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Abstract: For a diesel engine, operating conditions have extreme importance in fault detection
and diagnosis. Limited to various special circumstances, the multi-factor operating conditions of
a diesel engine are difficult to measure, and the demand of automatic condition recognition based
on vibration signals is urgent. In this paper, multi-factor operating condition recognition using
a one-dimensional (1D) convolutional long short-term network (1D-CLSTM) is proposed. Firstly,
a deep neural network framework is proposed based on a 1D convolutional neural network (CNN)
and long short-Term network (LSTM). According to the characteristics of vibration signals of a diesel
engine, batch normalization is introduced to regulate the input of each convolutional layer by fixing
the mean value and variance. Subsequently, adaptive dropout is proposed to improve the model
sparsity and prevent overfitting in model training. Moreover, the vibration signals measured under
12 operating conditions were used to verify the performance of the trained 1D-CLSTM classifier.
Lastly, the vibration signals measured from another kind of diesel engine were applied to verify the
generalizability of the proposed approach. Experimental results show that the proposed method
is an effective approach for multi-factor operating condition recognition. In addition, the adaptive
dropout can achieve better training performance than the constant dropout ratio. Compared with
some state-of-the-art methods, the trained 1D-CLSTM classifier can predict new data with higher
generalization accuracy.

Keywords: diesel engine; condition recognition; CNN; LSTM; adaptive dropout

1. Introduction

A diesel engine is a kind of internal combustion engine that converts thermal energy into
mechanical energy. It plays an important role in the field of national defense, in the chemical industry,
in the marine industry, for nuclear power, and so on. Once a diesel engine fails, it not only causes
economic losses directly or indirectly in terms of the shutdown of equipment, but it may also threaten
the personal safety of users [1,2]. To enhance the availability of the diesel engine, it is imperative
to monitor the engine condition and detect early faults. However, the detection of faults and the
diagnosis of diesel engines [3] are not simple tasks due to the complex structure and fickle working
conditions. If the operating conditions are not considered in detection and diagnosis activities, it is
likely to lead to false alarms or missed detection [4,5]. With the information of operating conditions,
the engineering applicability of a fault detection and diagnosis method [6—8] can be improved to
avoid fatal performance degradation and huge economic losses at an early stage. Unfortunately,
most fault detection methods are carried out under stable operating condition to avoiding variable
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operating conditions. Therefore, condition recognition is an important and urgent task in practical
engineering applications.

In a diesel engine, the flywheel is attached to the crankshaft, and they rotate together. They
convert the reciprocating motion of the piston into the rotational motion of the crankshaft, which
outputs torque for the driving of the car and other power-driven mechanisms. Therefore, the operating
conditions of a diesel engine can be determined by two parameters: load and the rotation speed of the
crankshaft. The load is the output torque of the engine through the flywheel. However, the multi-factor
operating conditions of a diesel engine are difficult to measure in many situations, such as for the
power systems of vehicles, propulsion devices of ships, and other dynamic equipment. Therefore, the
demand for automatic recognition of multi-factor operating conditions is urgent.

During the operation of a diesel engine, the corresponding status information can be obtained by
using vibration analysis [9], oil analysis [10], thermal performance analysis [11], and visual inspection.
Vibration is an intrinsic mechanical phenomenon, and the vibration signals contain rich information
about the diesel engine’s status; thus, vibration monitoring is a powerful tool for condition recognition,
as well as fault detection and diagnosis. In this paper, we aim at recognizing the multi-factor operating
conditions of a diesel engine based on vibration signals.

Thanks to the development of computing calculation power and powerful signal processing
techniques, the recognition tasks based on vibration signals made great progress. At present, some
recognition algorithms based on vibration signals exist, and most of them focus on designing various
handcrafted features, fusing multiple features and training different classifiers. In Reference [12],
the Hilbert spectrum entropy, which combines the Hilbert spectrum and information entropy, was
proposed for the pattern recognition of diesel engine working conditions. In Reference [13], the
frequency domain features of vibration signals were extracted for back propagation (BP) and radial
basis function (RBF) neural network training to recognize the cylinder pressure. In Reference [14], based
on the cylinder head vibration signals measured under stable operating conditions, an engine cylinder
pressure identification method using a genetic algorithm with BP neural network was proposed.
In Reference [15], combustion evaluation parameters were extracted using time-frequency coherence
analysis and the cylinder pressure could be estimated based on the parameters and an RBF neural
network. In Reference [16], the measured signal was converted into a crank angle degree signal using
the rotational speed monitored by magnetic pickup sensors. Then, a real-time engine load classification
algorithm was proposed based on an artificial neural network.

Most pattern recognition studies focused mainly on single-factor conditions or recognition under
stable operating conditions. For single-factor conditions, the number of categories is generally no
greater than five. In practical engineering applications, a single factor cannot describe complex
operating conditions, and this drawback results in ambiguous boundaries among different operating
conditions. As for multi-factor operating conditions, as the number of operating conditions increases,
so does the complexity of condition recognition. Simultaneously, as the vibration signals are random,
transient, and cyclostationary, and as the corresponding feature extraction requires rich domain
knowledge, it is difficult to extract sensitive characteristics of significant importance for multi-factor
operating condition recognition.

Over the last few years, with the development of deep learning, many researchers exploited deep
neural networks (DNNSs) as the feature extractor and classifier [17,18]. Benefiting from the powerful
feature extraction ability of neural network, especially convolution neural networks (CNNs) [19], these
approaches and their variations exhibit good performance in the related tasks. In Reference [20],
time domain and frequency domain feature representations were selected to form a vector to act as
the input parameters of a CNN. The trained CNN classifier could diagnose the fault patterns of a
gearbox with outstanding performance. In Reference [21], the vibration signals of rolling bearings
were analyzed using continuous wavelet transform to get time—frequency representations in grayscale.
Then, all compressed time—frequency representations were taken as the input for CNN training, and
the trained CNN classifier could identify the faults of rolling bearings with strong generalization
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ability. In Reference [22], a deep convolutional neural network of up to 38 layers, which could provide
high classification accuracy, was proposed for gas classification. For CNN applications with vibration
signals, there are different approaches to network input. In other words, the CNN is taken as a classifier,
and the input of the CNN is mainly based on other feature extraction methods. At the same time,
state-of-the-art CNN models have several parameters, which leads to problems related to storage,
computation, and energy cost. In addition, recurrent neural networks (RNNs) and long short-term
networks (LSTMs) [23,24] were validated in terms of their performance on one-dimensional (1D) signals.
In Reference [25], a CNN and a fully connected neural network were both incorporated into a deep
neural network framework to improve LSTM. The framework outperformed the original LSTM for
the early diagnosis and prediction of sepsis shock. In Reference [26], an end-to-end model combining
a CNN and RNN was proposed for the automatic detection of atrial fibrillation. Compared to the
state-of-the-art models evaluated on standard benchmark electrocardiogram datasets, the proposed
model produced better performance in detecting atrial fibrillation. The ideas in References [25,26] are
very good references for multi-factor operating condition recognition based on vibration signals.

Therefore, a multi-factor operating condition recognition algorithm is proposed herein based on a
1D CNN and LSTM. In the proposed neural network framework, the 1D CNN was designed to extract
local features of vibration signals through 1D convolution, and the LSTM was designed to describe
the temporal relationship between local features. The contributions of this paper are summarized
as follows:

1. A multi-factor operating condition recognition method is proposed using a 1D convolutional
long short-term network (1D-CLSTM). As far as we know, this is the first study to combine a 1D
CNN and LSTM to recognize operating conditions based on a time series of vibration signals;

2. Considering the particularity of engine vibration signals, batch normalization (BN) is introduced
to regulate the input of some layers by fixing the mean value and variance of input signals in
each convolutional layer;

3.  Adaptive dropout is proposed for improving the model sparsity and preventing overfitting;

4. The designed 1D convolutional long short-term network (1D-CLSTM) classifier can achieve high
generalization accuracy for recognizing multi-factor operating conditions.

The rest of this paper is organized as follows: Section 2 presents the test bench of a diesel engine
and the experimental data acquisition. Section 3 introduces the technical background for the 1D CNN
and LSTM. Section 4 describes the designed 1D-CLSTM and the flowchart of the multi-factor operating
condition recognition algorithm. Section 5 shows the training performance of the designed 1D-CLSTM
classifier, with generalizability verification, a performance comparison with different methods, and
a training performance comparison with different dropout ratios. Finally, conclusions and future
prospects are presented in Section 6.

2. Experiment and Vibration Signal

2.1. Test Bench of Diesel Engine

For data acquisition, a four-stroke diesel engine numbered TBD234 (produced by Henan Diesel
Engine Industry Co. Ltd., Luoyang, China) was used and tested in different operating conditions.
The parameters of the diesel engine are shown in Table 1.

As shown in Figure 1, 12 acceleration sensors were arranged on the surface of corresponding
cylinder heads to monitor the status information of the diesel engine in the running state. The vibration
signals formed the basis for the multi-factor operating condition recognition of the diesel engine.
Moreover, an eddy current sensor was arranged on the flywheel to collect the information of rotating
speed. In addition, a hydraulic dynamometer was connected with the output end of the diesel engine
to adjust the load.
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Table 1. Parameters of TBD234 diesel engine.

Item Parameter
Number of cylinders 12
Shape V-shaped 60°
Firing sequence B1-A1-B5-A5-B3-A3-B6-A6-B2-A2-B4-A4
Rating speed 2100 rev/min
Rating power 485 kW

Hydraulic
dynamometer

Figure 1. Test bench of the diesel engine.

All signals were measured using an online condition monitoring system (OCMS) at a sampling
frequency of 51.2 kHz per channel in all tests, and the results were saved to a server through Ethernet
transmission. The structure diagram of the OCMS of the diesel engine is shown in Figure 2.

| Al A2 A3 Ad | AS A6 |

Ethernet
transmission

dynamometer

|
|
|
|
, |
RS J TBD234 || DpAQ
|
|
|
|
|

EE el o I -4

RERSRE

[ ] Eddy current sensor . Accelerometer sensors

Figure 2. Structure diagram of the online condition monitoring system (OCMS) of the diesel engine.

2.2. Experimental Data Acquisition

To extract vibration data under different operating conditions, the engine was run at different
levels of operating conditions. The representative operating conditions are listed in Table 2.
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Table 2. Operating conditions of the diesel engine.

No. Rev (rpm) Load (N'-m) No. Rev (rpm) Load (N-m)
1 1500 700 7 1800 1600
2 1500 1000 8 2100 700
3 1500 1300 9 2100 1000
4 1800 700 10 2100 1300
5 1800 1000 11 2100 1600
6 1800 1300 12 2100 2200

Through the OCMS, vibration signals of different operating conditions could be measured.
The vibration signals of 12 different operating conditions are shown in Figure 3.
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Figure 3. Vibration signals of 12 different operating conditions.

The signals in Figure 3 represent two complete periodic vibration signals, with a certain cyclic
fluctuation in the angular domain. When fire combustion and closing of the intake valve and exhaust
valve occur, an obvious excitation response is produced in the corresponding phase. Due to the
different ignition phase points of different cylinders, the corresponding combustion excitation occurs
at different positions. As the amplitude of the vibration signal features large randomness, the vibration
signal of a diesel engine can be considered a non-periodic and non-stationary signal. This characteristic
of the vibration signal greatly increases the difficulty of multi-factor operating condition recognition.

3. Technical Background

In this study, a deep neural network framework is proposed based on a 1D CNN and LSTM for
multi-factor operating condition recognition. For the vibration signal in the form of a time series, a 1D
CNN was adopted to extract local features of vibration signals through a 1D convolution kernel. Then,
an LSTM was adopted to describe the temporal relationship between local features through a memory
unit and gate mechanism. In this way, the combination of the 1D CNN and LSTM could perform well
for the analysis of vibration signals.

3.1. 1D CNN

A typical CNN [19] contains three types of network layers: a convolutional layer, pooling layer,
and fully connected layer. Some excellent variants of CNN were proposed, such as LeNet-5 [27],
AlexNet [19], and VGG-16 [28]. The image recognition ability of these CNN variants is outstanding,
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and they achieved remarkable results. In CNNSs, the receptive field, weight sharing, and pooling can
greatly reduce the complexity of the network.

It was proven that a 1D CNN can be applied to the time series analysis of sensor data. In 1D CNNss,
features can be extracted from segments through 1D convolution, which is a weighted sum operation
between the weight matrix and the vibration data in each segment, with the addition of the overall bias.
Every convolution extracts a feature from a local receptive field, and the window of the convolution
kernel slides across the entire input sequence with a fixed step to achieve all features. The weight
sharing exists to maintain the weights of the convolution kernel in the sliding process. As shown in
Figure 4, the size of the i-th convolution kernel is shown, featuring weights (w;q, w;p, w;3)inal x 3
format, with the bias left out for clarity. The corresponding feature vector F (fi1, fi2, fi3, - - - , fiin-2)) can
be obtained from the input signal X (x1, x», x3, ... , xn) with one step of the convolution kernel.

Figure 4. Temporal convolution.

Mathematically, this can be expressed as shown in Equation (1).

fij =@

m
bi+ ) Wi xj+k_1], ()
k

=1

where m is the size of the convolution kernel, f;; is the output of the j-th neuron of the i-th filter in the
hidden layer, & is the activation function, and b; is the overall bias of the i-th filter.

Convolution kernels of different sizes can extract features of different granularity [29]. Usually,
the first convolutional layer may only extract some low-level features, and more complex features can
be extracted from low-level features by stacking network layers.

As the pooling operation can maintain the variance of the translation, rotation, and scale, the
pooling layer is set following each convolutional layer to retain the main features. Meanwhile, it can
reduce the number of parameters to prevent overfitting and improve the generalizability of the model.
In a pooling layer, the features obtained from the activation function are cut into several regions,
and the maximumy/average values can be taken as the new features to realize dimension reduction.
By repeating operations as described above, features can be extracted continuously to improve the
generalizability of the CNN.

Enough sensitive important features can be extracted by alternating convolutional and pooling
layers, and the fully connected layers can map the distributed feature representation to the sample
markup space. Finally, the output layer with a softmax activation function is used for classification.

3.2. LSTM

A recurrent neural network (RNN) is a kind of neural network which can be used for sequential
data analysis, while the LSTM is a specific kind of RNN. Compared with a traditional RNN, a memory
cell and gating mechanism are introduced to deal with the existence of gradient disappearance and
gradient explosion during the training of long sequences. The gating mechanism can be used to
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control the transfer state, which is designed to remember the important information and forget the
unimportant information. The memory cell of an LSTM is shown in Figure 5.
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Figure 5. Memory cell of a long short-term memory network (LSTM).

As shown in Figure 5, the memory cell of an LSTM is made up of an input gate, output gate,
and forget gate. The sigmoid activation function is used in the forget gate to control the weight of
information that can be passed, whereas the tanh activation function is used in the input gate to deal
with the input at the current sequence position, and the sigmoid activation function is used in the
output gate to update the output based on the results of the input gate and forget gate. Mathematically,
the parameters of the LSTM can be updated as shown in Equation (2).

it = 0 (Wyixe + Wyily—1 + b;);

fi = o(Wapxe + Wighy_y + by );

0r = 0(WyoXy + Wiohi—1 + bo); )
¢t = tanh(Wyexy + Wichi—q + be);

¢t = froc1 +irecy;

hy = o - tanh(cy).

where x; is the input of a sequence, c;_; is the last state, and h;_; is the output of the last memory cell.
The state ¢; and output /i of the current memory cell can be obtained after parameter update calculation.

4. Methodologies

In this section, the 1D-CLSTM is firstly constructed for multi-factor operating condition recognition,
and then adaptive dropout is proposed. Moreover, the flowchart of the multi-factor operating condition
recognition method is introduced.

4.1. 1D Convolutional Long Short-Term Network

4.1.1. Overall Architecture

As described above, the features extracted by different neural networks have different
characteristics. The 1D CNN can obtain the features of a receptive field through convolution,
but the temporal relationship of the vibration signal is ignored as a result of the size of the convolution
kernel. As for the LSTM, a temporal relationship can be described through the memory cell and
gating mechanism. Therefore, the multi-factor operating condition recognition algorithm 1D-CLSTM
is proposed based on a 1D CNN and LSTM. In the proposed neural network framework, the 1D CNN
was designed to extract local features of vibration signals through 1D convolution, and the LSTM was
designed to describe the temporal relationship between local features. The overall architecture of the
1D-CLSTM is shown in Figure 6.
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Figure 6. Opverall architecture of the one-dimensional convolutional long short-term network
(1D-CLSTM).

4.1.2. Architecture Design

According to the sampling frequency of the monitoring system and different operating conditions
introduced in Section 2, a signal segment with a length of 4096 can be determined to contain all the
information in a cycle. The crankshaft of a four-stroke diesel engine rotates 720 degrees to complete a
cycle, which means complete energy conversion. Therefore, the minimum receptive field can be defined
as a degree in the angular domain. Moreover, the size of the CNN filter in the first convolutional layer
can be set to an odd number greater than 4096/720.

Considering the particularity of a vibration signal, which is a non-periodic and non-stationary
signal, BN [30] is vital for regulating the input of some layers by fixing the mean value and variance of
input signals of each convolutional layer, through which the features can maintain the same distribution
in the training process of the 1D-CLSTM. Upon increasing the number of layers in a neural network,
the decreasing convergence rate often leads to gradient explosion or gradient disappearance, and BN is
an excellent solution. Therefore, the convolution is followed by BN in each convolutional layer. In all
convolutional layers, the rectified linear unit (ReLU) activation function is adopted, and BN occurs
in front of the ReLU activation function. In other words, the results of BN are the input of the ReLU
activation function. The ReLU activation function makes the output of some neurons equal to 0, which
results in sparsity of the network, thereby reducing the interdependence of parameters and alleviating
the occurrence of the overfitting problem. The average values of features obtained from the ReLU
activation function are taken as the new features to realize dimension reduction in a pooling layer.
The designed 1D-CLSTM begins with a sequence input, after which the features can be extracted by
alternate convolutional layers and pooling layers.

A complete periodic signal contains different sequential excitation responses; thus, the sequence
length processed by the LSTM can be determined according to the degree of excitation responses in the
angular domain. When the degree of an excitation response in the angular domain is 15, the number
of LSTM units can be chosen to be greater than 720/15. Following the final pooling layer, there is a
flattening layer to reshape the tensor as the input of the LSTM with 73 units. In order to accelerate the
convergence process of 1D-CLSTM training, adaptive dropout is applied. Finally, the output layer
with a softmax activation function is used for multi-class classification. The structural parameters of
the 1D-CLSTM are shown in Table 3.
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Table 3. Structural parameters of the one-dimensional convolutional long short-term network

(1D-CLSTM).

No. Network Layer Size of Convolution Kernel Stride Output Dimension
1 Input layer - - 4096 x 1
2 Convolutional layer-1 11 1 4096 x 32
3 Pooling layer-1 3 2 2047 x 32
4 Convolutional layer-2 13 1 2047 x 64
5 Pooling layer-2 3 2 1023 x 64
6 Convolutional layer-3 15 1 1023 x 128
7 Pooling layer-3 3 2 511 x 128
8 Flatten layer - - 73 % 896
9 LSTM (two layers) - - 73
10 Softmax - - 12

4.1.3. Adaptive Dropout

Dropout is widely used for improving model sparsity and preventing overfitting in model training.
The learning process of the 1D-CLSTM for multi-factor operating condition recognition is an iterative
one. On account of the mutual influence among interconnected neurons, every iteration is a greedy
search, whereby we find the best connections. That is, a connection may be unimportant due to
the existence of some others, but it becomes important once the others are removed. Therefore, the
adaptive dropout ratio is proposed to deal with this problem.

The most popular Bernoulli dropout technique [31] can be applied to neurons or weights.
Assuming the input of a weight or neuron as X, the output as Y, the dropout probability as P(«), and
the weight matrix as W, each neuron is probabilistically dropped at each training step, as defined in
Equation (3).

Y=(X-P)W. ®)

Each weight in the weight matrices is probabilistically dropped at each training step, as defined in
Equation (4).
Y=X(W-P). (4)

Usually, the dropout ratio a is constant for generating random network structures (for example,
0.5). However, the model capacity is constantly changing within the 1D-CLSTM training. Therefore,
the dropout ratio needs to be adaptive to the current network. Neurons or weights are dropped
temporarily during training and dropped forever after pruning to solidify the network structure.
Compared with the original network structure, the parameters of the current network become sparse
after pruning, and the dropout ratio should be reduced.

Assuming that the connection between the input layer and output layer is fully connected, the
number of connections can be calculated as shown in Equation (5).

Ci = NiNp. 5)

Since dropout works on neurons, taking Cj, as the original network and C;, as the current network,
the dropout ratio @ can be adjusted according to Equation (6).

aoN, G
ae = ——2_ |=~£, (6)
(N ot 1) Cio
where a, represents the dropout rate of the current network, and a, represents the dropout rate of the
original network.
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4.1.4. Implementation

The loss function, which measures the degree of difference between the predicted value and actual
value, is a non-negative real value function. A smaller loss function denotes better robustness of the
model. Cross-entropy is frequently used for loss calculation in neural network training, as shown in
Equation (7).

n
loss = - y;log(y._), @)
i=1
where y; represents the predicted value, y; represents the actual output, and » is the number of
training samples.

In the training of the 1D-CLSTM designed for multi-factor operating condition recognition,
the learning rate was set to 0.001. Through iterative calculation, the loss of 1D-CLSTM decreased
continuously and eventually became stable. Then, the weight of 1D-CLSTM was fixed, allowing the
1D-CLSTM classifier to be used for multi-factor operating condition recognition.

To make the training of the 1D-CLSTM model more efficient and achieve better performance, the
training techniques described below were introduced.

Mini-batch gradient descent. Considering the huge calculation in network training, a batch sample
was adopted in the training process, and the batch size was set to 128. The batch sample strategy uses
less memory and achieves a faster training speed than full batch learning. Compared with stochastic
gradient descent, mini-batch gradient descent is more efficient. Compared with batch gradient descent,
mini-batch gradient descent can achieve robust convergence to avoid local optimization. Therefore,
mini-batch gradient descent was taken as the optimizer to minimize the loss and adjust the weights in
the designed 1D-CLSTM.

Early termination. In the process of model training with the training set, the performance of the
model is also evaluated with the validation set. The validation error decreases in the beginning as the
training error decreases. After a certain number of training steps, the training error still decreases,
but the validation error no longer decreases. Therefore, early termination can act as a regulator
and effectively avoid overfitting of the model. Once the validation error stops decreasing, the early
termination of model training can be enforced in the training of the 1D-CLSTM.

4.2. Multi-Factor Operating Condition Recognition

To determine the multi-factor operating condition information of a diesel engine, a condition
recognition method using 1D-CLSTM is proposed. Firstly, acceleration sensors were used to monitor
the status information of a diesel engine under different operating conditions. Considering the
characteristics of the vibration signal, some performance improvement techniques were adopted
in the 1D-CLSTM, such as BN, ReLU activation function, adaptive dropout. Moreover, mini-batch
gradient descent and early termination were adopted in the training of 1D-CLSTM to achieve a fast
training speed and avoid overfitting of the model. Accordingly, the 1D-CLSTM could be trained using
supervised learning. After training, the trained 1D-CLSTM classifier could be used for the classification
of multi-factor operating conditions. The flowchart of the multi-factor operating condition recognition
method is shown in Figure 7.
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Figure 7. The flowchart of the condition recognition method.
5. Experiments

According to the flowchart shown in Figure 7, the training performance of the designed 1D-CLSTM
is presented below. After training, the performance of 1D-CLSTM using vibration signals for multi-factor
operating condition recognition was evaluated. Moreover, the vibration signals measured from another
kind of diesel engine were applied to verify the generalizability of the proposed approach. Finally,
the results of the proposed approach for multi-factor operating condition recognition were compared
to other classification algorithms to verify that the designed 1D-CLSTM with strong generalizability
could provide higher classification accuracy. The 1D-CLSTM model was written using Python 3.6 with
TensorFlow and run on Window 10 with an NVIDIA Quadro P6000.

5.1. Training Performance of the Designed 1D-CLSTM

The vibration signals were in the form of a time series, used as the input data for training the
designed network, with a total of 7200 samples. The whole dataset was randomly divided into two
sets: 80% for training and 20% for validation. In other words, the training set had 5760 samples, and
the validation set had 1440 samples. With the continuous iterative training of 1D-CLSTM, the losses
of the training set and validation set decreased as the number of epochs increased, as depicted in
Figure 8. On the contrary, the accuracies of the training set and validation set continuously improved,
as depicted in Figure 9. According to the early termination, the model training stopped when the loss
of the validation set stopped decreasing. The training of 1D-CLSTM stopped at the 63rd epoch when
the cross-entropy of the validation set was 0.01913 and the accuracy of the training set was 0.9953.
Therefore, the corresponding 1D-CLSTM classifier is a desired classification model for multi-factor
operating condition recognition.

“Training
Validation

Cross-Entropy

X63
Y 0.01913

102
o

Epoch

Figure 8. Losses of training set and validation set.
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Figure 9. Accuracies of training set and validation set.
A confusion matrix, which contains information about actual and predicted classes, was used to
describe the generalizability of the 1ID-CLSTM classifier [32]. The testing set had a total of 1200 samples,

with 100 samples for each operating condition. The confusion matrix for the testing set is shown in
Figure 10.
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Figure 10. Confusion matrix for testing set.

The elements in row i and column j of the confusion matrix represent the number of times the j
class was identified as the i class. Therefore, only the diagonal elements denote correct recognition.
It can be seen from Figure 10 that only 11 samples out of 1200 were misclassified. Therefore, the
designed 1D-CLSTM can classify multi-factor operating conditions with an accuracy of 99.08%.

5.2. Comparison of Training Performance with Different Dropout Ratios

The convergence process in model training is an important factor for achieving a classifier with
excellent performance. Dropout serves as an effective approach to improve the model sparsity and
prevent overfitting in model training. To find the best connections in the designed 1D-CLSTM, a suitable
dropout ratio was very important. Adaptive dropout, due to its flexibility depending on network
capacity, is able to maintain the balance between model performance and model sparsity. To check the
effect of adaptive dropout, training accuracy curves of different dropout ratios were plotted, as shown
in Figure 11. According to the early termination, the model training using adaptive dropout stopped
at the 63rd epoch, and the comparison of training performance with different dropout ratios was
conducted within 63 epochs.



Sensors 2019, 19, 5488

13 of 17

09 / e A
el ”\/ 4,\#&‘;%%*“5”\/
08— - QAR N -
ral e \/ Y
o ANl
A /\j\f Y
206 ) 4"’/ \V%ﬁ/z
g ,f /V/\Wy,/ —+— Adaptive dropout
%08 IFT ——05
£ by 03
£ Y ——07
= ///F'\s 0.9
P
03 S /V/VLV
/ /—qg.a/g ¥
02 e

30

40 50

Epoch

60

Figure 11. Training accuracy curves with different dropout ratios.

It can be seen from Figure 11 that the training performance using adaptive dropout was best; thus,

adaptive dropout can improve the training performance to achieve the desired model.

5.3. Comparison Analysis

To validate the performance of the designed 1D-CLSTM, the proposed method was compared

with the following baseline methods:

The k-nearest neighbor (kNN) algorithm, which works with a multi-domain feature set [33].
Based on the multi-domain feature set, the kNN algorithm is more suitable than other statistical

The support vector machine (SVM), which works with a multi-domain feature set. SVM is a kind
of generalized linear classifier that can be used for supervised learning.

The 1D LeNet-5, which is a convolutional network that has the same network layers as LeNet-5,
i.e., two convolutional layers and two fully connected layers. The corresponding structural

The 1D AlexNet, which is a convolutional network that has the same network layers as AlexNet,
i.e., five convolutional layers and three fully connected layers. The corresponding structural

The 1D VGG-16, which is a convolutional network that has the same network layers as VGG-16,
with 1D convolution kernels adopted. The corresponding structural parameters are also listed in

1.
learning methods.
2.
3.
parameters are listed in Table 4.
4.
parameters are also listed in Table 4.
5.
Table 4.
6.

A traditional LSTM, which has two layers and 32 LSTM units in each layer.

In Table 4, s represents the stride, and the convolution is followed by BN in each convolutional layer.

Table 4. Structural parameters of the 1D-CLSTM.

1D LeNet-5 1D AlexNet 1D VGG-16

Convl [1,11] x 64,s =1
AveragePoolingl [1,3],s =2
Conv2[1,13] x128,s =1
AveragePooling?2 [1,3],s =2
FC1 (1024)

FC2 (512)
softmax

Convl [1,11] x32,s=1
MaxPoolingl [1,3], s =2
Conv2 [1,5] x64,s=1
MaxPooling?2 [1,3], s =2
Conv3[1,3] x128,s=1
Conv4 [1,3] X 128,s =1
Conv5[1,3] x128,s=1
MaxPooling3 [1,3], s =2
FC1 (1024)

FC2 (512)
softmax

Convl [1,3] x 16,8 =1
Conv2[1,3] x16,s=1
MaxPoolingl [1,2], s =2
Conv3[1,3] x32,s=1
Conv4 [1,3] X 32,s=1
MaxPooling? [1,2], s =2
Conv5[1,3] X 64,s =1
Conv6 [1,3] X 64,5 =1
Conv7[1,3] X 64,s =1
MaxPooling3 [1,2], s =2
Conv8[1,3] X 128,s =1

Conv9 [1,3] X 128,s =1
Conv10[1,3] x128,s =1
MaxPooling4 [1,2],s =2
Convl11 [1,3] X 256,s =1
Conv12[1,3] X 256,s =1
Conv13[1,3] X 256,s =1
MaxPooling5 [1,2], s =2

FC1 (1024)

FC2 (512)

softmax
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For multi-factor operating condition recognition, the class domains of operating conditions
are likely to overlap with each other. Our goal was to develop a multi-factor operating condition
recognition method that can achieve high generalization accuracy. Therefore, the same vibration
data were used for the training and testing with the above methods, and the corresponding model
performance is shown in Table 5.

Table 5. Performance comparison. SVM—support vector machine.

Learning Model Generalization Accuracy (%)

1D-CLSTM 99.08

LSTM 74.12

kNN with a multi-domain feature set 92.18
SVM with a multi-domain feature set 9491
1D LeNet-5 94.43

1D AlexNet 97.54

1D VGG-16 98.01

It can be seen from Table 5 that the generalization accuracy of the proposed method was the best.
This shows that the 1D-CLSTM learns to predict new data with higher accuracy than other machine
learning models and avoids overfitting. In addition, the trained 1D-CLSTM classifier can be used
as a good initializer for similar tasks of transfer learning (https://github.com/Larrylyh/Condition_
Recognition).

5.4. Generalizability Verification

To verify the generalizability of the proposed approach, the designed 1D-CLSTM was applied to a
diesel engine with 20 cylinders (V20DE), which is shown in Figure 12.

Figure 12. The diesel engine with 20 cylinders.
The vibration data under different operating conditions, which are listed in Table 6, were measured.

Table 6. Operating conditions of V20DE.

No. Rev (rpm) Load (kN'm)
1 600 0
2 1100 17.7
3 1500 22.6
4 1500 26.6
5 1500 28.3

Generally, the data measured from different engine types vary greatly, and the 1D-CLSTM
classifier would need to be trained before use. The test set of V20DE contained 2101 samples, and the
corresponding confusion matrix is illustrated in Figure 13. As depicted in Figure 13, 32 samples out of
2101 were misclassified, and the corresponding accuracy was 98.48%.
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Figure 13. Confusion matrix.

6. Conclusions

In this study, an effective approach was proposed for multi-factor operating condition recognition
using a 1D convolutional long short-term network. The proposed method was capable of monitoring
and automatically recognizing multi-factor operating conditions based on the vibration signal measured
on engine cylinder heads. Moreover, the measured vibration signals no longer needed a complex
feature extraction process for condition recognition. Subsequently, adaptive dropout was proposed for
improving the model sparsity and preventing overfitting in model training. The experimental results
proved that the designed 1D-CLSTM classifier is indeed ideal for multi-factor operating condition
recognition with high generalization accuracy. At the same time, adaptive dropout could achieve
better training performance than a constant dropout ratio. In addition, this method has the potential
for application in real-time scenarios because the implementation of the 1D-CLSTM classifier is simple.
Last but not least, the trained 1D-CLSTM classifier can be used as a good initializer for similar tasks
of transfer learning. In the future, new studies will be conducted on the transition period between
the defined operating conditions to obtain a model that can identify continuous operating conditions.
Moreover, continuous operating condition recognition can be the basis of fault detection or diagnosis
under variable operating conditions.
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