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Abstract: A sensing configuration for the real-time monitoring, detection, and quantification of
dissolved carbon dioxide (dCO2) was developed for aquaculture and other applications in freshwater
and saline water. A chemical sensing membrane, based on a colorimetric indicator, is combined
with multimode optical fiber and a dual wavelength light-emitting diode (LED) to measure the
dCO2-induced absorbance changes in a self-referenced ratiometric scheme. The detection and
processing were achieved with an embeded solution having a mini spectrometer and microcontroller.
For optrode calibration, chemical standard solutions using sodium carbonate in acid media were
used. Preliminary results in a laboratory environment showed sensitivity for small added amounts
of CO2 (0.25 mg·L−1). Accuracy and response time were not affected by the type of solution, while
precision was affected by salinity. Calibration in freshwater showed a limit of detection (LOD)
and a limit of quantification (LOQ) of 1.23 and 1.87 mg·L−1, respectively. Results in saline water
(2.5%) showed a LOD and LOQ of 1.05 and 1.16 mg·L−1, respectively. Generally, performance was
improved when moving from fresh to saline water. Studies on the dynamics of dissolved CO2 in a
recirculating shallow raceway system (SRS+RAS) prototype showed higher precision than the tested
commercial sensor. The new sensor is a compact and robust device, and unlike other sensors used in
aquaculture, stirring is not required for correct and fast detection. Tests performed showed that this
new sensor has a fast accurate detection as well as a strong potential for assessing dCO2 dynamics in
aquaculture applications.
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1. Introduction

Dissolved carbon dioxide (herein noted as dCO2) is a very important parameter in many different
fields, e.g., monitoring oceans, rivers, streams, and lakes, food industry (including aquaculture),
and clinical analysis [1–8]. Besides the actual concern with ocean acidification due to the increasing
atmospheric carbon dioxide (CO2) levels [9,10], dCO2 evaluation and control is particularly vital
in aquaculture, as cultivated species are highly sensitive to the excess of this gas [11]. A detailed
knowledge on short-time dCO2 variations in intensive fish production systems (as are recirculating
aquaculture systems, RAS) has been hindered, among other factors, by the long response time of the
commercial sensors that are in use, as they do not allow highly frequent measurements. Moreover,
this parameter can change rapidly with normal fish farm operations (e.g., feeding events, which
increased fish and bacterial metabolism and thus dCO2 production), or with performance changes of
the recirculated water treatment components, such as the biofilter, gassing (O2), or degassing (CO2)
units, which are more pronounced in seawater [12]. So, sensors are needed with fast response time
to obtain more dCO2 data per unit of time, which is crucial in studies of dynamic systems, as are
the recirculating aquaculture systems [13]. Besides fast response time, high sensitivity is another
aspect of interest in intensive aquaculture, not only to assess irregularities in system functioning, but
also to monitor dCO2 concentrations in the very low range (e.g., 1 mg·L−1), which are expected, for
example, in hatchery and nursery production facilities [13]. Nevertheless, dissolved CO2 detection is
difficult because when CO2 dissolves in water, physical and chemical equilibria occur, and different
products are generated [8]. Moreover, commercial sensors for dCO2 detection and evaluation in
aquaculture environments are scarce, and adequate sensors for more demanding operations, such
as real-time monitoring or low operation ranges, are missing [14]. So far, known methods for dCO2

measurements in an aqueous medium, include gas chromatography [8,15], colorimetric sensors
(fluorescence) [8,16], amperometry [17], potentiometry [4,18,19], UV/Vis spectrophotometry [20,21],
and IR spectrometry [8,22]. However, it is reported that evaluating dCO2 using some of the techniques
referred above is difficult or not adequate for field work, and other analytical techniques are
preferred [8]. In aquaculture, the utilization of commercial dCO2 analyzer (such as OxyGuard,
model Portable CO2 Analyzer, Denmark) has been thoroughly studied and described based on dCO2

partial pressure detection via IR absorption, needing a certain flow under the probe membrane for
best performance [12,14,23]. More recently, optical sensors gained strength in the sensing area and
for a wide variety of analytes, with no exception for dissolved carbon dioxide. These sensors can
be more robust, compact, fast responding, and cheaper [8,24]. Usually, these optical devices are
fluorescence-based (light emission) or colorimetric-based (light absorbance) sensors [8]. An example
of the first method utilization is referred by Atamanchuk et al., who used an optrode for measuring
the partial pressure of dCO2 in natural waters. The sensor is based on pH changes originated by CO2

diffusion and fluorescence signal response [25]. Contreras-Gutierrez et al. also developed a dCO2

fiber optic sensor using a polymer matrix directly combining a fluorescent dye with the polymer
molecule [26]. More recently, Thomas et al. added a second dye to extend the fluorescence lifetime from
nanoseconds to microseconds, which reduced the cost of the interrogation system used to interrogate
only the fluorescence of the first dye [27]. Normally, these are called “wet sensors” [8]. These kind of
sensors require the use of an aqueous solution phase, which can be seen as a disadvantage [25]. Its
response can be affected if the osmotic pressure of the tested system is significantly different from that of
the sensor [8,28]. On the other hand, it is possible to detect and evaluate dCO2 using also the so-called
“dry sensors” [8]. This type of sensors use a solid-state system that itself uses a quaternary ammonium,
QA+OH, as a transfer agent (TA) to detect dissolved carbon dioxide, and these form a very popular
system these days [8]. However, it is crucial to choose a suitable material according to the required
applications. For example, Mills and Yusufu (2016) [1] reported a promising colorimetric-based dry
sensor using a pH-sensitive dye, thymol blue. Nevertheless, the thymol blue membrane decreases
its sensibility in water, which can be a problem for applications requiring high sensitivity. Therefore,
a material is required that keeps its sensing properties in different application environments. In the
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present work, a new sensing device was developed, combining a solid-state membrane based on
a colorimetric indicator, poly p-nitrophenol (pNPh), with multimode fiber optic patch cords and a
dual wavelength LED. This sensing platform works with a ratiometric detection scheme to measure
the absorbance changes caused by the dCO2 interactions with the chemical membrane. The sensing
chemistry comprises a thin layer formed by a colorimetric indicator/solvent/TA/plasticizer generated
by spin-coating on the top of a Mylar foil (as substrate). The resultant layer contains a sensitive dye in
its deprotonated anionic form, which is subsequently covered by a hydrophobic silicone layer fixed in
a proper support specially designed for the purpose. The sensor was tested for low dissolved carbon
dioxide concentrations (needed for adequate water quality monitoring and control) with the goal of
studying its viability for aquaculture applications.

2. Materials and Methods

2.1. Chemical Reagents and Other Materials

The sensing membrane was obtained through complex cocktails developed with the following
chemicals: p-nitrophenol (Sigma-Aldrich ReagentPlus®, ≥99%, St. Louis, MO, USA) as a colorimetric
monomer for poly pNPh synthesis; tetraoctylammonium hydroxide solution (TOA-OH, Sigma-Aldrich,
20% in methanol) as a quaternary ammonium, and hydrogel D4 solution (AdvanceSource Biochemicals,
10% in Ethanol, 96%; Lawrenceville, NJ, USA). Sylgard 184 (Dow Corning, 10:1; Midland, MI, USA)
was used as a permeable silicone to cover the sensing membrane. Dry nitrogen (N2) was supplied
from a 50 L bottle (Linde, ≥99.99%; Dublin, Ireland) and CO2 was supplied from a 30 L bottle (Linde,
≥99.99%). For chemical calibrations, citric acid (C6H8O7, Merck®; Darmestadt, Germany) and sodium
carbonate (Na2CO3, Sigma-Aldrich, >99.5%; St. Louis, MO, USA) were used.

2.2. Sensing Layer Preparation and Sensing Chemistry

The sensing layers were attained by the dissolution of 2.00 mg·L−1 of poly pNPh in 0.05 mL of a
MeOH:H2O solution (1.5:1) and 0.50 mL of 0.50 M TOA-OH solution. After total dissolution, 0.10 mL of
a 10% hydrogel D4 solution was added to ensure the formation of a network chain of a single polymer
molecule to form one big molecule on the macroscopic scale. The resulting cocktail was spread on
a Mylar foil by spin-coating (900 rpm for 60 s) and allowed to dry for 2 h. The resulting sensing
membranes should be stored at 4 ºC until the encapsulation process. The sensing chemistry comprises
a sensitive dye in its deprotonated anionic form, resulting from the ion pair formation, QA+pNPh−.
The formed ion pair is normally associated with a few molecules of water, QA+pNPh−.xH2O, which
can explain its interaction with the dissolved CO2 (Equation (1) adapted from reference [8]). Figure 1
shows the preparation process of the sensing membrane.

QA+pNPh−·xH2O + CO2 � QA+HCO−3 ·(x− 1)H2O·HpNPh (1)
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2.3. Dissolved CO2 Optrode Configuration

The sensing device is based on a transmission colorimetric setup combining a sensing layer placed
between a dual wavelength LED and a large core optical fiber (Figure 2a).
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Figure 2. (a) Sensing head assemble and sensing layer position; (b) Sensing layer encapsulation.

As mentioned before, the sensing layer needs to be encapsulated between two protective
membranes, allowing it to be dipped in water. For this process, two plastic supports covered by a
thin film (approximately 90 µm) of Sylgard 184 (base:curing agent, 10:1; Dow Corning, Midland, MI,
USA ), previously cured, were used. The sensing membrane was placed between the plastic parts
that were sealed with fresh silicone and allowed to dry overnight at 25 ◦C. The sensing membrane
support (Figure 2b) and the sensing head structure (Figure 2a) were 3D printed (Zortax M2000; material:
Z-Ultra T; Olsztyn, Poland). As shown in Figure 2a, the sensing head is composed by a light-emitting
diode (LED) box containing an additive color model in which red, green, and blue light are added
together in various ways to reproduce a broad array of colors (a.k.a. RGB LED; Kingbrigth Europe,
Lindenau, Issum, Germany), powered by an electric wire, working in two specific wavelengths: 460 nm
for blue light (detection band) and 645 nm for red light (reference signal). A fiber optic connector
was placed in the other extreme to attach a fiber optic cable to guide the light to a mini spectrometer
(Hamamatsu C12880MA, Shizuoka, Japan) in the UV-Vis band incorporated into an electronic platform
specially designed for this purpose. Both sides of the sensing head are separated from the external
medium by an optical window (glass) that also contains two plastic lenses (Roithner LaserTechnik
GmbH, Wien, Austria) inside to collimate the beam, which improves the collected signal. This
configuration allows a great proximity (approximately 100 µm distance) between the aqueous medium
and the sensing surface, which measures without stirring (similarly to potentiometric electrochemical
sensors and some optrodes). The use of fiber optic cables allows for potentially real time, multipoint,
and continuous measurements as well as the construction of a miniaturized sensing platform [14,29].
As the mini spectrometer needs to be connected to a PC, the data acquisition is possible at a larger
scale. For data acquisition and real-time data observation, homemade LabView interactive software
was designed to process the optical signals.

2.4. Assessment of the dCO2 Optrode Performance

2.4.1. Experimental Setup and Conditions for Laboratory Assays

A set of tests was performed to evaluate the optrode performance in different laboratory situations.
Initially, the sensor was tested with a humidified gas mixture composed by CO2 and N2 supplied by
gas bottles. The percentage of the gases in the mixture was varied using high-resolution mass-flow
controllers (Brooks, SLA5800 Series; Hatfield, PA, USA)). The gases were mixed in a vessel before
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humidification. These types of tests were performed to confirm that the chemical membrane was
sensitive to gaseous CO2 variations. Further laboratory assays were conducted using the same gas
mixing bottle with 200 mL of deionized water (Wasserlab, Micromatic-Type II Analytical Grade Water;
Barbatáin (Navarra), Spain). The same concentrations of gases were injected to test the sensor behavior
to dCO2 variations. Both tests were made without stirring. Figure 3 shows the general scheme of the
laboratory setup.
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2.4.2. Optrode Calibration

The sensor was calibrated using deionized water and saline solution (at 2.5%) for a range of
dCO2 concentrations from 1.00 to 20.00 mg·L−1. The maximum value tested was the maximum
recommended value for fish farming [30]. The calibration tests were made using a standard Na2CO3

solution (0.300 ± 0.001 g dissolved in 50.00 ± 0.05 mL of ultra-pure water) with well-known dCO2

concentrations in deionized water and in saline aqueous solution (2.5%), which were previously
acidified with citric acid (pH ≈ 3; V = 200 mL). The formation of carbon dioxide results from the
stoichiometric reaction of sodium carbonate in an aqueous citric acid solution, as shown in Equation (2).
This procedure was adopted in order to compare the results with calibration procedures implemented
by commercial CO2 analyzers (namely OxyGuard).

3CO2−
3 + 2C6H8O7 → 2Na3(C6H5O7)

3− + 3H2O + 3CO2 (2)

Through the calibration curve it was possible to determine the sensor limit of detection (LOD)
and the limit of quantification (LOQ) using the “calibration curve parameters method” [31]. The
mathematical Equations (3) and (4) were used for LOD calculation, where YLD is the instrumental
signal of the LOD, a0 is the zero intercept value, t is the unilateral critical value for a 90% confidence
interval for (n-p) degrees of freedom (n is the number of points of the calibration curve; p is the number
of parameters), SDa0 is the standard deviation of the zero intercept value, XLD is the concentration
corresponding to the LOD instrumental signal, and b is the slope of the calibration curve. Equations (5)
and (6) were used for LOQ, where YLQ is the instrumental signal of the LOQ, and XLQ is the concentration
corresponding to the LOQ instrumental signal (adapted from reference 30). All the other symbols for
Equations (5) and (6) are described in the description of Equations (3) and (4).

yLD = a0 + 2× tu
0.10(n−p) × SDa0 (3)
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xLD =
yLD − a0

b
(4)

yLQ = a0 + 3× 2× tu
0.10(n−p) × SDa0 (5)

xLQ =
yLQ − a0

b
(6)

2.4.3. Optrode Precision, Accuracy, Sensitivity and Response Time in Deionized Water and Saline
Water (2.5%)

The calibration procedure was followed by sequential tests to evaluate precision (in the form
of coefficient of variation; CV, % = standard deviation (SD)/mean × 100), accuracy ((real value −
experimental value)/real value), and response time (signal time stabilization to 95% of equilibrium
response, t95%) in the following water conditions: deionized water and saline water (2.5%). Different
dCO2 concentrations were tested in the range from 1.00 to 20.00 mg·L−1. Three independent runs
were done for each concentration, and the data acquisition was made every 100 milliseconds. As the
response time, it was considered the time taken by the sensor to reach a new concentration starting
from the immediately preceding concentration (cumulative time). With the goal of comparing the new
sensor response time with the response time of a commercial sensor recommended for aquaculture
(OxyGuard CO2 Analyzer® with data logging; OxyGuard, Farum, Denmark), tests using the two
different devices were made in deionized water. Optrode sensitivity (ability to detect small variations)
in a very low dCO2 range was also tested in the same water conditions. Known dCO2 concentrations
were varied by the incremental addition of 0.25 mg·L−1 between 1.00 and 2.00 mg·L−1 until total signal
stabilization. For this study, standard solutions were used as described in Section 2.4.2.

2.4.4. Agitation Conditions

All the tests performed with the new sensor using gas injection were made without agitation,
including the dissolved CO2 dynamics studies. However, some agitation was required for the
calibration curve measurements to promote the reaction between the known amount of solid Na2CO3

added to the acid media and produce the expected amounts of dCO2. Laboratory tests using the
OxyGuard analyzer were always performed with stirring.

2.5. Dissolved CO2 Dynamics in a Recirculating Shallow Raceway System (SRS+RAS) Prototype:
Performance Comparison between New dCO2 Optrode and Oxyguard CO2 Analyzer®

2.5.1. Prototype Characteristics

One of the aims of this work was to contribute to a solution for the dCO2 monitoring needs of the
aquaculture industry. Nevertheless, when working in real aquaculture facilities, several uncontrolled
events occur, which need to be avoided to guarantee consistent testing and the monitoring of dCO2

in water. This can only be achieved in controlled laboratory conditions. Therefore, to be able to
simulate diverse intensive aquaculture situations, a laboratory prototype was needed. So, a shallow
raceway tank (SRS) was used with 0.4 m2 of area and 7 cm of water height, as reported by Borges et al.,
which was linked to a water treatment loop (with sump, mechanical filter, and aerated biological
filter), representing a total working volume of 100 L [14]. The whole system mimicked a recirculating
aquaculture system (RAS) working at >95% water recycling.

2.5.2. Dissolved CO2 Dynamics Studies in the SRS+RAS Prototype

Gas injection was done using a special cylindrical diffuser (Dupla CO2 reactor 400), which was
connected to an Eheim Hj-731, 550 L·h−1 pump. Carbon dioxide was delivered by an aquarium-type
compressed CO2 system (Dupla CO2 Set Delta 400). The injection device was placed near the bottom
of the tank, after the inlet pipe. The continuous monitoring of dCO2 was made using the new dCO2

optrode as well as the OxyGuard CO2 Analyzer® with logging capabilities. Both devices were placed
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near of the prototype tank outlet. Two independent runs were done, injecting gaseous CO2 for 1 h and
15 min with a flow rate of approximately 10 mL·min−1. The next run was carried out after complete
CO2 degassing, as indicated by zero readings in the sensors. In both tests, trout food was introduced
into the water, and after some time, the excess was removed to simulate the fish feeding process and
study the behavior of the new sensor under these conditions. The experiments were performed in a
controlled temperature room at 15 ◦C, using dechlorinated tap water.

2.6. Continuous dCO2 Monitoring in an Experimental Fish Culture System with Water Recirculation

Short-time monitoring of a fish culture system was performed in a laboratory fish culture system
using water recirculation in order to evaluate the behavior of the sensor under in situ conditions and
continuous dissolved CO2 monitoring. The aquaculture recirculation system consisted of two fish
tanks of 300 L each and contained a mechanical filter, a sump tank with a trickling filter, and a third
tank equipped with a moving bed biofilter (MBBR). The system, with a total volume of 1000 L of
freshwater, was operated at 80% RAS. Cultivated fish were rainbow trout (Oncorhynchus mykiss), with
110 g average weight and a density of 10.6 kg.m−3. Sampling points comprehended one fish tank and
the tank containing the MBBR biofilter. The new dCO2 optrode and the commercial sensor Oxyguard
CO2 Analyzer® were used simultaneously for dCO2 evaluation.

3. Results

3.1. Experimental Laboratory Results: Gaseous CO2 and dCO2 Measurements

The sensing membrane response was evaluated in a closed container with a controlled gas mixture
of CO2 and N2 to simulate different concentrations of CO2. Some of the obtained spectra are shown in
Figure 4. As expected, the obtained signal for red light did not change its amplitude, while the blue
LED signal enhanced its amplitude with the CO2 increase. This signal enhancement is associated to a
color intensity decrease by the membrane due to its reaction with CO2. Comparing the relative change
of the intensity peaks at each gaseous CO2 concentrations, it was demonstrated that the new sensor
has higher sensitivity for the lower CO2 concentrations tested.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 15 

 

and 15 min with a flow rate of approximately 10 mL·min−1. The next run was carried out after 
complete CO2 degassing, as indicated by zero readings in the sensors. In both tests, trout food was 
introduced into the water, and after some time, the excess was removed to simulate the fish feeding 
process and study the behavior of the new sensor under these conditions. The experiments were 
performed in a controlled temperature room at 15 °C, using dechlorinated tap water. 

2.6. Continuous dCO2 Monitoring in an Experimental Fish Culture System with Water Recirculation 

Short-time monitoring of a fish culture system was performed in a laboratory fish culture 
system using water recirculation in order to evaluate the behavior of the sensor under in situ 
conditions and continuous dissolved CO2 monitoring. The aquaculture recirculation system 
consisted of two fish tanks of 300 L each and contained a mechanical filter, a sump tank with a 
trickling filter, and a third tank equipped with a moving bed biofilter (MBBR). The system, with a 
total volume of 1000 L of freshwater, was operated at 80% RAS. Cultivated fish were rainbow trout 
(Oncorhynchus mykiss), with 110 g average weight and a density of 10.6 kg.m−3. Sampling points 
comprehended one fish tank and the tank containing the MBBR biofilter. The new dCO2 optrode and 
the commercial sensor Oxyguard CO2 Analyzer® were used simultaneously for dCO2 evaluation. 

3. Results 

3.1. Experimental Laboratory Results: Gaseous CO2 and dCO2 Measurements 

The sensing membrane response was evaluated in a closed container with a controlled gas 
mixture of CO2 and N2 to simulate different concentrations of CO2. Some of the obtained spectra are 
shown in Figure 4. As expected, the obtained signal for red light did not change its amplitude, while 
the blue LED signal enhanced its amplitude with the CO2 increase. This signal enhancement is 
associated to a color intensity decrease by the membrane due to its reaction with CO2. Comparing 
the relative change of the intensity peaks at each gaseous CO2 concentrations, it was demonstrated 
that the new sensor has higher sensitivity for the lower CO2 concentrations tested. 

 
Figure 4. Response of the new optrode to gaseous CO2 variations to test the activity of the sensing 
membrane. 

At this point, it was notorious that the sensing membrane is sensible to CO2 variations and the 
sensor was ready to be tested in aqueous media. Thus, it was required for the membrane to be 
waterproof. This was a difficult and lengthy process, and several approaches were tried to 
encapsulate the sensing membrane. The first method attempted consisted of spin coating the used 
silicone directly on the top of the sensing membrane [32]. However, some reactions between the 

Figure 4. Response of the new optrode to gaseous CO2 variations to test the activity of the
sensing membrane.

At this point, it was notorious that the sensing membrane is sensible to CO2 variations and
the sensor was ready to be tested in aqueous media. Thus, it was required for the membrane to be
waterproof. This was a difficult and lengthy process, and several approaches were tried to encapsulate
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the sensing membrane. The first method attempted consisted of spin coating the used silicone directly
on the top of the sensing membrane [32]. However, some reactions between the sensing layer and
the silicone were observed, which affected the silicone-curing process. A second attempt used the
“knife technique”. At this phase, the silicone was spread on the top of the sensing layer using a spatula,
controlling the silicone layer thickness using mechanical guides with known height. As the problems
reported before were also verified, a new approach was needed. So, the solution was spin coating the
silicone on the top of a substrate (Mylar foil) and forming a cured silicone porous membrane that was
later on attached onto the sensing membrane using specially designed 3D-printed supports. To study
the sensor stability in water, a glass container with 200 mL of deionized water was used where different
dCO2 concentrations (in percentage versus N2) were bubbled. Several cycles were done between 0.33%
and 1.67% of dCO2 (always keeping the same flow rate), during more than 3 h. A timeline graph
was plotted, which is shown in Figure 5a. The stability of the sensor was confirmed. However, some
fluctuations are visible when the sensor achieves the target concentration. These variations can be
explained by the turbulence produced by the bubbles of gas in water. To compare the behavior of the
sensor in the two environments (dCO2 versus CO2), a test in gas atmosphere, using humidified air,
was performed. The resultant timeline can be seen in Figure 5b. A total of six complete cycles were
done in each experiment, and it is possible to see that in air, the six cycles were completed in 1 h and
40 min against the 3 h and 20 min of the test in water. This increase in the signal response time is
expected due to the time that the gases take to dissolve in water. The resistance offered by the water to
the degassing from the membrane also contributes to the increase in the signal response time. As the
CO2 in the system was gas injected in this test, the time observed cannot be measured as the sensor
response time and should be considered the setup response time. Moreover, the sensor response time
was estimated using a supersaturated standard solution in Section 3.3.
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3.2. Optrode Calibration Curves and Associated Data

The sensor was calibrated for an operation range between 1.00 and 20.00 mg·L−1dCO2 in different
aqueous solutions (deionized water and saline water at 2.5%). As referred before, this is the relevant
concentration range for aquaculture operations. Calibration curves and calibration data can be found
in Figure 6 and Table 1, respectively. The sensor response to the successive standard dCO2 solutions
is logarithmic, so the data were plotted as a function of dCO2 logarithmic concentration to attain
linearity. The results show a different sensor response for fresh and saline water. This interfering
process resulted in unexpected results obtained for the calibration curve in saline water, which should
run in the complete concentration range above the curve for deionized water [33]. Eventually, the
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presence of salt is affecting the silicone membrane permeability and interfering with the calibration
process. The understanding of this process needs more extensive study.Sensors 2019, 19, x FOR PEER REVIEW 9 of 15 
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in different aqueous solutions.

The LODs and LOQs (Table 1) are also different for the different aqueous solutions. Nevertheless,
these results suggest that the sensor is suitable to work in the concentration range found in aquaculture
for both types of water [34].

Table 1. Calibration data obtained for the new optrode chemical calibration and the respective limit of
detection (LOD) and limit of quantification (LOQ).

Calibration
y = a + bx Intercept (a) Slope (b) Pearson’s R-Square Adj.

R-Square
LOD

(mg·L−1)
LOQ

(mg·L−1)

Deionized water 0.666 ± 0.008 0.271 ± 0.009 0.996 0.992 0.991 1.225 1.843

Saline water (2.5%) 0.501 ± 0.013 0.405 ± 0.014 0.996 0.992 0.991 1.048 1.154

3.3. Optrode Precision, Accuracy, and Response Time in Deionized Water and Saline Water (2.5%)

The new dCO2 optrode performance data for a range of concentrations between 1.00 and
19.8 mg·L−1 in different aqueous solutions can be found in Table 2. There are different ranges for
precision in the different aqueous solutions. For deionized water, the range of precision is from 5.87%
to 19.1%, while for saline water (2.5%), the range of precision is from 1.19% to 1.43%. These results
show that the new sensor is more precise for measurements in saline water. It is possible to see that
the precision in both cases is better in the range from 1.00 to 8.97 mg·L−1, which is the less dangerous
range to fish life and that which is normally is found in aquaculture waters. The accuracy changed
from the extreme concentrations (1.00 and 19.8 mg·L−1) to the intermediate concentrations: 2.99 to
12.9 mg·L−1 for deionized water and 2.99 to 14.9 mg·L−1 for saline water (2.5%).



Sensors 2019, 19, 5513 10 of 16

Table 2. Optrode performance (mean ± standard deviation; n = 3) in different aqueous solutions at
different dCO2 concentrations. CV: coefficient of variation.

[dCO2]
(mg·L−1)

Deionized Water (0%) Saline Water (2.5%)

M.C. 1

(mg·L−1)
P 2

(CV%)
|Acc| 3

(mg·L−1)
M.C.

(mg·L−1)
P

(CV%)
|Acc|

(mg·L−1)

1.00 1.14 ± 0.10 5.87 0.14 ± 0.07 1.13 ± 0.01 1.19 0.13 ± 0.01

2.99 2.77 ± 0.14 5.15 0.08 ± 0.05 2.81 ± 0.03 1.00 0.06 ± 0.01

4.99 4.56 ± 0.34 7.52 0.09 ± 0.07 4.58 ± 0.07 1.50 0.08 ± 0.01

6.98 6.47 ± 0.62 9.56 0.09 ± 0.06 6.49 ± 0.09 1.51 0.07 ± 0.01

8.97 8.61 ± 0.88 10.2 0.09 ± 0.03 8.41 ± 0.11 1.31 0.06 ± 0.01

10.9 11.1 ± 1.7 15.1 0.11 ± 0.10 10.7 ± 0.2 2.70 0.02 ± 0.02

12.9 13.5 ± 2.2 15.9 0.11 ± 0.11 13.1 ± 0.2 1.51 0.02 ± 0.01

14.9 16.1 ± 3.2 19.8 0.11 ± 0.11 15.6 ± 0.4 2.62 0.05 ± 0.03

19.8 22.2 ± 4.2 19.1 0.14 ± 0.19 22.6 ± 0.3 1.43 0.14 ± 0.02
1 measured concentration; 2 precision; 3 accuracy (absolute values).

The response time (t95%) of the sensor is almost the same in both types of water, with a slight
increase for saline water (2.5%) (Figure 7a). The degassing time (tg) recorded was about twice as
long as the response time observed in the reaction to CO2 increase (tg = 2t95%). Comparing the dCO2

optrode and the commercial sensor behavior, in Figure 7b, it is possible to see that the time the new
sensor takes to respond to concentration increments of 1.00 mg·L−1 and 2.00 mg·L−1 decreases with
increasing concentration, but it is on average around t95% ≈ 3 min. On the other hand, the response
time of the commercial sensor increases along the experiment. With this test, it is concluded that the
dCO2 optrode is faster than the tested commercial sensor in the range of 2.99 to 19.8 mg·L−1.
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(b) comparison of the cumulative response time (t95%) between the new dCO2 sensor and OxyGuard
CO2 Analyzer in deionized water.

3.4. Optrode Sensitivity

The new optrode showed a suitable sensitivity response to small increments of dCO2 concentrations
in deionized water, as displayed in Table 3. The accuracy increased with increasing dCO2 concentrations.
The response time in this range is similar to the results observed in higher concentrations.
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Table 3. Sensitivity of the new dCO2 sensor to 0.25 mg·L−1 increments (starting from 1.00 mg·L−1) until
signal time stabilization to 95% of equilibrium response (t95%) in deionized water.

[dCO2]final
(mg·L−1)

M.C. 1

(mg·L−1)
|Acc| 2

(mg·L−1)
Response Time

(s)

1.25 1.39 0.56 103

1.50 1.55 0.11 152

2.75 1.76 0.01 137
1 measured concentration; 2 accuracy (absolute values).

3.5. Dissolved CO2 Dynamics in a SRS+RAS Prototype

The goal of this experiment was to simulate the conditions present in fish farms after the feeding
events, where it was supposed to have the hardest conditions for monitoring. The results of a
monitoring experiment with a duration of 4 h and 15 min (with two complete cycles of gassing and
degassing) can be seen in Figure 8. It is visible that both sensors showed the pre-existence of some
dissolved CO2 in the system water before the gaseous CO2 injection. The new sensor showed a
starting concentration around 0.75 mg·L−1, and OxyGuard showed a dCO2 concentration around
1.00 mg·L−1 (but the displayed value varied successively between 1.00 and 2.00 mg·L−1 before the gas
bottle opening). In run 1, after 10 min of CO2 injection, the commercial sensor showed a concentration
around 3.75 mg·L−1, while the dCO2 optrode only detected 2.00 mg·L−1. This can be explained by the
higher initial value displayed by the OxyGuard sensor. However, after 20 min, the values given by
both sensors were the same (around 5.00 mg·L−1), and from this point on, the new optrode was able to
reach the next concentration in a shorter period of time. Furthermore, the discrepancy between both
sensors at the same instant should be related to the different response time. The same was observed in
the monitoring of the degassing process after the CO2 supply was cut (around 60 min).
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Figure 8. Continuous dissolved CO2 profile in the recirculating shallow raceway system (SRS+RAS)
prototype, using the new dCO2 sensor (dashed line) and the OxyGuard CO2 Analyzer (dotted line),
and concomitant water pH variations (short dot line).

In run 2 (1 h 50 min after the first one), the dCO2 optrode showed a starting concentration
of 1.58 mg·L−1, and the OxyGuard sensor showed again variations between 1.00 and 2.00 mg·L−1.
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When the CO2 supply bottle was opened, the new sensor response was always faster than the used
commercial sensor, achieving 4.00 mg·L−1 in 10 min, while the Oxyguard sensor only displayed
2.00 mg·L−1. Even in the degassing period (started at 170 min), the dCO2 optrode showed around
6.00 mg·L−1 after 30 min, while the OxyGuard sensor showed 9.00 mg·L−1. The two sensors showed
again different maximum concentrations. Nevertheless, the dCO2 optrode showed the same maximum
concentration 1 h after injection in both assays, registering 12.00 mg·L−1, while the commercial sensor
registered 10.00 and 11.00 mg·L−1, respectively. Looking for these results, we can say that the dCO2

optrode has shown a better performance than the used commercial sensor, mainly considering the
response time. The pH was also monitored, and 10 min after the first CO2 injection, it decreased from
7.90 to 7.60, reaching 7.19 in the maximum CO2 registered concentration. In run 2, the water pH also
started around 7.90 and attained 7.12 in the same time period, which is a result that can be considered
a match between both runs. The experimental error for tests performed using the new sensor was
around [dCO2] ± 0.50 mg·L−1. The error was calculated using Equation (7), where Sy/x is the standard
error of the estimate, (yi − yi

′) is the deviation of each measurement, and n is the number of points of
the calibration curve; and Equation (8), where Sx0 is the x error, y0 is the experimental signal of the
instrument for which x0 is to be determined, and m is the number of repetitions [31]. The OxyGuard
Analyzer experimental error was given by the manufacturers in the data sheet of the equipment.

Sy/x =

√∑
i(yi − yi′)

2

n− 2
(7)

Sx0 = ±
Sy/x

b
×


√√

1
m

+
1
n
+

(y0 − y)2

b2∑
i(xi − xi)

2

 (8)

3.6. Laboratory Fish Culture System dCO2 Evaluation

In this test, it was planned to study the performance of the dCO2 optrode in a real aquaculture
situation with fish in the system and CO2 produced by fish respiration. The resultant data are shown in
Figure 9. The dissolved CO2 optrode and Oxyguard CO2 Analyzer® were placed close to each other in
the sampling locations, and the samples were taken at the same time. The data logging results showed
that the optrode was sensitive to small amounts of dissolved CO2 and the readings took around 2 min
and 30 s to stabilize, reaching 3.00 mg·L−1 (Figure 9B). Simultaneous commercial sensor readings did
not change from 1.00 mg·L−1 during the experiment. After about 10 min of reading, the sampling
point was changed, as the sensors were placed in the biofilter tank (logging was stopped during
this switch). As expected, the dCO2 optrode showed a decrease in the dissolved gas concentration,
reaching 2.35 mg·L−1 (Figure 9C). Theoretically, these are acceptable values for dCO2 concentrations in
those situations, as some degassing occurs in the sump, prior to the biofilter. The commercial sensor
maintained the 1.00 mg·L−1 reading. Although there was some curiosity of the fish by the new sensor
presence (when it is on, a light is seen), no noticeable behavioral changes were observed.



Sensors 2019, 19, 5513 13 of 16

Sensors 2019, 19, x FOR PEER REVIEW 12 of 15 

 

started around 7.90 and attained 7.12 in the same time period, which is a result that can be 
considered a match between both runs. The experimental error for tests performed using the new 
sensor was around [dCO2] ± 0.50 mg·L−1. The error was calculated using Equation (7), where Sy/x is 
the standard error of the estimate, (yi – yi’) is the deviation of each measurement, and n is the number 
of points of the calibration curve; and Equation (8), where Sx0 is the x error, y0 is the experimental 
signal of the instrument for which x0 is to be determined, and m is the number of repetitions [31]. The 
OxyGuard Analyzer experimental error was given by the manufacturers in the data sheet of the 
equipment. 

𝑆௬/௫ = ඨ∑ (𝑦௜ − 𝑦௜′)ଶ௜ 𝑛 − 2  (7) 

𝑆௫଴ = േ 𝑆௬/௫𝑏 × ቌඨ 1𝑚 + 1𝑛 + (𝑦଴ − 𝑦ത)ଶ𝑏ଶ ∑ (𝑥௜ − 𝑥̅௜)ଶ௜ ቍ (8) 

3.6. Laboratory Fish Culture System dCO2 Evaluation 

In this test, it was planned to study the performance of the dCO2 optrode in a real aquaculture 
situation with fish in the system and CO2 produced by fish respiration. The resultant data are shown 
in Figure 9. The dissolved CO2 optrode and Oxyguard CO2 Analyzer® were placed close to each 
other in the sampling locations, and the samples were taken at the same time. The data logging 
results showed that the optrode was sensitive to small amounts of dissolved CO2 and the readings 
took around 2 min and 30 s to stabilize, reaching 3.00 mg·L−1 (Figure 9B). Simultaneous commercial 
sensor readings did not change from 1.00 mg·L-1 during the experiment. After about 10 min of 
reading, the sampling point was changed, as the sensors were placed in the biofilter tank (logging 
was stopped during this switch). As expected, the dCO2 optrode showed a decrease in the dissolved 
gas concentration, reaching 2.35 mg·L−1 (Figure 9C). Theoretically, these are acceptable values for 
dCO2 concentrations in those situations, as some degassing occurs in the sump, prior to the biofilter. 
The commercial sensor maintained the 1.00 mg·L−1 reading. Although there was some curiosity of 
the fish by the new sensor presence (when it is on, a light is seen), no noticeable behavioral changes 
were observed. 

 
Figure 9. New optrode fish culture system experimental results obtained measuring dCO2 produced 
by rainbow trout respiration in fresh water. 

  

Figure 9. New optrode fish culture system experimental results obtained measuring dCO2 produced
by rainbow trout respiration in fresh water.

4. Discussion

The response of the new dCO2 optrode was studied with promising results for real-time monitoring
applications. Using the reaction of the sodium carbonate in acid media [32], it was possible to produce
known and precise amounts of dissolved carbon dioxide to calibrate the new optrode in the required
range of operation. Moreover, the sensor could work in a larger range of dCO2 levels with the respective
calibration. This method shows that this sensor is capable of operating in environments where the pH
is quite low (pH ≤ 3) in contrast with most other naked optical CO2 sensors [1].

This type of calibration was also used by Fritzsche et al. (2018) [35] to calibrate a sensor for marine
applications. However, at low CO2 concentrations, the sensor had a response time of over 30 min.
which is not suitable for applications in aquaculture, in contrast with the new optrode (response in the
range of ≈120 s for a small variation of concentration ≈0.25 mg·L−1). Sensitivity studies showed that
the new optrode is capable of detecting and evaluating small dCO2 variations, not just in a low range
but also in higher dCO2 concentrations. Furthermore, the sensitivity of the membrane is not affected by
changing the work environment. In other works [1], the change from air to water causes a decrease in
the CO2 sensitivity, which is not observable in the results presented for the new optrode. The precision
of the new optrode was also attested, showing a better performance in saline water (2.5%), especially
for higher concentrations (>10 mg·L−1). Although the precision reported by Borges et al. [14] for the
commercial sensor in saline water is similar, the new dCO2 optrode shows superior accuracy in the
experimental tests. In addition, in what concerns shelf life, the sensing film can be stored in a sodium
carbonate solution [36] at low temperatures (2 < T < 10 ◦C) for at least 6 months, and can be used after
a new calibration. As stirring is not needed, the sensor is suitable to be used for continuous dissolved
CO2 monitoring, contrary to the systems used by other authors [14,37].

Although the sensor body is 3D printed, it was proved that this material resulted in a robust
enough apparatus that can be used in real aquaculture environment, as SRS+RAS systems. In addition,
its size is appropriate to be used in such working conditions. The electronic part needs to be connected
to a PC, which acts as an energy supplier and also allows interaction with the specially designed
control software, which processes and stores the data in the memory with a minimum acquisition
time of 100 ms. Overall, it was demonstrated a compact portable solution that could be used to
realize multipoint readings in different parts of the recirculating system. In future embodiments,
this configuration can become even more compact and robust using more durable materials and a
micro-controlled electronics module with wireless capabilities.



Sensors 2019, 19, 5513 14 of 16

5. Conclusions

A new dissolved carbon dioxide sensing platform was demonstrated and validated, showing
its suitability and precision for continuous direct measurements of dissolved CO2 concentrations in
different aqueous solutions. In general, the best performance was found in saline solutions following
by the deionized water solutions. Sensor validation in the SRS+RAS prototype and in the laboratory
fish culture showed its versatility and appropriateness to be used in aquaculture systems as well as in
a larger field of applications.
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