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Abstract: Energy conservation is one of the most critical problems in Internet of Things (IoT). It can
be achieved in several ways, one of which is to select the optimal route for data transfer. IPv6
Routing Protocol for Low Power and Lossy Networks (RPL) is a standardized routing protocol for
IoT. The RPL changes its path frequently while transmitting the data from source to the destination,
due to high data traffic in dense networks. Hence, it creates data traffic across the nodes in the
networks. To solve this issue, we propose Energy and Delay Aware Data aggregation in Routing
Protocol (EDADA-RPL) for IoT. It has two processes, namely parent selection and data aggregation.
The process of parent selection uses routing metric residual energy (RER) to choose the best possible
parent for data transmission. The data aggregation process uses the compressed sensing (CS) theory in
the parent node to combine data packets from the child nodes. Finally, the aggregated data transmits
from a downward parent to the sink. The sink node collects all the aggregated data and it performs
the reconstruction operation to get the original data of the participant node. The simulation is
carried out using the Contiki COOJA simulator. EDADA-RPL’s performance is compared to RPL and
LA-RPL. The EDADA-RPL offers good performance in terms of network lifetime, delay, and packet
delivery ratio.

Keywords: Internet of Things; data aggregation; compressed sensing theory; residual energy

1. Introduction

IoT is an emerging technology in Information and Technology (IT) [1]. It is a collection of
internet-connected embedded devices that are capable of sensing and transmitting data from one
location to another location without human support [2]. The name IoT indicates that things are
connected tothe internet via communication technologies such as wireless sensor networks, near field
communication, radio frequency identification, and Bluetooth [3]. IoT provides a lot of potential
benefits in all aspects of human life [4]. IoT applications include smart homes, industrial Internet,
smart supply chains, smart cities, wearables, smart grids, connected health, connected cars, smart
farming, smart retail, etc. [5].

LLN is a type of IoT network which consists of routers and nodes restricted by resources [6].
The Routing Protocol for Low Power and Lossy Networks (RPL) has been standardized by IETF [7].
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RPL forms the Destination Oriented Directed Acyclic Graph (DODAG) to transfer the data from the
source to the Sink. The DODAG consists of a DODAG root and DODAG nodes. The top of a DODAG
node is called DODAG’s root and the rest of the nodes are called DODAG nodes. The direction of
the participant node towards the root of DODAG is called up routing, and vice versa is called down
routing [8]. It supports traffic patterns, including point to multipoint, multipoint to point, and point to
point [9]. The participant node chooses the best parent based on the objective function, which can
decide on the application requirements [10].

Energy is a scarce resource in IoT. Therefore, energy conservation is a significant challenge in
IoT [11]. Many techniques are proposed to reduce energy consumption in IoT. Energy-aware routing,
sleeping mechanisms, and congestion-aware routing and data aggregation are the available techniques
in IoT. In energy-aware routing, the existing protocols are energy-aware solar routing, node reliance
techniques, multi-hop hierarchical clustering, duty cycling, and data-driven approaches to extend the
network lifetime [12].

Data aggregation is a process of collecting the data and aggregates it from the sensor’s node. It is
one of the essential processes to remove redundant data and save energy [13]. The primary objective
of the data aggregation is to collect and aggregate the data. Also, it can be extended the network
lifetime [14]. These techniques are suitable for some applications like temperature monitoring and gas
leakage monitoring [15]. The existing data aggregation techniques are clustering and region-based
routing to reduce duplicate data transmission across the network [16].

In IoT Routing, we need a suitable technique to aggregate the data among the network nodes.
Hence, the Compressed Sensing (CS) theory is adopted in IoT, which is widely used in Wireless Sensor
Networks (WSN) [17]. CS is a new theory that provides compression, coding, and decoding to reduce
storage [18]. The applications for CS theory include data networks, digital images and video cameras,
sensor networks, etc. CS is a beneficial technique to improve the performance of IoT. Also, it can be
used for signal detection and processing, channel estimation, etc. [19].

The contribution of the proposed EDADA-RPL is to distribute the data and perform the single-hop
data aggregation. It has two processes, namely parent selection and data aggregation. The process of
parent selection uses routing metric residual energy (RER) to choose the best possible parent for data
transmission. The data aggregation process uses the compressed sensing (CS) theory in each parent
node to aggregate the data packets from the child nodes. Finally, the aggregated data transmits from a
downward parent to the DODAG root.

The primary highlights of the proposed Energy and Delay Aware Data Aggregation in RPL
(EDADA-RPL) are the following:

• The EDADA-RPL’s primary goal is to prevent redundant data transmission from the source to the
root of DODAG.

• The CS theory-based data aggregation avoids redundant data transmission and prolongs the
network lifetime.

• The efficiency of EDADA -RPL is assessed using COOJA simulator.

The paper is organized in the following way: the related work is described in Section 2. The network
model is represented in Section 3. Section 4 discusses the CS theory. Section 5 represents the Energy
and Delay Aware Data Aggregation in RPL. Section 6 discusses the results and discussion. Section 7 is
the conclusion of the paper.

2. Related Works

In this section, we discuss energy-aware data aggregation techniques in RPL to increase the packet
delivery ratio, decrease the delay, and improve the lifetime of the network in IoT.

Mohammad Hossein Homaei et al. [20] proposed an enhanced data aggregation method for IoT.
It proposed a distributed method to balance the child node and reduce the congestion among the nodes
in the network. Also, a learning automata-based dynamic data aggregation technique is proposed
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to aggregate the data in RPL (LA-RPL). Each node has a learning automaton to perform the data
aggregation and transmission from one node to another node. The simulation has been done using a
Contiki Cooja simulator. The LA-RPL’s performance is compared to RPL, BD-RPL, m-RPL, and A-RPL.
However, LA-RPL causes congestion, as it doesn’t consider the trickle timer.

Ainaz Bahramlou and Reza Javidan [21] proposed a data aggregation based RPL (A-RPL) protocol
for IoT. In IoT, the routing protocol changes its path frequently due to its resource-constrained nature.
It proposed a dynamic method to reconstruct the DODAG quickly, which finds a suitable objective
function among the number of objective functions. In this dynamic method, the sink node collects
the aggregated data from the downstream nodes. A-RPL selects the parent node based on the
environmental changes and control overhead in the network. The performance of A-RPL is compared
with RPL and A-RPL. A-RPL provides substantial packet delivery consistency and increases the
lifespan of the network. However, it causes congestion in a particular situation, as it does not consider
the dynamic trickle timer.

Mauro Conti et al. [22] proposed a reliable group communication protocol (RECOUP) for IoT.
RPL is a network routing protocol for IoT. However, it lacks reliability, scalability, and security. So, it
proposed a reliable group communication (RECOUP) protocol, which performs cluster-based multicast
routing. The performance of RECOUP improves the packet delivery ratio by 25% and decrease the
delay by 100 ms. Thus, it extends the network lifetime. However, it takes more energy consumption,
as it checks each data packet in each node.

YichaoJin et al. [23] proposed content-centric routing in RPL (CCR-RPL) for IoT. Nowadays, IoT
can be used in various applications. However, the routing protocol faces difficulty while collecting the
data present in the dense network. To avoid this issue, it proposed a content-centric routing protocol
for IoT. It identifies the content via the routing path. Then, the data aggregation process is carried out
in the intermediate node from the source to the destination. The simulation has been conducted in
COOJA and TelosB. The performance of CCR-RPL is compared to RPL. The CCR-RPL achieves better
performance in terms of latency, energy efficiency, and reliability in both the scenarios. However, it
creates congestion due to dynamic network conditions.

Ming Zhao et al. [24] suggested a parent cluster RPL (C-RPL) for IoT. C-RPL uses the opportunistic
forwarding scheme for synchronization and selects the optimal parent cluster set to reduce the latency
between source and destination. While transferring the data, the priority-based scheduling scheme is
incorporated in RPL. The simulation has been conducted in NS3. C-RPL performance is compared to
RPL and ORPL performance. It achieves not able performance by means of reliability and by avoiding
the packet retransmission. However, C-RPL packet loss occurs, as it takes more time to select the
cluster parent.

Madan Mohan Agarwal et al. [25] proposed a fuzzy-based data fusion technique for IoT (FLWP).
FLWP is proposed to maximize the lifespan of the network. The operations of FLWP is as follows: first,
it performs data fusion using fuzzy logic. Later, it predicts the optimal route based on the data fusion
value. The performance of FLWP is compared with the AODV routing protocol. It provides superior
performance to the AODV protocol. However, it takes a longer time to predict the parent node.

Marc Barcode et al. [26] proposed cooperative interaction in multiple RPL. It proposed cooperative
RPL (C-RPL), which creates multiple instances based on the cooperative strategy. The simulation has
been conducted in the Contiki Cooja simulator. The C-RPL provides better performance by means of
energy consumption and the cost of the nodes in the networks. However, it takes additional time to
choose the parent node present in the multiple DODAG.

S. Sankar and P. Srinivasan [27] proposed a fuzzy set based cluster routing (FC-RPL) protocol
for IoT. The FC-RPL consists of three phases, namely cluster formation, CH selection, and CH parent
selection. The cluster is formed from the Euclidean distance. The CH selection is performed by
considering the fuzzy logic over the routing metrics residual energy, centrality, and nearest neighbor
node. The CH parent node is selected from the CH parent rank. The simulation has been conducted
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using the Contiki COOJA simulator. The performance of FC-RPL is compared to RPL. The proposed
FC-RPL extends the network lifetime. However, it forms an excess number of clusters in the network.

Yaarob Al-Nidavi et al. [28] proposed a cluster-based routing (MUCBR-RPL) protocol for LLN.
The MUCBR protocol divides the entire network into multiple clusters. In each cluster, the MUCBR
selects the cluster head based on the residual energy. The CH node collects the data packets from
cluster members and performs the data aggregation. Finally, the aggregated data is forwarded to
the Sink node. The simulation has been conducted using the COOJA simulator. The performance
of MUCBR-RPL provides better performance in terms of network lifetime and reliability. However,
initially, it takes time to form the cluster. The literature review of Data aggregation on routing protocols
is given in Table 1.

Table 1. Literature review of Data aggregation on Routing Protocol for Low Power and Lossy Networks
(RPL).

S.No Protocol Author’s Proposed Technique Improvement Limitations

1 LA-RPL Mohammad
HosseinHomaei et al.

learning automata-based
dynamic data
aggregation

Extends the network
lifetime It does not consider the trickle timer

2 A-RPL Ainaz Bahramlou and
Reza Javidan

data aggregation
based RPL

Increased the network
lifetime congestion occurs in a particular situation

3 RECOUP-RPL Mauro Conti et al. cluster-based
multicast routing

Increased the packet
delivery ratio

It takes more energy consumption, as it
checks each data packets in each node.

4 CCR-RPL YichaoJin et al. content-centric routing
better performance in

terms of latency, energy
efficiency and reliability

Create the congestion due to dynamic
network conditions.

5 C-RPL Ming Zhao et al. Cluster parent routing Increased the reliability It takes more time to choose the cluster
parent

6 FLWP Madan Mohan Agarwal
et al.

fuzzy-based data fusion
technique

It provides superior
performance than

the AODV

It takes a longer time to predict the
parent node

7 C-RPL Marc Barcode et al. cooperative interaction Increased the
network lifetime

It takes additional time to choose the
parent node present in the

multiple DODAG

8 FC-RPL S. Sankar and P.
Srinivasan cluster routing Extended the

network lifetime
It forms the more number of clusters in

the network.

9 MUCBR-RPL Yaarob Al-Nidavi et al. cluster routing
Improved the network

lifetime and packet
delivery ratio

Initially, it takes time to form the cluster.

3. Network Model

The IoT network consists of ‘N’ number of nodes and one DODAG root. The nodes are randomly
deployed in the network. The EDADA-RPL follows the tree-based approach. The sensor node generates
the data and transmits it to the parent node. Each parent node collects the data packets and performs
the data aggregation using compressed sensing (CS) theory [29]. Likewise, the data aggregation
operation performs from a downward parent to the root of the DODAG. Finally, the DODAG root
obtains the compressed data and it performs the data recovery using the matching pursuit algorithm.
Figure 1 shows the network model of EDADA-RPL.

The Figure 2 shows the data collection and aggregation process using CS theory. In this, the path1
contains the subset of nodes in the DODAG, which are represented the data aggregation process.
The parent node (PN) generates the aggregated data di multiplied by the random weight value ri.
In each level in DODAG, the current parent node (PN) obtains the aggregated data in their child nodes

along with downward parent transmitted data PNk =
k∑

i=1
r1i × di. The detailed discussions of the data

aggregation process are given in Section 5.
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Figure 2. Data collection and aggregation from node PN1 to Destination Oriented Directed Acyclic
Graph (DODAG) root using compressed sensing (CS) theory.

Assumptions:

i. Nodes are deployed randomly on the network.
ii. All nodes are having the same energy.
iii. The rate of data transfer is one packet a minute.

4. Data Aggregation Using Compressed Sensing Theory

4.1. Data Aggregation

Data aggregation is an essential process in wireless routing for collecting the data from various
sources in the network [15]. It aggregates the sensor’s data, which removes the data redundancy and
reduces the number of data transmissions. Thus, it saves the energy on the network nodes in IoT.
Data fusion clubs the sensor’s data and removes the noise from various sources. Finally, it generates
accurate data for data transmission. The data aggregation process is shown in Figure 3.
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4.2. Compressed Sensing Theory

A sensor data or signal can be converted from lower dimensional space to higher-dimensional
space is called sparse. Generally, the data is converted into a sparse matrix. Later, it converts the sparse
matrix into the observation matrix. Finally, the data recoveries will perform from the observation
matrix [30]. Figure 4 shows the overall process of the compressed sensing theory.
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4.2.1. Sensor Data

In IoT, the nodes are deployed randomly in the network. Each sensor nodes generate the data N

×1 matrices d =


d1

d2

.

.
dn


and it can be represented as d = {d1, d2, d3 . . . ..dn}

T.
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4.2.2. Sparse Matrix Representation

A sparse matrix is matrix representation which contains the sensor data d of the network nodes N.
It is an orthogonal domain representation [31]. The data aggregation operation performs a regular
interval, ‘t’. The sparse matrix at parent node ‘s’ representation is given in Equation (1).

s = ri,t × di,t (1)

where ri,t = { r1,t, r2,t, . . . ri,t
}
, ri,t is a random number and di,t is a sensor data of respective time interval.

4.2.3. Observation Matrix Representation

The DODAG root collects the aggregated data from each path i = 1,2, . . . ,M. The DODAG root
collects data in path 1, represented in Equation (2).

y1 =
k∑

i=1

r1i × di (2)

Similarly, the DODAG root collects the aggregated data from the M paths, represented in
Equation (3).

y =
M∑

i=1

yi (3)

where yi indicates the aggregated data in a particular path and y indicates the aggregated data from
the M paths.

4.2.4. Data Recovery

The data can be recovered through solving the combinatorial problem, represented in Equation (4).

mindεRN‖d‖ such that y = r × d (4)

5. Energy and Delay Aware Data Aggregation in RPL

The Proposed Energy and Delay Aware Data aggregation in RPL (EDADA-RPL) has two processes,
namely parent selection and data aggregation. The process of parent selection uses routing metric
residual energy (RER) to choose the best possible parent for data transmission. The data aggregation
process uses the compressed sensing (CS) theory in the parental node to combine data packets from
the child nodes. Finally, the aggregated data transmits from a downward parent to the DODAG root or
sink. The DODAG root gathers aggregated data and conducts the reconciliation process to recover the
original data.

5.1. Parent Selection

In EDADA-RPL, the DODAG root node broadcasts the DODAG Information Object (DIO) to the
neighbor nodes in the network. The DODAG Advertisement Object (DAO) message is sent to the
parent or DODAG root by the participant node. The DODAG root or parent node sends the signal
of the DODAG Advertisement Object-Acknowledgement (DAO-ACK) to the child node within the
trickle interval. The participant node chooses the parent node depended on the DODAG node-level
routing remaining metric energy (RER).

Residual energy shows the present energy available in the RPL routers. The RER measures
the difference between the original energy and the energy currently consumed by the node [32].
The formula for calculating the remaining energy is provided in Equation (5).
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RER(Ni) =
EInitial − EDepleted

EInitial
(5)

5.2. Parent Rank Calculation

Rank indicates the root of the DODAG, how far from the node of the participant. The node
‘x’ rank computes from the parent node(x) rank and its value, Rank_Increase_Value. The value of
Rank Increase calculates the value of residual energy and the value of MinHop_RankIncrease. The
MinHop_RankIncrease value is 256, which is the default value in the rank calculation [33,34]. The
calculation of the rank is shown in Equations (6) and (7).

Rank(x)= Rank(parentNode(x))+Rank_Increase_Value (6)

Rank_Increase_Value = RER + MinHop_RankIncrease (7)

The EDADA-RPL parent selection algorithm is given in Algorithm 1.

Algorithm 1: EDADA-RPL parent selection

Input: DIO, DAO, DAO-ACK, DIO_RER
Output: Optimal Parent
1:For preferred_ParentNodeparentNode-list do
2: compute RER

RER(Ni) =
EInitial−EDepleted

EInitial

3:compute the Rank(N)
Rank(x)= Rank(parentNode(x))+Rank_Increase _Value

4:Calculate the Rank_Increase_Value
Rank_Increase_value = RER + MinHop _RankIncrease
5:IfBest_ParentNode>= Preferred_ParentNodeThen
Best_ParentNode=Preferred_ParentNode
6:End
7:Whilepreferred_ParentNode==Best_ParentNodedo
SourceNode=Preferred_ParentNode
8:End
9:End
10:Return Optimal Parent

5.3. Data Aggregation in Parent Node Using CS Theory

In the data aggregation process, the sensor nodes transmit the data d = {d1, d2 . . . dn}T to the
parent node. The parent node PN1 performs the data collection and aggregation operation and it
transmits the aggregated data packets to the DODAG root [35]. Each parent node gets the weighted
sum of the random number multiply by the sensor data ‘d’, called a sparse matrix. In path 1, the node
PN1 generates the values are r11 × d1, given in Equation (8).

PN1 = r11 × d1 (8)

where r11 indicates the random values of parent node 1 (PN1) and d1 indicates the aggregated data
of PN1.

First, the parent node PN1 sends the aggregated data r11 × d1 to PN2. Second, the parent node
PN2 collects the data from PN1 and also it collects and aggregates the data from its child nodes.
The mathematical representation is given in Equation (9).

PN2 = r11 × d1 + r12 × d2 (9)
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where r11 × d1 indicates the aggregated data in PN1 and r12 × d2 indicates the aggregated data in PN2.
Third, the parent node PN2 sends the aggregated data to node PN3. The node PN3 performs the

data aggregation operation, given in Equation (10).

PN3 =
k∑

i=1

r1i × di (10)

where k indicates the number of parent nodes in each path, r1i indicates random number of each parent
node in path 1.

In path 1, the parent nodes transmit the data from PN1 to DODAG root. The DODAG root collects
the aggregated data in path 1 is called the observation matrix and it is given in Equation (11).

y1 =
k∑

i=1

r1i × di (11)

where y1 indicates the DODAG root collects the aggregated data in path 1.
Similarly, the DODAG root collects the aggregated data from M paths and the DODAG root

receives the data packets yi, where i = 1,2, . . . ,M. So, we can represent the data aggregation process
mathematically, given in Equation (12).

y1

y2

.

.
yM


=


r11 r12 .. .. r1N
r21 r22 .. .. r2N

. . .. .. .

. . .. .. .
rM1 rM2 .. .. rMN




d1

d2

.

.
dN


(12)

Finally, we can reconstruct the weighted sum of aggregated data from the M path to N node’s
original data using CS theory. Thus, we can reduce the number of data transmission (M<N) in
the network.

Algorithm 2: Data Aggregation Using Compressed Sensing Theory

Input: Sensor data d = {d1, d2, . . . , dn}
Output: Compressed data y
1:Compute the data aggregation fromPN1 to DODAG root

y1 =
k∑

i=1
r1i × di

2:Compute the data aggregation in DODAG root from the M paths
y1
y2

.

.
yM


=


r11 r12 .. .. r1N
r21 r22 .. .. r2N
. . .. .. .
. . .. .. .

rM1 rM2 .. .. rMN




d1
d2

.

.
dN


3: Return the aggregated data y.

5.4. Data Reconstruction Using Matching Pursuit Algorithm

Data reconstruction is a recovery technique, which is used to recover the compressed data over
the network nodes. The DODAG root receives the compressed data in the form of observation matrix
from M paths. Also, the DODAG root recovers the sparse matrix accurately using matching pursuit
algorithm. Finally, the DODAG root rebuilds the compressed data and it matches with original
data [36].
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In matching pursuit algorithm, the EDADA-RPL recovers the data d from the input y = r × d.
The residual error (rerror) is initialized as y. The sparse matrix in each parent node PN is generated and
it is given in Equation (13)

PN = di−1 + rT
× rerror (13)

where rT indicates the random number in each parent node (PN).
The data recovery process will be continued until both original and recovered data are the same.

The pseudo-code of the matching pursuit algorithm is given in Algorithm 3.

Algorithm 3: Data Reconstruction Using Matching Pursuit Algorithm

Input: compressed data y = r× d
Output: Reconstructed data d
1:Initialize:

d0 = 0, rerror = 0 and i = 0
2:iteration:
3: i = i + 1
4: PN = di−1 + rT

× rerror

5: di = argmaxi={1,2,..N}|PN|
6:Compute residual error

rerror = y− r× di
7:If there is no error in rerrorthen
8:return d
9:End
10:End

We perform the reconstruction at the DODAG root and receive the original data d of N nodes.
Finally, we compute the mean square error and its value is very low. So, it proves that EDADA-RPL
provides less data loss when compared to other routing protocols.

6. Result and Discussions

In our simulation, all the nodes have equal energy, which is deployed randomly in the network.
The network contains 120 RPL routers and one DODAG root. The data transfer interval is 60 s.
We have taken the sky mote for our simulations [37]. The simulation has been conducted in the
COOJA simulator [38]. The data transfer rate is one packet per minute. All results presented in the
figures below are averaged over 10 simulation runs and error bars show the 95% confidence intervals.
The simulation parameters are given in the Table 2.

Table 2. Simulation parameters.

Parameter Value

Operating System Contiki 2.7
Simulator COOJA

Initial Energy 1500 mA
Routing Protocol RPL
Simulation Time 1 h

Network area 300 m × 300 m
Topology Random

Node Type Skymote
Number of Nodes 120

MAC Layer 802.15.4
Data Transmission Interval 60 s

Physical Layer Two Ray Ground Propagation Model
RPL Parameter MinHopRankIncrease = 256
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6.1. Performance Evaluation Metrics

The performance of proposed EDADA-RPL is compared with the familiar existing protocols RPL
and LA-RPL.

Packet delivery ratio: the proportion of data packets received successfully to the total sent.
Delay: time taken for transmitting the data from source to DODAG root.
Energy consumption: the number of miliwatts spent on transmitting data packets in the network

from source to DODAG root.
Packet overhead: the amount of control packets generated in the transmission of data packets.

6.2. Simulation Results

6.2.1. End-to-End Delay

Figure 5 shows the average end-to-end delay between the participant and the root of DODAG
for a number of hops. In general, the LLN network takes more time to transfer the data, due to its
resource-constrained nature. The effective routing mechanism tackles these issues and increases the
network performances. However, the end to end delay is one factor to deliver the sensor information
on time to the sink time. It is noted that EDADA-RPL, LA-RPL, and RPL delays are 3.5 s, 3.9 s, and
4.2 s respectively, when the hop count number is 10. It is also observed that the delay increases as the
number of hop count increases. It is due to a reduction in path breakage and the amount of redundant
data transmission.
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6.2.2. Number of Parent Change

Figure 6 depicts the number of parent changes over time. The parent change values indicate
network stability. If the network has fewer parent changes during the simulation, it can have more
stability and also the chance of packet losses is very low. The parent change values of EDADA-RPL,
LA-RPL, and RPL for a 1-h simulation are 0.07, 0.10, and 0.20, respectively. The proposed protocol is
introduced the compressed sensing theory to aggregate the data from its child node. It is a hybrid
aggregation technique, which reduces the data losses from the source to the destination. Thus, it
reduces the number of redundant data transmission and path breakages. So, it maintains route stability
during the data transmission.
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6.2.3. Number of Hop Count

Figure 7 depicts the number of hop count for the network size. In a dense network, the number of
hops between the sources to the destination is very high. The reason is that the numbers of nodes are
deployed randomly in a small network area. The simulation experiment is conducted and the results
are noted for the performance analysis. The hop counts of RPL, LA-RPL and EDADA-RPL are 8, 7,
and 5 respectively, for the network size of 120. It is also found that the size of the network is increasing;
the number of hop counts also increases. In EDADA-RPL, the number of hop count decreases, as it
performs the data aggregation during the data transmission. Thus, it reduces the number of hop count
and provides route stability among the nodes in the network.
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6.2.4. Packet Loss Ratio with Presence of Failed Node Scenario

Figure 8 depicts the packet loss ratio for the failed node scenario. It is noted that RPL, LA-RPL
and EDADA-RPL’s packet loss ratiosare 25%, 18%, and 12%, respectively, while the node size failed is
50. It is also found that, as the number of failed node size decreases, the packet loss increases.It is due
to the lack of neighbor nodes, coverage issues, and difficultyin finding alternate nodes. Nevertheless,
the EDADA-RPL identifies an alternative node to immediately transfer data to the DODAG root.
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6.2.5. Actual and Reconstructed Sensor Data

Figure 9 depicts the actual data for the reconstructed sensor data. It is observed that the actual
sensor data and reconstructed sensor data in EDADA-RPL is almost similar when compared to both
the values. It is noted that the sensor IDs are represented from 1 to 120. Here, the sensor readings are
nearly 30. The sensor values are varying, due to various reasons such as noise, the distance between
the source and the destination, etc. So, the sensor values are falling up and down, but it maintains the
consistency value by using compressed sensing theory. Hence, the EDADA-RPL recovers the original
data from the source node without any losses.
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6.2.6. Node Energy Consumption

Figure 10 illustrates the amount of node energy consumption in the network. Energy is a scarce
resource in IoT, as it contains the resource-constrained devices. It is noted that the energy consumption
of RPL, LA-RPL, and EDADA-RPL are 7 mW, 6 mW, and 5.5 mW, respectively, for a network size of
120. The proposed EDADA-RPL reduces the energy consumption by 1.5 mW. It is also found that the
node energy consumption increases, as the number of nodes in the network increases. It is due to
the number of nodes required to sense, listen, accumulate, and transmit the data from one node to
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another. Thus, it increases the energy consumption among the nodes in the networks. However, the
EDADA-RPL consumes less energy when compared to RPL and LA-RPL. The reason is that it reduces
the number of redundant data in the network from one node to another.
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6.2.7. Reconstruction MSE Value

Figure 11 depicts the reconstruction of Mean Square Error (MSE) value for the number of
observations. It is noted that reconstruction MSE of LA-RPL and EDADA-RPL are 0.02 and 0.01
respectively for the 120th iterations. In that, the RPL always the MSE values are 0 because there is no
compression process during the data transmission. Reconstruction of the MSE value has been observed
to decrease as the number of observations increases.It is due to the variation in node energy and data
traffic between the nodes of the network.
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6.2.8. Packet Loss Ratio

Figure 12 depicts the packet loss ratio with respect to the network size. In our simulation, we
observed that packet loss ration increases dramatically, while increasing the network size. It is noted
that the RPL, LA-RPL, and EDADA-RPL packet loss ratios are 12%, 8%, and 6% respectively, for a
network size of 120. It confirms that the data packet loss is also found to increase, as the network size
increases. It is due to the lack of neighbor nodes, coverage issues and difficult to find alternate nodes.
However, EDADA-RPL finds an alternate node to transfer the data quickly to the DODAG root.
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7. Conclusions and Future Works

Energy conservation is important role in Internet of Things (IoT). Therefore, routing plays an
essential role in IoT. We proposed Energy and Delay Aware Data aggregation in Routing Protocol
(EDADA-RPL) for IoT. It has two processes, namely parent selection and data aggregation. The parent
selection process uses the routing metric residual energy (RER) to select the optimal parent for data
transfer. The data aggregation process uses the compressed sensing (CS) theory in the parent node to
combine data packets from the child nodes. Then, the aggregated data is transmitted to the DODAG
root from the downward parent. The DODAG root node collects all the aggregated data and performs
the reconstruction operation to get original data. The performance of EDADA-RPL is compared
with RPL and LA-RPL. The EDADA-RPL decreases the delay and packet loss ratio by 8–15 s and
6–10%, respectively.

In our future work, we plan to deploy sky motes in a real-time environment and toanalyse
EDADA-RPL efficiency in various scenarios.
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