+1 − Bij
k

)2
(13)

Vectorization of Equation (11) with respect to the set of aiming angles (γi, θ j), i, j = 1, . . . , M gives:

Ak∆Xk+1 = Bk,
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where Ak and Bk are made of vertically stacked row-vectors and values corresponding to
the individual observations:

Ak =



δψ
δx (x

11
k ) δψ

δx (x
11
k ) δψ

δx (x
11
k )

...
...

...
δψ
δx (x

1M
k ) δψ

δx (x
1M
k ) δψ

δx (x
1M
k )

...
...

...
δψ
δx (x

MM
k ) δψ

δx (x
MM
k ) δψ

δx (x
MM
k )


, Bk =



B11
k
...

B1M
k
...

BMM
k


. (14)

Now the solution to the least-squares optimization Problem (13) can be expressed in
the standard form:

∆X̂k+1 = [AT
k Ak]

−1AT
k Bk. (15)

Finally the AUV position dead reckoning estimate is:

X̂k+1 = X̂k + ∆X̂k+1. (16)

It should be noted that Equation (16) requires the values of the partial derivatives of the function
ψ(·) at the points xij

k , k = 0, . . . , N, i, j = 1, . . . , M, where the acoustic beams reach the seabed.

Precise calculation of these values even in the case of known seabed profile is not possible since it

requires the precise values of the points xij
k , which depend on the unavailable precise AUV position

Xk due to Equation (8). The way to overcome this issue is to use the acoustic image data to estimate
the seabed slope, i.e., the required partial derivatives of ψ(·). In Appendix A, we present a method of
estimation, based on the approximation of the slope function ψ(·), which requires only the values of

seabed distances Lij
k . Another method is proposed in [16].

The following algorithm summarizes the proposed acoustic seabed sensing AUV position
estimation method:

1. at time instant tk+1 collect the seabed distance measurements Lij
k+1 from the acoustic sensors

i, j = 1, . . . , M and calculate the increments ∆Lij
k+1 = Lij

k+1 − Lij
k ;

2. using the control values on the current (γk+1, θk+1) and the previous (γk, θk) steps calculate

the increments (∆eX
k+1, ∆eY

k+1, ∆eZ
k+1)

T according to Equation (10);

3. evaluate the slope estimates δ̂ψ
δx (x

ij
k ),

δ̂ψ
δy (x

ij
k ),

δ̂ψ
δz (x

ij
k ) using Equation (A1) or another method;

4. using Equations (12) and (14) calculate the matrix Ak and the vector Bk;
5. calculate the estimate of the AUV position shift ∆X̂k+1 with Equation (15) and the position

estimate X̂k+1 with Equation (16).

5. Position Estimation with DOA Measurements

In this section we discuss various position estimation algorithms based on the dynamic model of
the vehicle motion, Equation (1), and the external bearing-only measurements provided by a passive
acoustic DOA estimation device (pressure hydrophone or acoustic vector sensor array) [6].

The position of the acoustic source XB = (XB, YB, ZB)
T is assumed to be known and constant

which is the case of a pre-deployed stationary acoustic beacon. It is assumed that at any time instant tk
the bearing vector (Figure 4) is available for observation in the following form:

Yk =

(
tan ϕk
tan λk

)
,

tan ϕk =
YB −Yk
XB − Xk

+ ε
ϕ
k ,

tan λk =
(ZB − Zk) cos ϕk

XB − Xk
+ ελ

k ,
(17)
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where Ek = (ε
ϕ
k , ελ

k )
T ∼ PEk ∈ P(0, Sε) is a sequence of i.i.d. random vectors independent from

Wk and X0. The exact distribution of these vectors, as in the case of the noise in the Model (2),
is assumed unknown.

Xk

XB (beacon)

XB −Xk

YB − Yk

ZB − Zk

sea surface

λk

ϕk

x

y

z

Figure 4. Bearing to the point (beacon) with known coordinates XB.

Systems (2) and (17) can be expressed in the following general vector form:

Xk+1 = Φk(Xk, uk) + Wk,
Yk = Ψk(Xk) + Ek.

(18)

The common way to deal with the nonlinear System (18) is the extended Kalman filter. In this
section we present alternative approaches, which in some cases allow to achieve better estimation
quality then by direct system linearization. In Section 5.1, we present an observation Equation (17)
transformation, allowing to reduce the original problem to a form, where the optimal filtering solution
is also available in the form of the Kalman filter. In Section 5.2, we provide the conditionally minimax
filtering problem statement and solution for the original nonlinear model of Equation (18) and show
how this particular filtering approach allows data fusion from the DOA measurements and the dead
reckoning navigation system based on the acoustic seabed sensing from Section 4.

5.1. Pseudo Measurements Filter

Rewriting the observations of Equation (17) in the following form:

(XB − Xk) sin ϕk = (YB −Yk) cos ϕk + ε
ϕ
k (XB − Xk) cos ϕk,

(XB − Xk) sin λk = (ZB − Zk) cos ϕk cos λk + ελ
k (XB − Xk) cos λk,

and gathering all the known or measured values at the left-hand side, we get:

XB sin ϕk −YB cos ϕk = Xk sin ϕk −Yk cos ϕk + ε
ϕ
k (XB − Xk) cos ϕk,

XB sin λk − ZB cos ϕk cos λk = Xk sin λk − Zk cos ϕk cos λk + ελ
k (XB − Xk) cos λk.

(19)

The right-hand side in the previous expression is linear with respect to the system state
Xk = (Xk, Yk, Zk)

T , but at the same time, it involves the additive noise, whose covariance is now
state-dependent. Denote:

Y′k =

(
XB sin ϕk −YB cos ϕk
XB sin λk − ZB cos ϕk cos λk

)
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and rewrite Equation (19) in the vector form:

Y′k = Ψ1
kXk + Ψ2

kEk, (20)

where

Ψ1
k = Ψ1

k(Yk) =

(
sin ϕk − cos ϕk 0
sin λk 0 − cos ϕk cos λk

)

Ψ2
k = Ψ2

k(Xk, Yk) =

(
(XB − Xk) cos ϕk 0

0 (XB − Xk) cos λk

)
The introduction of Y′k, which is called pseudo-measurements, is a common method of nonlinear

systems analysis [21,25]. The idea is based on the fact that linear Kalman filtering estimate is
the linear-optimal one in the case of linear observations and system dynamics and on the assumption
that the noise Ψ2

kEk covariance, even being state-dependent, may be evaluated or replaced by an upper
bound. In our previous work [26] the filtering algorithm based on the pseudo-measurements has been
suggested and its recurrence relations has been derived from the assumption of the unbiasedness of
the estimate on the previous step. As applied to the problem at hand these relations are as follows:

X̃k = Φk−1(X̂k−1, uk−1),
K̃k = K̂k−1 + SW ,

K̄k = K̃kΨ1
k

T
(Yk)

(
Ψ1

k(Yk)K̃kΨ1
k

T
(Yk) + Ψ2

k(X̃k, Yk)SεΨ2
k

T
(X̃k, Yk)

)+
X̂k = X̃k + K̄k

(
Y′k −Ψ1

kXk
)

K̂k = (I− K̄kΨ1
k(Yk))K̃k

(21)

This filter has the common Kalman structure with items recurrently calculated upon the bearing
measurements update. The difference with the classic case is that here the Riccati equation is not
solvable a priori, because it involves estimate-dependent terms and current measurement values.

5.2. Conditionnaly Minimax Nonlinear Filter

Let the functions Φk(·, ·), Ψk(·) and the feedback control uk = uk(Y0, . . . , Yk) be such that the first

and second moments of the state Xk and observation Yk are finite. Introduce two sets of functions:

Basic prediction αk(x, u) and basic correction functions βk(x, y). Then the CMNF estimate is defined
by the following recurrent relations:

X̃k = Fkαk(X̂k−1, uk−1) + fk, Fk = cov(Xk, αk(X̂k−1, uk−1)) cov+(αk(X̂k−1, uk−1), αk(X̂k−1, uk−1)),

fk = E {Xk} − FkE
{

αk(X̂k−1, uk−1)
}

X̂k = X̃k + Hkβk(X̃k, Yk) + hk, Hk = cov(Xk − X̃k, βk(X̃k, Yk)) cov+(βk(X̃k, Yk), βk(X̃k, Yk)),

hk = −HkE
{

βk(X̃k, Yk)
}

,

(22)

where cov(x, y) is the covariance matrix of two random vectors x, y, A+ denotes matrix
pseudo-inversion, and X̂0 = m0.

In the case when the functions αk(·, ·) and βk(·, ·) have first and second order moments for

all the random arguments in Equation (22), then the CMNF estimate exists and has the following
minimax property. Let X̂k−1 be the CMNF estimate at the time instant tk−1. Then the linear functions

F ∗k (ξ) = Fkξ + fk,H∗k (ζ) = Hkζ + hk defined by Equation (22) provide the solution for the following

minimax optimization problem:

F ∗k (·) = argmin
Fk(·)

max
P′k

E
{
‖Fk(αk(X̂k−1, uk−1))− Xk‖2

}
,

H∗k (·) = argmin
Hk(·)

max
P′′k

E
{
‖Hk(βk(X̃k, Yk))− (Xk − X̃k)‖2

}
,

(23)
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where P′k ∈ P(E
{
Z ′k
}

, cov(Z ′k,Z ′k))—the set of all possible distributions of the compound vector

Z ′k = (Xk, αk(X̂k−1, uk−1))
T and P′′k ∈ P(E

{
Z ′′k
}

, cov(Z ′′k ,Z ′′k ))—the set of all possible distributions

of the compound vector Z ′′k = (Xk − X̃k, βk(X̃k, Yk))
T .

The details on the CMNF approach to the nonlinear stochastic systems state estimation, including
the thorough justification of Equation (22) being the solution to Equation (23) and the conditions of
the solution in Equation (23) existence, could be found in [22]. Further application of the concept along
with the comparative numerical study is the matter of the works [23,24].

The fact that the CMNF estimate, Equation (22), is the solution to the minimax problem,
Equation (23), means that at each time instant tk it delivers the minimum for the worst case (with respect
to the a priori uncertainty in the distributions P′k and P′′k ) of the mean-square error of the prediction X̃k
and correction X̂k. It should be noted that both X̃k and X̂k are unbiased estimates of Xk and the quality
of these estimates is a priori known:

cov(Xk − X̃k, Xk − X̃k) = cov(Xk, Xk)− Fk cov(αk(X̂k−1, uk−1), Xk),
cov(Xk − X̂k, Xk − X̂k) = cov(Xk − X̃k, Xk − X̃k)− Hk cov(βk(X̃k, Yk), Xk − X̃k).

Though the CMNF filter for a nonlinear stochastic system in a rather general form, Equation (18),
which indeed covers the AUV navigation problem at hand, is fully defined by Equation (6), there are
still two questions which need to be discussed in order to clarify all the aspects of the CMNF application
on practice: The functions α(x, u), β(x, y), and the calculation of the covariances in Equation (22).

The basic prediction and correction functions α(x, u), β(x, y) define the structure of the CMNF

filter. Their choice is model-specific and it can reflect particular features of the nonlinear functions
Φk(·, ·), Ψk(·). The common option nevertheless is the prediction “by virtue of the system”
and the correction in the form of the residual, which in the case of Systems (2) and (17) with E {Wk} = 0
and E {Ek} = 0 are as follows:

αk+1(X̂k, uk) = Φk(X̂k, uk) = X̂k + Vk(uk)∆t,
βk(X̃k, Yk) = Yk −Ψk(X̃k).

Unlike the EKF and pseudo-measurements filtering, the CMNF approach provides a natural way
of data fusion from the INS and external measurements: The basic prediction function αk+1(X̂k, uk)

can be chosen in the form of the estimate from the internal navigation System (16). Finally, the CMNF
estimate, which is based on the data fusion from the dead reckoning seabed sensing and external
bearing-only measurements is defined by Equation (22) with structure functions

αk+1(X̂k, uk) = X̂k + ∆X̂k+1,

βk(X̃k, Yk) = Yk −


YB − Ỹk

XB − X̃k
ZB − Z̃k√

(XB − X̃k)2 + (YB − Ỹk)2

 ,

where the shift ∆X̂k+1 is defined by Equation (15) and the corresponding algorithm from the Section 4.

The only question left is the covariance matrices, which are necessary for the calculation of
the linear estimator coefficients in Equation (22). The general CMNF approach implies that instead of
the real covariances one uses their estimates, obtained by means of the Monte-Carlo sampling.

6. AUV Control Simulation

In this section, we provide the results of the numerical simulation of the described filtering
and control algorithms. We compare the results of the simulation in a case when the nominal AUV
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speed Vk in the motion dynamic Equation (2) is known exactly and when it is evaluated by an external
estimator—seabed sensing algorithm from Section 4.

The nominal trajectory, i.e., the path, which AUV has to follow, is given by the Equation (3) with

γ̊k =
π

100 cos( π
100 tk), θ̊k =

π
3 cos( π

25 tk), where k = 0, . . . , N, t0 = 0, tN = T = 300 and ∆t = tk+1− tk = 1

second. The absolute value of the AUV speed is constant: V̊k = 2m/s for all k and the initial condition

is X̊0 = (0, 0,−10)T (hereinafter all distances are measured in meters). The nominal path of the AUV is

shown in Figures 5 and 6 in 3D and component-wise respectively.

x

y

z

Figure 5. Nominal autonomous underwater vehicle (AUV) path X̊k (grey line) and the positions of
the beacons (blue dots).

It should be noted that this particular path is chosen for modeling purposes only: There was no
aim to reflect any specific real-world AUV mission, but simply to get the variation of the components

in different scale: X̊k ∼ 100 m, Y̊k ∼ 10 m, Z̊k ∼ 1 m.
The sample paths of the system are simulated using the Equation (2), where the disturbances

Wk are i.i.d. Gaussian vectors with zero mean and covariance SW equal to the identity matrix I3×3:

Wk ∼ N (0, I3×3). The initial condition is supposed to have the same distribution: X0 ∼ N (0, I3×3).

In this simulation, it is assumed that on the sea surface there is a set of four sources of acoustic

signals (beacons) with known coordinates Xi
B, i = 1, . . . , 4: X1

B = (500, 100, 0)T , X2
B = (500,−100, 0)T ,

X3
B = (−100, 100, 0)T , X4

B = (−100,−100, 0)T . These coordinates are chosen so that the situation

of the bearing angles φk, λk close to ±π
2 would not be possible and there would be no need in

the regularization of the observations in Equation (17). The beacons’ positions with respect to the AUV
nominal path are shown in Figure 5. Note that despite the fact that in all the previous considerations
a single beacon was assumed, the transition to the multiple observations case is rather obvious
and requires only vertical stacking of correspondent values in the original Equations (17) and (18)
and pseudo-measurements of Equations (19) and (20).

The precision of the bearing angles measurements is assumed to be equal to 0.5◦, which in this

simulation means that the noise in Equation (17) is Gaussian with the distribution Ek = (ε
ϕ
k , ελ

k )
T ∼

N (0, tan2(0.5◦)I2×2).
The control sequence is defined by System (7) with position estimates X̂CMNF

k , X̂UPMF
k and X̂EKF

k
given by:
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• CMNF: Conditionally minimax nonlinear Filter (22) with basic structure Functions (24) and
covariances calculated by the Monte-Carlo sampling on a separate test set of 105 AUV paths;

• UPMF: Unbiased pseudo-measurements Filter (21);
• EKF: Extended Kalman filter, which provides a common approach to deal with the non-linearity

in the system dynamics or observations [18].

The estimates and the correspondent random processes of state evolution (and their samples) are
further referenced as X̂F

k and XF
k = Xk(u∗k (X̂

F
k )) respectively, where F ∈ {CMNF, UPMF, EKF}.

0m

200m

400m

X̊k

-10m

0m

10m

Y̊k

0 min time [mins] 5 min

-12m

-10m

-8m

Z̊k

Figure 6. Nominal AUV path X̊k = (X̊k, Y̊k, Z̊k)
T coordinate-wise.

The simulation is done for two cases of the prediction X̃k+1 used by all three filtering algorithms:

• prediction by virtue of System (18): X̃k+1 = Φk(X̂k, u∗k (X̂k)) = X̂k + Vk(u∗k (X̂k))∆t
• prediction based on the acoustic measurements: X̃k+1 = X̂k + ∆X̂k+1, with ∆X̂k+1 defined

in Equation (15).

The former takes advantage of the exact values of the AUV speed, while the latter uses an estimate
of the AUV position shift.

For the position estimation with seabed sensing simulation, the following setting is used.
The direction of the i, k-th measurement beam from Equation (8) uniformly varies in ranges γi ∈
(42◦, 82◦), θk ∈ (−10◦, 30◦), i, k = 1, . . . , 8. The accuracy of the range measurement is assumed to
be 0.1 m, which corresponds to the sonar’s accuracy for the depths of ∼10 m. The unknown seabed
profile is defined by the equation ψ(x) = 0, where ψ(x) is the following smooth harmonic function:

ψ(x) = a0 + z +
K

∑
l=1

(
al sin

(
2πl
Px

x
)
+ bl cos

(
2πl
Px

x
)
+ cl sin

(
2πl
Py

y
)
+ dl cos

(
2πl
Py

y
))

, (24)

where K = 2, the parameters a0 = 30.0 m, Px = Py = 20.0 are fixed, and the coefficients al , bl , cl and dl
are randomly generated for each trajectory using the standard uniform distribution.

In Figure 7, we show sample paths of the system for three mentioned state estimators
and the nominal trajectory which they intended to follow. In Figure 8, we show the estimate error
mean and standard deviation calculated on the set of 105 sample paths.
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0m

200m

400m

X̊k, Xk

-20m

0m

20m

Y̊k, Yk

0 min time [mins] 5 min

-20m

-10m

0m

Z̊k, Zk

XCMNF
k XPMKF

k XEKF
k

Figure 7. Sample AUV paths with state estimate provided by conditionally minimax nonlinear filtering
(CMNF) (red line), unbiased pseudo-measurement filter (UPMF) (blue line), and extended Kalman
filter (EKF) (green line) along with the nominal (desired) path X̊k (grey line).

0

2

Xk − X̂k

0

1

Yk − Ŷk

0 min time [mins] 5 min

0

1

Zk − Ẑk

E(Xk − X̂CMNF
k )

σ(Xk − X̂CMNF
k )

E(Xk − X̂PMKF
k )

σ(Xk − X̂PMKF
k )

E(Xk − X̂EKF
k )

σ(Xk − X̂EKF
k )

Figure 8. Estimate error sample mean (dotted line) and standard deviation (solid line) for CMNF
(red), UPMF (blue), and EKF (green) estimates.
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The simulation shows almost equal performance of all three filters. This can be explained by
the fact that the chosen acoustic sources positions provide the observations close to linear and in this
case all the filters at hand act like the Kalman filter, which is optimal for linear systems.

This, nevertheless, can not serve as a justification for the EKF supreme applicability. In Figure 9,
we present the results for the same setting, but with one beacon moved closer to the AUV starting
position X0, namely X4

B = (−5,−5, 0)T and for a shorter time period equal to 10 s. In this situation
the linearization errors play more significant role and hence the EKF demonstrates divergence,
while the other two filters remain stable.

0 sec time [sec] 10 sec

0

30

60
Xk − X̂k

0 sec time [sec] 10 sec

0

10

20
Yk − Ŷk

0 sec time [sec] 10 sec

0

5

10
Zk − Ẑk

E(Xk − X̂CMNF
k )

σ(Xk − X̂CMNF
k )

E(Xk − X̂PMKF
k )

σ(Xk − X̂PMKF
k )

E(Xk − X̂EKF
k )

σ(Xk − X̂EKF
k )

Figure 9. Estimate error sample mean (dotted line) and standard deviation (solid line) for CMNF (red),
UPMF (blue), and EKF (green) estimates for the case of the path close to one of the beacons.

In the final simulation we aim to demonstrate how inaccurate description of the system dynamic
can dramatically affect the quality of the estimation and hence the control of the UAV. To that end
we apply the same three filters used in the previous simulations but now with inaccurate prediction
provided by the acoustic measurements. In Figure 10 we show sample paths for the acoustic seabed
sensing predictor. The control based on the extended Kalman filter and the pseudo-measurements
filter fail to follow the nominal path. In Figure 11, we show the results for the conditionally minimax
nonlinear filter based on the data fusion from the dead reckoning seabed sensing and external
bearing-only measurements defined by Equation (22) with structure Functions (24). The increase
of the sampled standard deviation shown in Figure 11 in comparison with the prediction by virtue of
the system case shown in Figure 8 is not very high. It should be noted, that according to the simulation
CMNF exhibits a regular bias. This bias is inherited from the acoustic seabed shift estimate which is
also known to have a bias conforming to the nominal path [16].
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0m

200m

400m

X̊k, Xk

-20m

0m

20m

Y̊k, Yk

0 min time [mins] 5 min

-20m

-10m

0m

Z̊k, Zk

XCMNF
k XPMKF

k XEKF
k

Figure 10. Sample AUV paths with state estimate provided by CMNF (red line), UPMF (blue line),
EKF (green line) with prediction based on the acoustic sensing. The nominal (desired) path X̊k
(grey line).

-2

0

2

Xk − X̂k

-1

0

1

Yk − Ŷk

0 min time [mins] 5 min

0

1

Zk − Ẑk

E(Xk − X̂CMNF
k )

σ(Xk − X̂CMNF
k )

Figure 11. Estimate error sample mean (dotted line) and standard deviation (solid line) for CMNF (red)
estimate with prediction based on the acoustic sensing.
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As a final assessment of the estimate/control performance we provide the sample values of
the uniform version of Criterion (4):

J̄F = max
k=0,...,N

J(u∗k (X̂
F
k )) = max

k=0,...,N
E
{∥∥∥X̊k − XF

k

∥∥∥2
}

The sampling is performed on the same sets of paths as for the calculation of the sample mean
and standard deviation presented in Figures 8 and 11. The uniform performance criterion sample values
are presented in Table 1. The first row corresponds to the position prediction by virtue of System (18)
and the second row shows the results with prediction obtained by velocity estimation via seabed
sensing, Equation (15). The columns correspond to the filtering algorithms applied: The conditionally
minimax nonlinear Filter (22) with basic structure Functions (24), the unbiased pseudo-measurements
filter, Equation (21), and the extended Kalman filter. Note that for the seabed sensing prediction only
the CMNF filter allowed to acheive a reasonable estimate/control performance.

Table 1. Uniform performance criterion sample values J̄F, for F ∈ {CMNF, UPMF, EKF}.

Prediction CMNF UPMF EKF

X̃k+1 = X̂k + Vk(u∗k (X̂k))∆t 14.89 14.80 14.93
X̃k+1 = X̂k + ∆X̂k+1 27.25 — —

The simulation shows that in the ideal situation with good initial accuracy and observation
conditions close to that of a linear system, the gain in the estimation quality and hence in the control
performance is insignificant in comparison with the standard extended Kalman filter. Nevertheless,
the proposed filtering algorithms can demonstrate better qualities in less favorable settings, e.g., when
one of the beacons is close to the initial point of the path, the EKF diverges, while the proposed
filters remain stable. Another result is that the linear filters are highly sensitive to the dynamic model
description, and inaccurate parameters’ determination or evaluation can even lead to divergence.

7. Conclusions

In the present paper a mathematical model for an AUV navigation system based on the locally
optimal (predefined path following) control and position estimation provided by seabed acoustic sensing
and external DOA measurements. The performance of the proposed algorithms, namely the conditionally
minimax nonlinear filter and pseudo-measurements filter, was evaluated by numerical experiments.
It was demonstrated, that the CMNF approach provides a natural way for data fusion from different
sources of observation by allowing a certain level of liberty in the basic prediction function choice and,
at the same time, it allows the errors of the prediction step to be taken into account. The nonlinear
character of measurement equations does not permit to evaluate the control quality in advance and needs
a detailed analysis of the sensor fusion, which requires detailed modeling in the settings, which take into
account the environment features and noise characteristics. We suppose that the methods considered in
the present paper permit one to obtain sufficiently reliable approaches to underwater navigation without
costly field experiments.

Author Contributions: Conceptualization, B.M.; methodology, B.M. and A.M.; software, G.M.; validation, G.M.
and A.M.; formal analysis and investigation, B.M., A.M. and G.M.; writing—original draft preparation, G.M.;
writing—review and editing, A.M.; visualization, G.M.; supervision, B.M.

Funding: The work of A.M. and B.M. was partially supported by the Russian Government Program of Competitive
Growth of Kazan Federal University. The work of G.M. was partially supported by the Russian Foundation of
Basic Research (RFBR Grant No. 19-07-00187-A).

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2019, 19, 5520 18 of 21

Abbreviations

The following abbreviations are used in this manuscript:

AUV Autonomous underwater vehicle
CMNF Conditionally minimax nonlinear filter
DOA Direction of arrival
DVL Doppler velocity log
EKF Extended Kalman filter
INS Inertial navigation system
PF Particle filter
UAV Unmanned autonomous vehicle
UKF Unscented Kalman filter
UPMF Unbiased pseudo-measurements filter
Notation
x regular letters are used for scalar values
x bold letters are used for vectors and matrices
xT the transposition of the vector x
‖x‖ the Euclidean norm of the vector x
A+ Moore–Penrose inverse of matrix A
0 a zero vector of appropriate size
In×n identity matrix of size n× n
E{x} the expectation of the random vector x
cov(x, y) the covariance matrix of two random vectors x, y
x ∼ P(m, S) random vector x has a distribution P with expectation m and covariance S
N the Gaussian distribution
i.i.d. independent and identically distributed random variables or vectors

Appendix A. Unknown Seabed Slope Estimation

At every observation time instant tk the AUV acoustic sensors provide a set of distance

measurements Lij
k collected at points of seabed xij

k , i, j = 1, . . . , M. The exact values of xij
k are not known,

so the precise calculation of the slope δψ
δx (x

ij
k ),

δψ
δy (x

ij
k ),

δψ
δz (x

ij
k ) is not possible. In this subsection we

present a method of the slope values estimation using the seabed profile function ψ(x) approximation

in the form of linear combination of some known functions ψ̂(x) =
K
∑

l=1
plψl(x). Minimization of the the

following expression

p̂l = argmin
pl

M

∑
i,j=1

(
K

∑
l=1

plψl(x̂
ij
k )

)2

,

where x̂ij
k = X̂k + Lij

k ek, with respect to the linear combination coefficients pl , l = 1, . . . , K yields

the least square estimate of the seabed profile function ψ(x). Now calculation of seabed slopes
becomes rather straightforward:

δ̂ψ
δx (x

ij
k )

δ̂ψ
δy (x

ij
k )

δ̂ψ
δz (x

ij
k )

 =
K

∑
l=1

p̂l


δψl
δx (x̂

ij
k )

δψl
δy (x̂

ij
k )

δψl
δz (x̂

ij
k )

 . (A1)
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Appendix B. Proofs

Proof of Lemma 1. Substitution of the expressions for the nominal X̊k+1 and real Xk+1 coordinates
from (3) and (2) to the summands in the Criterion (4) yields:

E
{
(∆X̊k+1)

2
}
= E

{
(X̊k + V̊k cos γ̊k cos θ̊k∆t− Xk −Vk cos γk cos θk∆t−WX

k )2
}

= E
{
(∆X̊k)

2
}
+ E

{
(WX

k )2
}
+ E

{
2(V̊X

k −Vk cos γk cos θk)∆t∆X̊k + (V̊X
k −Vk cos γk cos θk)

2∆t2
}

,

E
{
(∆Y̊k+1)

2
}
= E

{
(Y̊k + V̊k cos γ̊k sin θ̊k∆t−Yk −Vk cos γk sin θk∆t−WY

k )
2
}

= E
{
(∆Y̊k)

2
}
+ E

{
(WY

k )
2
}
+ E

{
2(V̊Y

k −Vk cos γk sin θk)∆t∆Y̊k + (V̊Y
k −Vk cos γk sin θk)

2∆t2
}

,

E
{
(∆Z̊k+1)

2
}
= E

{
(Z̊k + V̊k sin γ̊k∆t− Zk −Vk sin γk∆t−WZ

k )
2
}

= E
{
(∆Z̊k)

2
}
+ E

{
(WZ

k )
2
}
+ E

{
2(V̊Z

k −Vk sin γk)∆t∆Z̊k + (V̊Z
k −Vk sin γk)

2∆t2
}

,

where all the terms with multipliers E
{

WX
k
}

, E
{

WY
k
}

, and E
{

WZ
k
}

were cancelled since Wk has
zero mean.

Collecting all the terms with variables γk and θk, we have the following expression to minimize:

2(V̊X
k −Vk cos γk cos θk)∆t∆X̊k + (V̊X

k −Vk cos γk cos θk)
2∆t2

+2(V̊Y
k −Vk cos γk sin θk)∆t∆Y̊k + (V̊Y

k −Vk cos γk sin θk)
2∆t2 (A2)

+2(V̊Z
k −Vk sin γk)∆t∆Z̊k + (V̊Z

k −Vk sin γk)
2∆t2 −→ min

γk ,θk ,Vk

To simplify the following derivations we introduce the notation:

sin γk = sγ cos γk = cγ

sin θk = sθ cos θk = cθ .

Now the unconstrained minimization problem (A2) w.r.t. the variables γk, θk, and Vk turns into
a minimization problem with five variables sγ, cγ, sθ , cθ , Vk and constraints s2

γ + c2
γ = 1, s2

θ + c2
θ = 1.

Introducing the Lagrange function L(sγ, cγ, sθ , cθ , Vk, λ1, λ2) for this constrained minimization
problem and applying the necessary conditions for optimality with constraints we have the following
set of equations:

δL
δcθ

= −2Vkcγ∆t∆X̊k − 2(V̊X
k −Vkcγcθ)Vkcγ∆t2 + 2λ2cθ = 0,

δL
δsθ

= −2Vkcγ∆t∆Y̊k − 2(V̊Y
k −Vkcγsθ)Vkcγ∆t2 + 2λ2sθ = 0,

δL
δcγ

= −2Vkcθ∆t∆X̊k − 2(V̊X
k −Vkcγcθ)Vkcθ∆t2 − 2Vksθ∆t∆Y̊k − 2(V̊Y

k −Vkcγsθ)Vksθ∆t2 + 2λ1cγ = 0,

δL
δsγ

= −2Vk∆t∆Z̊k − 2(V̊Z
k −Vksγ)Vk∆t2 + 2λ1sγ = 0,

δL
δVk

= −2cγcθ∆t∆X̊k − 2(V̊X
k −Vkcγcθ)cγcθ∆t2

−2cγsθ∆t∆Y̊k − 2(V̊Y
k −Vkcγsθ)cγsθ∆t2 − 2sγ∆t∆Z̊k − 2(V̊Z

k −Vksγ)sγ∆t2 = 0,
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which can be transformed into

(∆X̊k + V̊X
k ∆t)Vkcγ∆t = cθ(V2

k c2
γ∆t2 + λ2),

(∆Y̊k + V̊Y
k ∆t)Vkcγ∆t = sθ(V2

k c2
γ∆t2 + λ2),

cθ(∆X̊k + V̊X
k ∆t) + sθ(∆Y̊k + V̊Y

k ∆t)Vk∆t = cγ(c2
θV2

k ∆t2 + s2
θV2

k ∆t2 + λ1) = cγ(V2
k ∆t2 + λ1),

(∆Z̊k + V̊Z
k ∆t)Vk∆t = sγ(V2

k ∆t2 + λ1),

cγcθ(∆X̊k + V̊X
k ∆t)−Vkc2

γc2
θ∆t + cγsθ(∆Y̊k + V̊Y

k ∆t)−Vkc2
γs2

θ∆t + sγ(∆Z̊k + V̊Z
k ∆t)−Vks2

γ∆t = 0.

Pairwise division of the first two equations yields

sθ

cθ
= tan θk =

∆Y̊k + V̊Y
k ∆t

∆X̊k + V̊X
k ∆t

,

from the second pair of equations we have

sγ

cγ
= tan γk =

∆Z̊k+V̊Z
k ∆t

cθ(∆X̊k+V̊X
k ∆t)+sθ(∆Y̊k+V̊Y

k ∆t)
=

∆Z̊k+V̊Z
k ∆t

(∆X̊k+V̊X
k ∆t)(cθ+sθ

sθ
cθ
)
=

∆Z̊k+V̊Z
k ∆t

∆X̊k+V̊X
k ∆t

cos θk,

and the last equation gives

Vk =
cγcθ(∆X̊k + V̊X

k ∆t) + cγsθ(∆Y̊k + V̊Y
k ∆t) + sγ(∆Z̊k + V̊Z

k ∆t)
∆t

.

Finally, the unambiguous relations for the optimal angles and the expression for the speed absolute
value (6) follow from the geometrical interpretation given in Figure 2.
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