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Abstract: Our study aims to fabricate a hydrogen sensor based on thermal stability analysis of Ta2O5

film, and to determine the effect of Pd electrodes on the hydrogen sensor at high temperatures.
First, in order to ensure high-temperature stability of silicon carbide (SiC)-based hydrogen sensors,
the thermal stability of Ta2O5 dielectric thin film at temperatures above 900 ◦C was studied. The sensor
structure consisted of a metal-insulator-semiconductor (MIS) and a tantalum oxide (Ta2O5) dielectric
film was formed by rapid thermal oxidation (RTO). The Ta2O5 film was assessed through SEM, TEM,
SIMS, and dielectric breakdown strength to observe thermal stability. Secondly, hydrogen sensors
using a SiC substrate were fabricated, with the process considering thermal stability. The response
characteristics for hydrogen were evaluated using three types of sensors with different Pd electrode
patterns. The patterns of the Pd electrode were designed as squares or grid shapes, and were
characterized by 100%, 75%, and 50% area ratios of Pd electrodes covering the Ta2O5 layer. The results
showed that the sensor with a 100% area ratio of the Pd electrode had better sensitivity and linear
response characteristics compared to sensors with a 50% area ratio of the Pd electrode.

Keywords: hydrogen sensor; silicon carbide; palladium electrode; pattern type; high temperature;
tantalum oxide

1. Introduction

The amount of hydrogen gas in the atmosphere is very small; it makes up about 0.5 ppm.
At standard temperature and pressure, hydrogen is a colorless, odorless, tasteless, and nontoxic
gas. However, hydrogen gas is highly explosive if it reaches a concentration of more than 4% in the
atmosphere and is a major cause of metal corrosion. Thus, devices and facilities that handle hydrogen
gas need to be equipped with reliable sensors to detect hydrogen leaks. In particular, in the case of
hydrogen vehicles that use compressed hydrogen stored at high pressure, installation of hydrogen
sensors is essential.

Semiconductor gas sensors have generally been manufactured using silicon substrates with stable
process technology [1], but sensors that use silicon as a substrate have a serious disadvantage in
that they cannot operate at temperatures above 250 ◦C due to their relatively small band gap energy
(EG = 1.12 eV). However, there are numerous high-temperature facilities that achieve temperatures
of over 250 ◦C, for example, furnaces in steel mills, chemical reactors, and automobile and aviation
engines. Therefore, sensors that can operate even in high-temperature environments are needed.
The development of sensors that can operate at high temperatures is essential in terms of expanding
their application and the development of different materials, as well as improving the configuration of
the detection circuit system. The electrical properties of semiconductors are sensitive to temperature.
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Silicon carbide (SiC), gallium nitride (GaN), and gallium phosphide (GaP), which have large band gap
energy, are relatively suitable for high-temperature applications. Meanwhile, studies using ceramic
substrates including Al2O3 as an insulator for high-temperature gas sensors have been conducted [2–4].

To date, various materials and production methods have been used to produce hydrogen
sensors able to withstand high temperatures [5–10]. The first study investigating a high-temperature
hydrogen sensor using SiC as a substrate was performed in 1992 [11]. The sensor comprised a simple
Schottky diode structure, consisting of only one metal electrode on the SiC substrate. However,
this structure was not stable after long-term high-temperature operations due to its poor interface
properties. Structures of semiconductor sensors may roughly be divided into two types: the Schottky
barrier and the metal-insulator-semiconductor (MIS) structure. Gas sensors characterized by a MIS
have advantages such as a simple structure, reduction of the interfacial diffusion, and thermal
transfer blocking by the oxide film between the metal electrode and the semiconductor substrate.
Therefore, they are suitable for higher temperature use than the Schottky contact structure. In addition,
the capacitive-type sensors [12,13] in the MIS structure are less sensitive to temperature changes than
the resistive-type [14,15], therefore, they are more suitable for environments with high-temperature
variations because they require almost no temperature compensation.

We have reported a study evaluating a hydrogen sensor using a tantalum oxide (Ta2O5) layer on
the SiC substrate, which is suitable for high temperatures [12,16]. Ta2O5 possesses many desirable
features, including good chemical resistance and low light absorption, as well as high permeability for
hydrogen gas with a high dielectric constant of about 25 and barrier heights appropriate to the SiC
substrate [17]. In the study, a Ta2O5 film is formed by rapid thermal oxidation (RTO), which has the
advantage of reducing defects in the Ta2O5 layer, as well as dopant penetration and interface reactions
at the interface used. However, it has also been reported that crystallization of the Ta2O5 film affects
electrical properties. The Ta2O5 layer shows a drastic increase in leakage current in the crystalline
state [18,19]. We compared the interface of the Ta2O5/substrate formed by RTO on silicon (Si) and SiC
substrates using transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS)
at RTO temperatures of 900 to 1000 ◦C, and then measured the I–V curves to determine its dielectric
breakdown strength.

The choice of the metal electrode and of the oxide film is important in hydrogen sensors.
Palladium (Pd) has the ability to absorb large volumetric quantities of hydrogen at room temperature
and atmospheric pressure, and subsequently contributes to the formation of palladium hydride (PdHx)
within the dielectric thin film [20–23]. In this study, in order to assess the effects of the Pd electrode on
the response characteristics of hydrogen sensors, three types of sensors with different Pd electrode
patterns were applied to the MIS structure. The capacitive response characteristics of the sensors were
estimated for hydrogen concentrations ranging up to 2000 ppm. As a result, it was confirmed that the
Pd electrode exerted a significant effect on the hydrogen response.

2. Experiments

In this study, n-type 4H–SiC wafers were used as substrates to produce hydrogen sensors for
high-temperature application. The SiC substrate size was 4 inch (or 1.2 × 1.2 cm2 in size). After
pre-cleaning, tantalum (Ta) films were deposited on the SiC substrate at power of 600 W, pressure of
2 mTorr, and argon (Ar) flow rate of 20 sccm. Then, the Ta2O5 layer was formed using an RTO process
for two minutes at a temperature range of 900 to 1000 ◦C. Figure 1 shows the relationship between
deposition time and formation thickness of tantalum. Applying this process, tantalum with a thickness
of ~50 nm was formed at a flow rate of 200 s.

A nickel (Ni) film was deposited on the backside of the wafer to form electrodes, and the annealing
process was conducted for one minute at 950 ◦C for ohmic contact, after which Pd was deposited for
2 min at 300 W power with shadow masks of three different patterns in order to form the front Pd
electrodes. The SiC substrates (hydrogen sensors) were attached to the quartz plates within a 3 × 3 cm2
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area and were finished with wire bonding. Figure 2 shows the overall process flowchart for fabricating
the hydrogen sensors with the Pd (top)/Ta2O5/SiC/nickel silicide (NiSix) structure.
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Figure 1. Ta film thickness as a function of deposition time at power of 600 W, pressure of 2 mTorr, and
Ar flow rate of 20 sccm.
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Figure 2. Schematic flowchart of experimental procedure.

The sensors are made of a MIS structure. Pd film with a thickness of 200 nm was deposited over
the Ta2O5 layer. Figure 3 shows a focused ion beam (FIB)-SEM image of the cross-section of the sensor.
Initially, the thickness of the tantalum film was 50 nm, but after the RTO process the thickness of
the Ta2O5 layer increased to approximately 80 nm. The thickness of NiSix used as the bottom-side
electrode was determined to be approximately 100 nm. In a previous study [24], it was reported that
the thermally stable Ni–Si silicide layers had excellent ohmic properties and no hysteresis behavior
was observed on 4H–SiC substrates after rapid thermal annealing (RTA) at temperatures of 925 to
975 ◦C. Platinum (Pt) in the FIB-SEM image indicates a layer formed during the sample preparation by
the FIB to protect the Pd layer from damage.
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Figure 3. A focused ion beam (FIB)-scanning electron microscope (SEM) image of the cross-section of
the sample.

The electrical properties of sensors were determined using a semiconductor device analyzer and
an inductance-capacitance-resistance (LCR) meter. The sensors were measured in a chamber capable
of temperature adjustments. The chamber was composed of a quartz tube 75 mm in diameter with
a cooling system. The concentration of hydrogen gas was adjusted to 4 stages of 0, 500, 1000, and
2000 ppm, using the mass flow controller (MFC). The sensors were flushed with clean nitrogen gas
before exposure to hydrogen gas. Our measurements were basically conducted in a dry atmosphere,
where the relative humidity was always less than 20%.

3. Results and Discussion

3.1. Evaluation of Ta2O5 Properties in the MIS Structure

A Ta2O5 film formed by RTO was used as the dielectric layer. Ta2O5 films produced by RTO have
been characterized for their advantages of reducing cracks, pinholes, and pores in the Ta2O5 layer,
and for advantages of the dopant diffusion penetration at the interface of Ta2O5 and substrate [18].
However, it has also been reported that the crystallization of the Ta2O5 film affects electrical properties.
The Ta2O5 layer shows excellent electrical characteristics in the amorphous state. However, it is
crystallized at temperatures above 700 ◦C, resulting in a drastic increase in the leakage current [19].
This means that an analysis of the optimized post-process to reduce the leakage current in the MIS
structure and the thermal stability of hydrogen sensors in high-temperature applications is needed.

We compared the interface of Ta2O5/substrates formed by RTO deposited on Si and SiC substrates
using TEM at an RTO temperature from 900 ◦C to 1000 ◦C in order to assess the uniform distribution
of components at the interface. Figure 4 shows the cross-sectional TEM images of as-deposited Ta
layers (Figure 4a,b) and Ta2O5 layers after RTO for 2 min in 5 standard liters per minute (SLPM)
ambient oxygen (Figure 4c,d). TEM images show deposition on Si (Figure 4a,c) and on SiC substrates
(Figure 4b,d). Following RTO, the interface of the Ta2O5 layer/substrate formed on SiC substrates was
more uniform than that of the interface of the Ta2O5/substrate.
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Figure 4. (a,b) Cross-sectional TEM images of deposited Ta layers and (c,d) tantalum oxide (Ta2O5)
layers; (a,c) on Si substrate and (b,d) on silicon carbide (SiC) substrate.

This result was confirmed by SIMS measurement. Figure 5 shows SIMS depth profiles of Ta atoms
deposited on Si and SiC substrates, respectively, before and after RTO above 900 ◦C for 2 min. The Ta
atoms accumulated at the interface of the Ta2O5/Si substrate after RTO above 900 ◦C, whereas there
was no such accumulation at the interface of the Ta2O5/SiC substrate (Figure 5a). Therefore, it was
confirmed that the Ta2O5 layer on the SiC substrate is a more stable substrate than that on the Si
substrate at high temperatures over 900 ◦C.
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Figure 5. Secondary ion mass spectrometry (SIMS) depth profiles of Ta atoms according to rapid
thermal oxidation (RTO) temperature (a) on Si substrates and (b) on SiC substrates.

Figure 6 shows the current–voltage (I–V) properties for the samples in the MIS structure consisting
of Pd electrode and Ta2O5 dielectric layer on the SiC substrate. The voltage was applied with a step
of 0.1 to −50 V. The direction of the applied voltage was based on the Pd electrode, and the thermal
treatment temperature of the Ta2O5 layer ranged from 900 ◦C to 1000 ◦C before Pd film deposition.
The breakdown field was shown to be ~1.5 MV/cm. In general, the operating voltage of the sensor
was <10 V. The leakage current was very low in the low electrical field even though it was shown to
increase over −20 V.
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tantalum oxide layers formed at 900 ◦C (black line) and 1000 ◦C (blue line).

3.2. Response Characteristics for Hydrogen

Pd is an important medium for detecting hydrogen gas. The Pd electrode acts as a catalyst
to selectively absorb hydrogen gas to produce PdHx within the dielectric layer or to facilitate the
reversion process. When hydrogen molecules are adsorbed on the surface of the Pd metal, the hydrogen
molecules are decomposed with little or no activation energy barrier into two hydrogen ions to form
PdHx (where x < 1). Furthermore, the hydrogen sensor’s inherent selectivity for hydrogen, fast sorption
kinetics, and reversibility of hydride formation improve its function.

We fabricated sensors with Pd electrodes consisting of three different patterns in order to assess
the effects of Pd electrodes on hydrogen sensors. Figure 7 shows the three types of mask patterns for
Pd electrodes, where the gray area is the open area of the mask. The Pd is deposited over the Ta2O5

layer. The patterns were designed into square or grid shapes, and comprised 100%, 75%, and 50% area
ratios of Pd electrodes covered on the Ta2O5 layer. Figure 7a–c, show the 100% opened mask pattern
sized 8.4 × 8.4 mm2, 75% opened mask pattern sized 8.4 × 8.4 mm2, and 50% opened mask pattern
sized 8.4 × 8.4 mm2, respectively.
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(c) 50% of Pd mask pattern open.

Figure 8 shows the three types of sensors used in the study attached to quartz plates sized
3 × 3 cm2. The sensors on the SiC substrate were interconnected by wire bonding with the electrode
pad deposited by gold (Au) on the quartz plate. Figure 8a–c show images of the fabricated sensors
with 100%, 75%, and 50% opened masks, respectively.
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Figure 8. Images of the completed sensors showing the three types of Pd patterns: (a) 100%, (b) 75%,
and (c) 50% of Pd mask pattern open.

We examined variations in the capacitance in terms of hydrogen concentration for the three types
of sensors with different Pd electrode patterns at temperatures ranging from room temperature to
400 ◦C. In the MIS-structured sensors, the capacitive-type was less sensitive to temperature changes
than the resistive-type [18–20] and, thus, temperature correction was no longer required. Before
hydrogen was injected, the initial capacitance of the sensors did not vary extensively, regardless of
the temperature tested. We first examined the response properties of the sensor when exposed to
hydrogen at room temperature. At room temperature, when the concentration of hydrogen increased
from zero to 2000 ppm, little variation in capacitance was observed for all three types of sensors.

Figure 9 shows the results obtained at 200 ◦C. At 200 ◦C, the capacitance gradually increased when
the hydrogen concentration increased to 2000 ppm compared to the capacitance at room temperature.
Overall, our results showed that the higher the concentration of hydrogen, the higher the capacitance
of the sensor, which was assumed to be due to the increase in PdHx passing through the Pd catalytic
electrode as the temperature increased. Figure 9a shows the capacitance of a 100% area ratio of the
Pd electrode. The initial value of the capacitance was about 125 nF. Figure 9b,c shows the results
obtained from sensors with a 75% and 50% area ratio of the Pd electrode, respectively. The initial
values of the capacitance decreased as the area of Pd electrode became smaller, achieving 112 and 80 nF
capacitance, respectively.
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Figure 10a shows the results of a sensor with a 100% area ratio of the Pd electrode measured
at 400 ◦C. Despite the increase in temperature, the initial capacitance remained at 125 nF with
little variation. In the absence of hydrogen, the capacitance remained unchanged at about 125 nF.
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For hydrogen concentrations of 1000 and 2000 ppm, the capacitance of the sensor rose from 170 nF to
210 nF. The sensitivity was more than 25% per 1000 ppm, when the sensitivity (S) was calculated by

S =
∆C
C0
× 100 (%) (1)

where C0 represents the capacitance in the absence of hydrogen and ∆C represents the change in
capacitance when exposed to hydrogen. Overall, the change in capacitance for the increase in hydrogen
concentration from zero to 2000 ppm showed almost linear results. Figure 10b shows the results
obtained using a sensor with a 75% area ratio of the Pd electrode. For hydrogen concentrations of 1000
and 2000 ppm, the capacitance of the sensor increased from 160 nF to 170 nF. This was less sensitive
than the results for a 100% area ratio of the Pd electrode (Figure 10a). Additionally, the increase in rate
of capacitance diminished when the hydrogen concentration increased, indicating that the response
characteristics to hydrogen concentration were somewhat nonlinear. Finally, Figure 10c shows the
results obtained from a sensor with a 50% area ratio of the Pd electrode. For hydrogen concentrations
of 1000 and 2000 ppm, the capacitance of the sensor increased from 108 nF to 110 nF. Compared with
the previous results shown in Figure 10a,b at 100% and 75% Pd electrode area ratios, the change in
capacitance was further reduced, and showed more nonlinear response to the change in hydrogen
concentration. These results suggest that the process of changing the adsorbed hydrogen molecules to
PdHx depends strongly on the Pd electrode as a catalyst. Therefore, when sensors respond to hydrogen,
our results showed that the higher the area ratio of the Pd electrode, the greater the response properties
to hydrogen.
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4. Conclusions

For sensors to be used at high-temperature environments, thermal stability at high temperatures
is required. However, semiconductor devices are sensitive to temperature and, thus, the electrical
properties can easily degrade at high temperatures. In this study, the thermal stability at the interface of
Ta2O5/SiC substrate and the dielectric breakdown strength of the Ta2O5 film formed by RTO at 900 ◦C
or higher were measured. In addition, hydrogen sensors using Ta2O5 film fabricated on a SiC substrate
were studied. For hydrogen sensors, Pd electrodes play an important role as a catalyst. Thus, this
study evaluated the role of the Pd electrode in hydrogen sensors with the aim of developing hydrogen
sensors that can operate in high-temperature environments. For this purpose, hydrogen sensors using
a SiC substrate were fabricated, with the process considering thermal stability. To evaluate the effects
of the Pd electrode on the hydrogen sensor, we examined variations in the capacitance according to
different hydrogen concentrations for three types of sensors with different Pd electrode patterns as the
temperature increased from room temperature to 400 ◦C. Our results showed that the sensitivity of
the sensor increased as the area ratio of the Pd electrode increased from 50% to 100%, and the change
in capacitance for the increase in hydrogen concentration showed overall linear results even with
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some calibration. In addition, when the temperature was raised to 400 ◦C, the sensitivity of the sensor
replaced by variations in capacitance was greatly increased.
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