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Abstract: This work presents an integrated Indoor Positioning System which makes use of WiFi signals
and RGB cameras, such as surveillance cameras, to track and identify people navigating in complex
indoor environments. Previous works have often been based on WiFi, but accuracy is limited. Other
works use computer vision, but the problem of identifying concrete persons relies on such techniques
as face recognition, which are not useful if there are many unknown people, or where the robustness
decreases when individuals are seen from different points of view. The solution presented in this
paper is based on an accurate combination of smartphones along with RGB cameras, such as those
used in surveillance infrastructures. WiFi signals from smartphones allow the persons present in the
environment to be identified uniquely, while the data coming from the cameras allow the precision
of location to be improved. The system is nonintrusive, and biometric data about subjects is not
required. In this paper, the proposed method is fully described and experiments performed to test
the system are detailed along with the results obtained.

Keywords: indoor positioning; WPS; RGB cameras; WiFi; fingerprint map; trajectory; IPS; computer
vision

1. Introduction

Indoor Positioning Systems (IPS) are taking on a key role in many domains, creating multiple
opportunities in the era of artificial intelligence. Tracking the movement of robots/people and the use
of data engineering makes it possible to optimize energy and costs and improve user experience by
means of a proactive and reactive environment. These systems are also useful in improving medical
applications.

Among active localization techniques, WiFi-based Positioning Systems (WPS) are a well-known
option for tracking the movements of people in indoor environments. WPS is a geolocation system
that uses the characteristics of nearby WiFi hotspots and other wireless access points to discover where
a device like a smartphone is located. Recent WPSs have obtained an average error of 1.67 m [1,2],
which is not very accurate for people tracking. Due to the error produced by these techniques, other
systems have been developed. Technologies based on computer vision offer a different approach to the
localization problem, but are not able to identify people easily. In these systems, identification is carried
out by means of face detection [3] and recognition [4], appearance features [5], or color or patterns
code [6]. Computer vision techniques have problems with occlusions and they need information about
the users in the system.
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A previous work of the authors [7] presented an indoor positioning system to estimate the location
of people navigating complex indoor environments. The developed technique combines WiFi and
RGB-D cameras in complex inhabited environments, consisting of various connected rooms, where
people are moving freely. However, that paper considered that the number of people detected by
WiFi positioning and detected by RGB-D needed to be equal, and required the installation of RGB-D
cameras, such as Kinect v2—not usually available in common environments.

A new approach is presented in the present paper that combines WiFi and RGB cameras instead of
RGB-D sensors, which results in a much simpler infrastructure requirement. A proper transformation
to get a 3D model, based on the camera calibration parameters, is also used. The proposed approach
is based on the method presented in [8] to extract the bird’s-eye view of the scenario and people’s
trajectories. However, the method presented in [8] is restricted to the localization and tracking of
people in single rooms and does not identify them. The method has been extended for use in more
complex environments, such as hospitals or office environments, where there may be several rooms.
To identify people and improve the localization, a new algorithm that integrates visual data with WiFi
positioning is proposed.

The article is structured as follows: Section 2 explores the state-of-art of the technologies
considered in this paper. Section 3 shows how the system works with RGB, WiFi, and the process
of integrating both technologies. In Section 4, the different experiments and results carried out on
people navigating indoors are reported and the results obtained are discussed. Finally, Section 5 notes
the advantages and limitations of the presented system and suggests future developments based on
this method.

2. Overview of Related Work

Modern IPSs use different technologies to track the location of persons. For these technologies,
Koyuncu and Yang [9] suggest four different groups: (1) IPSs based on infrared or ultrasonic distances;
(2) based on signal triangulation or Bluetooth/WiFi/RFID fingerprint map; (3) based on computer
vision or the combination of such technologies as RFID or WiFi; and (4) inertial technologies (e.g.,
accelerometers and gyroscopes) or other types of sensor.

A survey of an optical indoor positioning system is presented in [10], where the authors classify
the existing alternatives, according to the reference used, to figure out the position of users in the scene
(e.g., 3D models, images, coded markers, or projected patterns). Different works have been developed
in computer vision to track people positioning. Some of these, such as OpenPTrack [11] or the systems
presented by Saputra et al. [12], Sevrin et al. [13], or Nakano et al. [14], consider a multicamera
solution based on the use of RGB-D sensors. Others, like the works published by Mohedano et al. [8]
or Elhayek et al. [15], follow an approach using common RGB cameras. Vision-based solutions can
track people, but do not easily identify concrete persons. Other techniques, such as face recognition [4]
or pattern recognition [6], look for a solution to the problem of identification.

WiFi Positioning Systems are mostly founded on the fingerprinting technique [16,17]. The Received
Signal Strength Indication (RSSI) is used to generate a map of the environment with 2D coordinates and
the values of signals received by different Access Points (APs), such as routers. A recent comparison
between these systems has been presented by He and Chan [18]. Among the most advanced techniques,
the authors explain how to make use of temporal or spatial signal patterns, user collaboration, and
motion sensors.

Torres-Sospedra et al. [19] have recently presented the comparison between results obtained in
IPIN (2014–2017) and Microsoft ISPN (2014–2017). The best results are obtained with a LIDAR system
(IPIN 2017), which has an error below 0.1 m. This system is not available in small devices and has a
bigger cost than other solutions. A WiFi fingerprinting-based system using a Bayesian filter was the
winner of the infrastructure-free category in MS-ISPN 2014, obtaining an average error of 1.67 m [1,2].
Infrastructure-free solutions do not require modifications in the scenario. In IPIN 2016, Guo et al. [20]
presented a WiFi and a Pedestrian Dead Reckoning-based system (PDR), which considers factors such
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as speed to calculate the next location starting from a fixed known position. An error of 1.5 m was
obtained. Other authors [21–23] have also studied this combination of technologies, WiFi and PDR,
but considering several limiting problems, such as the variation of WiFi signals and the drift of PDR.
Formulating the sensor fusion problem in a linear perspective and using a Kalman filter, an average
localization accuracy of 1 m was obtained. It is important to note that WiFi systems using the 2.4 GHz
range obtained better results than others [1].

The combination of different technologies is a way of improving the efficiency of traditional
WPSs [18,24,25]. The integration of data from RGB-D sensors and WiFi signals to provide more
accurate positioning was proposed in [7]. However, the installation of RGB-D sensors is not usual in
buildings and, in addition, it is not economical. The patent presented by Barton et al. [26] cited this
previous work, integrating RGB cameras and WiFi signals by posing a theoretical idea of computing a
proximity parameter to associate a person detected by a camera and the location data of a wireless
device. This approach is prepared for identifying people using smartphones by means of cameras, but
it does not cover a whole linear problem of multiple users, considering the trajectory of people in WiFi
and RGB. Other hybrid systems combine WPS with such technologies as Bluetooth [27], RFID [28] or
GSM [29], or Bluetooth beacon-based crowdsourced landmarks with inertial sensors [30] or GPS with
inertial sensors [31]. A different approach is followed by Biswas and Veloso [32], who use a different
technology (laser range-finder, RGB-D, or RSSI signals) depending on the position of a robot.

The IPSs are a useful way of creating reactive and proactive environments to enrich the experience of
users. Several authors, such as Tsetsos et al. [33], Dudas et al. [34], Matuszka et al. [35], or Lee et al. [36]
have integrated indoor navigation with semantic web technologies that focus on user activities.

The work presented in this article considers the trajectory of people in WiFi and RGB as a linear
problem and calculates an association matrix to improve WiFi location with computer vision. RGB
stereo-vision algorithms are used to track people in 3D and a novel algorithm integrates different
numbers of people detected by RGB/WiFi.

3. Analysis of the System

This section is composed of three subsections: Section 3.1 explains how the system works to
extract people’s trajectories from the RGB cameras. Section 3.2 presents how WiFi positioning works
to obtain their respective trajectories. Section 3.3 illustrates the proposed integration between these
two technologies: WiFi and RGB.

3.1. People-Tracking in RGB

Instead of developing a different approach to human detection in 2D using RGB, the problem
is solved by considering a well-known alternative based on neural networks. Among the previously
developed systems, some rely on the use of Haar filters [37] or Histograms of Oriented Gradients [38].
Recent systems use Deep Convolution Neural Networks (DCNN), such as the Faster RCNN Inception V2
COCO Model [39]. All of them are available in OpenCV, working simultaneously with TensorFlow.
Systems based on DCNN offer better results, detecting more people with a lower number of false
positives. However, these systems are slower, requiring more time to process images. Considering
that, the experiments have been carried out with a 2-s time stamp, so DCNN systems are feasible for
providing useful data. Concretely, Faster RCNN Inception V2 has been used to extract people from
images. Results obtained in this stage are a set of rectangles framing the different people detected.

For each rectangle obtained in the previous stage, a region has been extracted by comparing the
image with the static background of the scenario (obtained by each camera before the experiments).
Otsu-based segmentation on the Gaussian-filtered images, followed by some morphology, produces
a final binary image of each person, as shown in Figure 1. The top region of points is then used to
obtain the coordinates of the person, provided that the region has more than a particular number of
points. These coordinates, corresponding to the top of the person’s head, represent a better approach
to avoid variances due to static foreground occlusions produced at other points [8]. 3D coordinates are
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subsequently obtained by means of a Linear Triangulation Method [40] applied to the 2D coordinates
obtained from each camera. This method is carried out in 2 steps:

1. A first step consists of determining the camera projection matrix, L, associated to each camera,
before the experiments. It is important to mention that all cameras involved in the process must
satisfy the epipolar constraint. The L matrix allows the 3D coordinates to be related to the 2D
image perceived by the camera, according to LXi = ui, where Xi are the 3D coordinates of a
given point and ui are its corresponding image coordinates. To obtain L, six different normalized
points are registered in the scenario, indicating the 3D coordinates with respect to the room and
2D position in each image obtained by its respective camera. A Direct Linear Transformation (DLT)
algorithm estimates L from 2D/3D coordinates.

(a)Background (b)Initial image (c)RCNN detection

(d)Person
extraction

(e)Background
subtraction

(f)Gaussian
filter

(g)Otsu’s
thresholding

(h)Eroded
image

(i)Region of
interest (red)

(j)Middle
point (green
cross)

Figure 1. Process of obtaining the position of the person in 2D.

2. A second step, performed during execution time, allows 3D Xi coordinates to be identified from
a set of different 2D points for each camera: ui, u

′
i, u

′′
i , etc., (see Figure 2). Each camera has its

respective L matrix, relating 3D common coordinates with their respective 2D ones, such as
LXi = ui or L

′
Xi = u

′
i. These expressions are equivalent to ui x LXi = 0 or u

′
i x L

′
Xi = 0. Based

on these expressions, each perspective camera model produces two equations. The complete set
of equations represents an overdetermined homogeneous system of linear equations which is
solved with SVD, obtaining a 3D point that is optimal in a least squares sense.

When cameras detect more than one person in a room, the best geometrical association between
persons detected by different cameras is the combination that minimizes the residual value r of
the previous overdetermined linear equation [41,42].

Once the 3D coordinates have been obtained, they are transformed into a 2D UCS Universal
Coordinates System. This 2D map is the aerial view of people obtained from different cameras. Figure 3
shows two images obtained by cameras I1 and I2 and its representation in the 2D zenithal view.
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Figure 2. Components of the Linear Triangulation Method.

(a) Image from camera I2 (b) Image from camera I1

(c) 2D zenithal view

Figure 3. Process of obtaining the position in 2D zenithal view. I3 and I4 are in red circles.

Finally, the trajectory between consecutive time stamps is computed by comparing results obtained
in the 2D aerial view. As soon as new coordinates are calculated, they are compared with the previous
ones to track persons. People follow a path where two points are part of the same trajectory of the
person if both are situated at less than a concrete distance.

3.2. People-Tracking in WiFi

A fingerprint map is a table that relates a set of signal intensities (RSSI) with the 2D aerial
coordinates where they were obtained. Once a fingerprint map has been created, it is possible to
estimate the position of a new set of RSSI values calculating the Euclidean distance with the previous
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groups. The table includes the Basic Service Set Identifier (BSSID) of the Access Point (AP, e.g., router),
the corresponding Received signal strength indication (RSSI), and the 2D coordinates x and y.

There are different ways of creating the fingerprint map [43–45], but a convenient method is using
RGB-D cameras to register the 2D coordinates. They are more accurate than other solutions, such as
normal cameras or manual measurements. For this reason, the creation of the map has been carried out
using RGB-D sensors. Once the map has been created, the positioning process only relies on the use of
normal RGB cameras.

During the creation of the map, a user freely moves around the environment. Figure 4 shows
a person who moves following a given trajectory (in green) and the created table. The RSSI values
from the cell phones, received from the APs, together with their position estimated by the RGB-D
sensors, are recorded in the map every time the user clicks a button of an application developed for
this purpose. RSSI values from 16 different APs have been recorded. Considering that the Kinect v2
returns the coordinates of different body joints, the coordinates of the neck have been considered, as
they are the joint less prone to be occluded by elements in the scenario. In addition, a general universal
coordinate system has been created for the full scenario.

Figure 4. Creation of the WiFi fingerprint map.

As the map is created exclusively by one person, two RGB-D sensors return the coordinates
of the same person. When the data collection ends, in order to simplify the positioning process
without significant loss of precision, another essential task is carried out at the end of this stage: the
complete scenario is divided into cells (e.g., 1 × 1 m) and RSSI data are grouped in each cell using the
corresponding position of the 2D aerial coordinates. An RSSI vector is created for each cell, pairing each
component to the centroid for all of the RSSI measurements of a certain AP. RSSI scans are grouped
according to the distance between their original associated 2D coordinates and the coordinates of the
centre of each cell. This step reduces the size of the fingerprint map to improve the performance of the
system and obtain more reliable RSSI values, avoiding variations in the measurements.

It is worth noting that RGB-D sensors are not strictly necessary to create a fingerprint map. They
have been used for convenience in our experiments, but will no longer be required during the system
operation.

People positioning is carried out by comparing the RSSI values obtained from the smartphones
with the RSSI centroids of the map and returning the coordinates of the virtual cell with less difference.
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These comparisons are implemented by the Euclidean distance between the RSSI vectors [46]. The
trajectory of each person with WiFi is related to their smartphone.

However, systems based on WiFi do not deliver accurate results in indoor environments. The
integration with a different technology, such as computer vision, improves the accuracy and offers
promising results.

3.3. RGB and WiFi Integration

WiFi positioning is improved with computer vision by associating the trajectory of a person
obtained by WiFi and the trajectory of the same person by RGB. Initially, there is a set of RGB and WiFi
trajectories that are disassociated, that is, the system does not know which WiFi trajectory an RGB one
corresponds to, and vice versa. The problem presented in this section solves the association regardless
of whether there is a different number of people detected by each of the technologies. The diagram
of the proposed system is shown in Figure 5, describing the steps explained in the previous sections
for RGB and WPS. The association between both trajectories, represented in the schema as Calculate
Positions based on Synchronized Euclidean distance, is explained below.

Figure 5. Diagram of the system.

The integration is modeled as a linear problem, where the goal is to optimize an objective function,
min DT · S, subject to some linear inequality constraints. D represents the Euclidean distances between
each pair of RGB and WiFi trajectories, while S represents the binary Matching Matrix, which associates
the WiFi trajectories of all people with their respective RGB ones. There are different restrictions to
contemplate the case where it is possible to detect a different number of people using each technology.
The variables used and details on the objective function and the different restrictions are explained next:

• Let n1 be the number of persons detected by WiFi and n2 be the number of persons detected by
RGB.

• Let m be the number of time stamps to be considered and T the time stamp duration. Both
positioning systems provide their corresponding position measurement for a concrete number of
people in each time stamp: n1 people in WiFi and n2 in RGB.

• Let Pi(kT) be the position of the person i provided by the WiFi at the time stamp kT, and P
′
j (kT)

be the position of the person j provided by the RGB cameras at the time stamp t. The problem
consists in determining, for all the time stamps considered, the best trajectory estimation of
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people by determining the data pairing set (i, j) that corresponds to individuals detected by WiFi
(smartphone signal) and RGB cameras.

• Let sij be the binary element of the Matching Matrix, S, in row i, column j. This matrix links the
WiFi trajectories with their respective RGB, being sij = 1 if the person is detected by the WiFi and
cameras, and 0 otherwise.

The problem is approached as an optimal combination of WiFi and RGB trajectories for all people
detected in a set of time stamps. The solution to the algorithm is to find the matrix S, valid for the
complete dataset, such that the best combination is achieved when the sum of the distances from all
possible trajectories is minimum, as shown in

min
n1

∑
i=1

n2

∑
j=1

sij·
m

∑
k=1

dE(Pi(kT), P
′
j (kT)), (1)

where dE represents the Euclidean distance between the coordinates of a person detected in RGB
and WiFi. For WiFi, the coordinates used are the centroids of the virtual cells in the 2D aerial map.
This equation minimizes the Synchronized Euclidean distance [47], computing the sum of the distances
between each pair of points of WiFi and RGB.

The problem is subject to the following restrictions:

if n1 > n2,



∀i = 1, ..., n1 :
n2
∑

y=1
siy ≤ 1

∀j = 1, ..., n2 :
n1
∑

x=1
sxj = 1

n1
∑

x=1

n2
∑

y=1
sxy = n2,

(2)

if n1 = n2,



∀i = 1, ..., n1 :
n2
∑

y=1
siy = 1

∀j = 1, ..., n2 :
n1
∑

x=1
sxj = 1

n1
∑

x=1

n2
∑

y=1
sxy = n1,

(3)

if n2 > n1,



∀i = 1, ..., n1 :
n2
∑

y=1
siy = 1

∀j = 1, ..., n2 :
n1
∑

x=1
sxj ≤ 1

n1
∑

x=1

n2
∑

y=1
sxy = n1.

(4)

In the case of Equation (2), not all people detected by WiFi are detected by cameras. In the case of
Equation (3), all people detected by WiFi are detected by cameras. In the case of Equation (4), there are
more people detected by cameras than from WiFi.

The problem is solved using a Mixed Integer Linear Programming (MILP) solver, based
on the revised simplex method and the Branch-and-bound method for the integers [48].
The Branch-and-bound algorithm finds a value x that minimizes a function f (x) among some set
C of candidate solutions. It recursively divides the search space into smaller spaces and minimizes
f (x) on these spaces. Instead of performing a brute-force search, the Branch-and-bound algorithm
keeps in memory the bounds on the minimum to be found, and uses these bounds to prune the space,
eliminating candidates that will not be optimal.
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The result of the algorithm produces the matrix S, matching each WiFi trajectory with the
corresponding RGB one. If there is no RGB trajectory for a person, the system uses the WiFi trajectory
as it is the one directly obtained by the smartphone. Figure 6 shows an example of matrix S, matching
a different number of people detected by WiFi, n1 = 10, and RGB, n2 = 7.

Figure 6. Matrix S, matching each WiFi/RGB trajectory.

Continuous tracking in RGB is carried out using the 2D zenithal coordinates of people. When
new coordinates are calculated, they are compared with the previous ones to find those with the
smallest Euclidean distance. This principle is used when a person leaves a room and enters a different
one. When a person is occluded or overlapped by another person for a given camera, the position
is calculated from the remaining cameras given that DLT/SVD algorithms can work with only two
cameras. Continuous tracking in WiFi is directly obtained by smartphones because each set of RSSI
scans is associated to a concrete device. After the algorithm, each RGB trajectory is associated to a WiFi
one in m time stamps. For this association, data from tk to tk+m−1 time stamps are considered. In the
next time stamp, the algorithm moves one slot of time and considers data from tk+1 to tk+m.

4. Experiments and Discussion

The scenario is an 80 m2 office, with 8 rooms and a central corridor, as shown in Figure 7.
Kinect v2 cameras were used to generate the WiFi fingerprint map. Afterwards, they were replaced by
conventional RGB cameras, as only RGB images have been considered for computer vision positioning.

To create the fingerprint map, RSSI values were obtained from a person at the same time as skeletons
were received by the Kinect sensors. Whenever the person clicked a button, a complete scan of APs and
skeletons was done. Then, head coordinates and RSSI values were stored in a database. Figure 8 shows
one person creating the fingerprint map with 2 RGB-D sensors, moving them between different rooms.

A set of 36 RGB cameras of different models were deployed in the scenario. The calibration of the
RGB cameras, matrix L, was calculated using eight different normalized points registered in each room,
considering the 3D coordinates with respect to the room and the 2D position in each image obtained
by its respective camera. The points were visible from the different cameras of the room. Once the
group of cameras had been calibrated, the error in obtaining the coordinates of a concrete fixed point
in the scenario was 0.03 m. The error in locating a person was 0.13 m, similar to other works [15].

As shown in Figure 9, an Android-based application was created. In this application, different
users called a web service named obtainLocation(), passing the RSSI values at a synchronized time.
Once all RSSI values had been received, the central web server called different services to obtain 2D
coordinates of people (obtainPeoplePositions()).
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Figure 7. Scenario of the system.

Figure 8. Creating the WiFi fingerprint map.

For performance reasons, each camera was connected to a dedicated server to compute the Faster
RCNN Inception V2 model [39] (extractPeopleRegions()). Every 2 seconds, the application sent RSSI
data to a central web server, which was connected to each camera by means of the intermediate
computer. A 2-second slot between time stamps was valid for the experiments. Finally, after the
synchronization of the results, Linear Triangulation (applyLinearTriangulation()) and the positioning
algorithm (calculatePositioning()) were executed.

Four people participated directly in this experiment, following previously established trajectories.
A value of m = 10 time stamps was used for the experiments. A bigger value improves the efficiency of
the algorithm, but requires excessively long trajectories. At the same time, a high value of m increases
computing cost. m = 10 has been found to produce good results with a short trajectory. The system
properly associated the RGB and WiFi trajectory in 99.10% of cases. When a person was not detected
by the RGB cameras, the success was 96.80% for associating the rest of the trajectories. Different cases
were evaluated for two, three, and four people. Figure 10 shows three people following a concrete
trajectory. Two of them (persons 1 and 2) go together until a point where they separate.

Table 1 presents data related to person 1 in the previous trajectory, where the RSSI values obtained
by smartphone and the RSSI values corresponding to the WPS cell of the fingerprint map are shown.
RGB coordinates in the UCS are also presented.
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Figure 9. Sequence diagram of the system.

Figure 10. Real trajectories obtained during experiment.

These results can be extrapolated for a greater number of people. To this end, after the completion
of the real experiment, 50 different WiFi and RGB trajectories were obtained. Each person moved
around the scenario following different trajectories that were recorded in a database with their WiFi
and RGB information. When data collection finished, these 50 trajectories were associated, indicating
the WiFi trajectory corresponding to the RGB one. The efficiency of the system was validated,
randomly combining these 50 trajectories from 5 to 20 people, producing more than 1 million different
combinations. The experiments considered the trajectory of different numbers of people, taking into
account both technologies during 10 time stamps of 2 s. In every test, a random WiFi trajectory was
selected for each person. RGB and WiFi trajectories were disassociated and the evaluation checked if
the WiFi trajectory was again associated with the corresponding RGB one. Table 2 shows the success
of associating all the trajectories of the people detected by WiFi with their respective trajectory in RGB.
Considering that the 50 trajectories include their respective WiFi/RGB data, the evaluation of the
system is performed by determining whether the WiFi trajectory associated to the RGB is the same
as the one recorded for that trajectory. When a lower number of people is detected by a concrete
technology, this reflects that all users of that technology have been properly linked to it. When the
number of people detected by both technologies is equal, the success rate increases because there are
fewer false-positives. People not linked properly with RGB obtain the location based on WiFi.
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Table 1. Extraction of data for person 1 during experiments.

Time Stamp RSSI Values (dBm) RSSI Fingerprint map of Corresponding WPS Cell (dBm) WPS Cell RGB UCS Coordinates (m)

1 AP1:72.0; AP2:25.0; AP3:67.0; AP4:72.0; AP5:72.0; AP6:77.0;
AP7:54.0; AP8:87.0; AP9:82.0; AP10:93.0; AP11:85.0; AP12:86.0;
AP13:86.0; AP14:87.0; AP15:92.0; AP16:93.0;

AP1:66.96; AP2:36.52; AP3:67.11; AP4:65.74; AP5:69.92; AP6:79.96;
AP7:57.14; AP8:84.77; AP9:83.46; AP11:87.12; AP12:89.39;
AP13:89.9; AP15:92.14;

(2, 7) (2.73, 7.01)

2 AP1:75.0; AP2:26.0; AP3:65.0; AP4:75.0; AP5:73.0; AP6:76.0;
AP7:56.0; AP8:87.0; AP9:80.0; AP10:93.0; AP11:85.0; AP12:93.0;
AP13:93.0; AP14:90.0; AP15:93.0; AP16:93.0;

AP1:66.96; AP2:36.52; AP3:67.11; AP4:65.74; AP5:69.92; AP6:79.96;
AP7:57.14; AP8:84.77; AP9:83.46; AP11:87.12; AP12:89.39;
AP13:89.9; AP15:92.14;

(2, 7) (1.94, 8.05)

3 AP1:79.0; AP2:32.0; AP3:68.0; AP4:76.0; AP5:75.0; AP6:78.0;
AP7:63.0; AP8:84.0; AP9:89.0; AP11:90.0; AP12:87.0; AP13:87.0;
AP14:92.0; AP15:93.0; AP16:94.0;

AP1:66.96; AP2:36.52; AP3:67.11; AP4:65.74; AP5:69.92; AP6:79.96;
AP7:57.14; AP8:84.77; AP9:83.46; AP11:87.12; AP12:89.39;
AP13:89.9; AP15:92.14;

(2, 7) (2.04, 7.21)

4 AP1:77.0; AP2:37.0; AP3:70.0; AP4:77.0; AP5:60.0; AP6:80.0;
AP7:59.0; AP8:89.0; AP9:79.0; AP11:90.0; AP12:91.0; AP13:92.0;
AP15:93.0; AP16:94.0;

AP1:66.96; AP2:36.52; AP3:67.11; AP4:65.74; AP5:69.92; AP6:79.96;
AP7:57.14; AP8:84.77; AP9:83.46; AP11:87.12; AP12:89.39;
AP13:89.9; AP15:92.14;

(2, 7) (2.06, 7.19)

5 AP1:59.0; AP2:31.0; AP3:69.0; AP4:58.0; AP5:63.0; AP6:80.0;
AP7:57.0; AP8:84.0; AP9:90.0; AP11:90.0; AP12:89.0; AP13:89.0;

AP1:66.45; AP2:33.32; AP3:68.55; AP4:66.59; AP5:67.95; AP6:77.86;
AP7:56.45; AP8:85.95; AP9:83.27; AP11:86.0; AP12:87.65;
AP13:86.82;

(1, 7) (2.34, 6.54)

6 AP1:67.0; AP2:54.0; AP3:62.0; AP5:62.0; AP4:67.0; AP8:81.0;
AP6:73.0; AP7:70.0; AP9:86.0; AP10:88.0;

AP1:63.81; AP2:42.18; AP3:61.81; AP5:67.63; AP4:64.09; AP8:82.8;
AP6:79.36; AP7:58.09; AP10:91.0; AP9:84.8;

(2, 6) (3.16, 3.61)

7 AP1:53.0; AP3:38.0; AP4:53.0; AP5:65.0; AP2:49.0; AP6:60.0;
AP8:73.0; 8c:0c:a3:45:38:5f:82.0; AP7:65.0; AP10:84.0;

AP1:43.0; AP3:54.0; AP4:43.0; AP5:60.0; AP2:60.5; AP6:71.0;
AP8:70.0; AP7:62.5; AP10:77.5;

(4, 3) (1.50, 1.58)

8 AP1:51.0; AP3:42.0; AP4:51.0; AP5:62.0; AP2:52.0; AP6:61.0;
AP7:64.0; AP8:74.0; AP10:82.0;

AP1:50.33; AP3:41.5; AP4:50.66; AP5:65.33; AP2:55.66; AP6:60.16;
AP8:73.83; AP7:73.67; AP10:81.33;

(1, 2) (1.10, 1.20)

9 AP1:57.0; AP3:43.0; AP4:57.0; AP5:62.0; AP2:55.0; AP6:61.0;
AP7:64.0; AP8:71.0; AP9:89.0; AP10:74.0;

AP1:57.85; AP3:42.57; AP4:55.38; AP5:62.57; AP2:55.81; AP6:62.66;
AP8:78.0; AP7:70.43; AP10:82.45; AP9:92.67;

(1, 1) (1.04, 1.17)

10 AP1:50.0; AP3:37.0; AP4:50.0; AP5:60.0; AP2:51.0; AP6:65.0;
AP7:64.0; AP8:74.0; AP10:78.0;

AP1:57.85; AP3:42.57; AP4:55.38; AP5:62.57; AP2:55.81; AP6:62.66;
AP8:78.0; AP7:70.43; AP10:82.45; AP9:92.67;

(1, 1) (0.28, 1.49)
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Table 2. Association success rate (%) depending on a different number of people detected by WiFi or
RGB.

WiFiRGB 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 97 97 93 92 86 81 68 89 77 80 85 67 81 75 50 71
6 96 98 95 89 92 77 75 93 81 79 72 84 71 45 62 56
7 92 92 92 90 91 89 84 83 81 70 82 73 69 75 66 62
8 88 95 90 96 95 92 77 81 82 84 51 80 77 65 60 68
9 84 74 88 77 98 91 88 72 84 77 71 68 51 66 71 32

10 81 81 80 82 88 96 76 82 83 75 73 52 80 48 67 45
11 81 72 86 76 78 93 93 84 83 90 70 72 42 50 43 43
12 89 82 84 72 78 87 88 90 88 80 74 83 76 71 66 58
13 82 76 80 79 80 69 80 80 86 85 81 73 78 73 58 70
14 76 74 73 63 64 80 78 73 83 88 85 79 71 69 65 58
15 75 77 75 81 72 71 65 69 84 82 88 85 71 71 64 65
16 81 65 66 69 74 70 55 61 58 71 80 86 81 66 70 61
17 71 45 68 57 54 68 50 51 68 64 73 66 84 57 47 56
18 75 76 43 41 61 36 46 67 52 71 58 70 67 79 74 74
19 50 74 64 35 61 51 57 62 56 57 52 63 69 62 81 58
20 61 48 65 62 58 31 54 56 63 58 49 61 65 52 60 79

A Mixed Integer Linear Programming (MILP) solver, based on the revised simplex method and
the Branch-and-bound method for the integers [48], has been used to solve the problem. The algorithm
was run on a server with an Intel i9-9900K processor and 32 GB of RAM. It took from 0.6 ms to
associate the simplest situations (n1 < 10 and n2 < 10) to 1.95 ms for the most complex one (n1 = 20
and n2 = 20).

The computational cost follows an exponential function t = 0.08 · 1.16n + 0.42, where t represents
the processing time in milliseconds and n the maximum number of users. When n = 50 people, the
processing time is 134 ms, which works properly in aspects of time. However, in an 80 m2 scenario,
that amount of people is overcrowded. For larger scenarios with more than 50 people, the scenario
must be divided using the APs detected by smartphones. A person will be associated in the zone
corresponding to the APs detected.

Considering a verified average distance error of 0.13 m for RGB and 2.0 m for WiFi, an average
error of 0.53 m has been estimated for 20 people. This error is calculated by multiplying the positive
associations by the RGB average error and the rest by the WiFi error. In Figure 11, in blue, an average
error in meters is shown, considering the same number of people being detected simultaneously by
WiFi and RGB. In red is the error computed assuming that WPS only works for 80% of the people
detected by the RGB cameras, which could correspond to people not carrying their smartphones.
In this case, the number of people detected by RGB corresponds to the radius.

There are positioning systems that make use of computer vision to track people, such as [6],
where the authors present a system to follow a group of workers using the color of their hardhats,
or OpenPTrack [11], a scalable and multicamera solution. However, these systems do not identify
concrete persons. Computer vision produces accurate results, but it requires other techniques, such as
face recognition [4] or appearance features [5], to solve the problem of identification. The comparison
between the results obtained and the existing ones has to be made with other systems that are able to
identify people, such as WiFi fingerprinting-based systems. Concretely, the error obtained (0.53 m)
is lower than previous exclusive WiFi fingerprinting-based systems, such as [2] (1.67m), [20] (1.5 m),
or [23] (1 m). It should be noted that the presented algorithm can be easily integrated with other
computer vision systems, such as OpenPTrack [11].
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the processing time in milliseconds and n the maximum number of users. When n = 50 people, the
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amount of people is overcrowded. For larger scenarios with more than 50 people, the scenario must be
divided using the APs detected by smartphones. A person will be associated in the zone corresponding
to the APs detected.

Considering a verified average distance error of 0.13m for RGB, and 2.0m for WiFi, an average
error of 0.53m has been estimated for 20 people. This error is calculated by multiplying the positive
associations by the RGB average error and the rest by the WiFi error. In Figure 11, in blue, an average
error in meters is shown, considering the same number of people being detected simultaneously by WiFi
and RGB. In red, is the error computed assuming that WPS only works for 80% of the people detected
by the RGB cameras, which could correspond to people not carrying their smartphones. In this case, the
number of people detected by RGB corresponds to the radius.
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5. Conclusions

This work presents an integrated indoor positioning system for use in complex environments
where multiple people carry smartphones and which makes use of computer vision to provide an
accurate position. The system uses WiFi positioning and several RGB cameras installed in each room
to reduce occlusions. The algorithm is able to manage a different number of people detected by
RGB/WiFi and is focused on tracking people, but it could easily be extended to the localization of
nonhuman targets such as mobile robots, Automated Guided Vehicles (AGVs), etc. on work floors.

The system successfully links the trajectory of all the people detected by the computer vision
with their respective trajectory in 79% of cases for 20 persons moving freely around the scenario.
Considering an average error for RGB/WiFi detection, a positioning error of 0.53 m has been calculated.
Of course, the successes would decrease consistently if there was a large difference between the number
of people detected by each technology. The error is, however, lower than previous exclusive WiFi
fingerprinting-based systems, such as [2] (1.67 m), [20] (1.5 m), or [23] (1 m). The algorithm presented
could be improved and integrated with these previous WPS methods or others which make use of
inertial sensors or Kalman filters. It could also be integrated with algorithms based on Bluetooth, such
as [30], which use Bluetooth beacon-based landmarks and exploits inertial sensors composed of an
accelerometer, magnetometer, and gyroscope.

The experiments were carried out using common RGB cameras to obtain images and exploit the
process of people-tracking by DCNN. Four cameras were installed in each room, covering an 80 m2

office. Although four cameras were used to improve the results, only two cameras are needed, since
DLT/SVD algorithms can work with just two cameras. The difference in accuracy using two cameras
with respect to four is ±0.02m, although they do not work so well with occlusions or overlaps and
they may not capture all the angles of the room. Moreover, two Kinect v2 sensors were used only to
create the WiFi fingerprint map, as this is a fast and accurate way to build it. It is important to note that,
regarding scaling, the system is prepared to work in large environments. A computational cost has
been analyzed, indicating a recommended limit of about 50 people per zone. In a large environment,
when there are more than 50 people, the scenario would be split into different zones.

From the point of view of cost, the solution presented is an economical way to increase the
performance of WPS in interiors. Previously installed surveillance cameras are candidates for
implementing the RGB tracking while smartphones are widespread. There are multiple applications of
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the system, mainly focused on the creation of reactive and proactive environments to enrich the user
experience. For example, the work [49] integrates an indoor positioning system with Europeana [50],
a data source about artworks, to proactively show information about the pieces situated near a person
inside a museum. Future works will consider the use of this system in more complex scenarios, such
as medical or industrial environments or private facilities, deploying a complete set of cameras.
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