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Abstract: Unmanned aerial vehicles (UAVs) are being increasingly viewed as valuable tools to aid
the management of farms. This kind of technology can be particularly useful in the context of
extensive cattle farming, as production areas tend to be expansive and animals tend to be more
loosely monitored. With the advent of deep learning, and convolutional neural networks (CNNs) in
particular, extracting relevant information from aerial images has become more effective. Despite the
technological advancements in drone, imaging and machine learning technologies, the application
of UAVs for cattle monitoring is far from being thoroughly studied, with many research gaps still
remaining. In this context, the objectives of this study were threefold: (1) to determine the highest
possible accuracy that could be achieved in the detection of animals of the Canchim breed, which is
visually similar to the Nelore breed (Bos taurus indicus); (2) to determine the ideal ground sample
distance (GSD) for animal detection; (3) to determine the most accurate CNN architecture for this
specific problem. The experiments involved 1853 images containing 8629 samples of animals, and
15 different CNN architectures were tested. A total of 900 models were trained (15 CNN architectures
× 3 spacial resolutions × 2 datasets × 10-fold cross validation), allowing for a deep analysis of the
several aspects that impact the detection of cattle using aerial images captured using UAVs. Results
revealed that many CNN architectures are robust enough to reliably detect animals in aerial images
even under far from ideal conditions, indicating the viability of using UAVs for cattle monitoring.

Keywords: unmanned aerial vehicles; drones; canchim breed; nelore breed; convolutional
neural networks

1. Introduction

Unmanned aerial vehicles (UAVs), also known as unmanned aerial systems (UAS) and drones,
are becoming commonplace in agriculture. New applications are being constantly proposed, both in
the crop and livestock production chains [1,2]. In the specific case of cattle monitoring, there are a
few applications in which UAVs can have immediate impact, including the estimation of the number
of animals, monitoring of anomalous events (diseased animals, calf birth, etc.) and measurement
of body traits. All of those applications have one step in common: before the extraction of more
sophisticated information, the animals need to be detected in the images. The definition of the term
“detection” will often depend on the approach being used. In this work, convolutional neural networks
(CNNs) architectures are used as classifiers, which means that the term “detection” refers to the
recognition that a given image block contains at least part of an animal. It is worth noting that there
are other ways to detect animals, such as using algorithms that estimate bounding boxes around the
objects [3,4], and algorithms that delineate the animal bodies through semantic segmentation [5,6].
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The main shortcoming of the former is that each architecture has some conditions under which they
tend to perform poorly (e.g., you only look once (YOLO) [7] struggles with groups of small objects
and to generalize aspect ratios), while the latter requires careful image annotation which can be very
time-consuming. Because of those issues, they were not considered in this study.

Most of the work on the use of UAVs for animal monitoring has been dedicated to wild animals [8],
including deer [9–11], elk [9], hippopotamus [12], rhinoceros [13] and elephants [14]. Although in the
last few years the number of studies dedicated to cattle has risen, they are still relatively rare. A few
academic investigations on this subject have been dedicated to animal detection and counting [15–19],
cattle round-up [20], feeding behavior [21], animal identification [22] and health monitoring [23]. Most
of those studies (especially the most recent ones) employ deep learning for animal detection.

All methods for cattle detection using deep learning found in the literature use one of two methods.
The first approach uses CNNs to generate a probability heat map which hopefully shows where animals
are located [15,17,18]. The second approach uses techniques that generate a bounding box around
the objects of interest [19,22]. Both of these studies use the YOLO v2 architecture [7], which was
designed with speed in mind. Although the results reported in all those studies are very encouraging,
the experimental designs have some limitations that make it difficult to evaluate the real significance
of the reported results. In particular, it seems that the aerial images were always captured under ideal
conditions, but these conditions are not described and factors such as flight altitude and ground sample
distance (GSD) associated, illumination, time of day, presence of shadows, etc., are not investigated.
As a result, accuracies under practical operation conditions may be significantly lower, and since
no recommendations or protocols are suggested to guide mission planning, avoiding problematic
conditions may be challenging. It is also worth noting that, in the case of the first approach, the CNN
architectures used in those were designed specifically for the problem at hand, but comparisons with
more well-established architectures are limited or non-existent.

Most of the experimental limitations mentioned above are probably due to the fact that these
are the first investigations dedicated to cattle detection, so they are more concerned with proving the
concept than with the details that would make practical operation feasible. Nevertheless, expanding
the understanding of the subject is essential for the future adoption of this type of technology, which
is the main objective of this work. It is important to highlight that estimating the number of animals
while being heavily dependent on effective methods for animal detection, require that other factors be
taken into account (animal movement, image matching, etc.). This study was dedicated exclusively to
the detection part of the counting problem, so those additional factors were not addressed.

This article brings four novel contributions:

1. All experiments were done with animals of the Nelore (Bos indicus) and Canchim breed.
The Canchim breed is a cross between Charolais (Bos taurus) and Nelore breeds, with the latter
lending most of its visual traits. To the authors’ knowledge, there are no studies in the literature
using aerial images of either Nelore or Canchim breeds. Because visual differences between both
breeds were slight in most cases, breed identification using the CNNs was not attempted.

2. Some experiments were designed specifically to determine the ideal GSD when CNNs are used,
taking into consideration both accuracy and area covered.

3. Fifteen of the most successful CNN architectures were compared, using a 10-fold cross-validation
procedure to avoid any spurious or unrealistic results.

4. The image dataset used in the experiments include images captured under a wide variety of
conditions. To guarantee as much data variability as possible, images were captured under
different weather conditions (sunny and overcast), at different times of the day and of the
year, and with different pasture conditions. Each one of those factors is carefully analyzed and
discussed, thus qualifying the results observed.
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2. Materials and Methods

2.1. Image Dataset

The UAV used in the experiments was a DJI Phantom 4 Pro, equipped with an 20-MPixel camera.
The 4:3 aspect ratio was adopted in the experiments, resulting in images with 4864 x 3648 pixels.
Missions were carried out at the Canchim farm, São Carlos, Brazil (21◦58′28′′ S, 47◦50′59′′ W) at
11 dates over the year of 2018. Camera settings were all kept on automatic, except exposition, which
used the presets “sunny” and “overcast” depending on weather conditions. Images were captured
from an altitude of 30 m with respect to the take-off position. This altitude provided a fine GSD
(approximately 1 cm/pixel) without disturbing the animals, which showed no reaction when the
aircraft flew over them. Altitude and GSD had variations of up to 20% due to the ruggedness of the
terrain. Frontal and side image overlap images were both set to 70%. Each animal is represented by
13,000 pixels in average—this number varies considerably with the size and position of the animals,
as well as with the actual altitude at the moment of capture. The images cover a wide range of
capture conditions, and animals from both Canchim and Nelore breeds were present during all
flights. Illumination varied from well-lit to very dark conditions (Figure 1), which is due not only
to the weather but also to condition variations in the same flight. The contrast between animals and
background also varied significantly—low contrast situations were caused by both motion blur and
excessive brightness (Figure 2). Because images were captured at different times of the year, soil
conditions also varied (Figure 3). Different degrees of animal occlusions are also present (Figure 4).
A total of 19,097 images were captured, from which 1853 images containing at least part of an animal
were selected for the experiments. The maximum number of animals in a single image was 15.

Figure 1. Examples of well-lit (left) and too dark conditions (right).
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Figure 2. Examples of blurry (left) and too bright conditions (right).

Figure 3. Examples of lush pasture (left), dry pasture (center) and exposed soil (right).

Figure 4. Examples of animal oclusions: tree branches (left), shed roof (middle), electrical wires (right).

Two datasets were generated from the original images. In the first one, 224 × 224 pixel squares
were associated to all animals in all images, carefully encompassing each individual. Animals at the
edges of the images were only considered if at least 50% of their bodies were visible. While the targeted
animal was always centered, there were cases in which image blocks included parts of other animals
due to close proximity. A total of 8629 squares containing animals were selected; the same number
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of squares was randomly selected to represent the background. This dataset was generated with the
objective of determining the best possible accuracy that can be achieved when all objects of interest are
perfectly framed by the image blocks to be classified. In the second dataset, images were subdivided
into image blocks using a regular grid with 224-pixel spacing both horizontally and vertically. This
value was chosen because 224 × 224 pixels is the default input size for many of the CNNs tested in
this work and, additionally, blocks of this size encompass almost perfectly most of the animals present
in the images. Blocks were then labeled as “cattle” and “non-cattle”; to be labeled as “cattle”, a block
should contain at least a few pixels that could be undoubtedly associated with an animal without
having any other block (or the entire image) as reference. This criterion is subjective and susceptible to
inter- and intra-rater inconsistencies [24], but this was the most viable approach given the amount and
characteristics of the images. A total of 14,489 image blocks were labeled as “cattle”; the number of
“non-cattle” blocks was much higher but, in order to avoid problems associated with class imbalance,
only 14,489 randomly selected “non-cattle” blocks were used in the experiments. Both image datasets
were manually annotated by the same person. Some examples of “cattle” image blocks present in each
dataset are shown in Figure 5.

Figure 5. Examples of image blocks containing carefully framed animals (top) and image blocks
generated using a regular grid (bottom).

2.2. Experimental Setup

Figure 6 shows the basic workflow used to train each of the models tested in this study.

Figure 6. Workflow used to train all models considered in the experiments.

First, the original dataset containing all labeled image blocks was divided into a training
(80% of the samples) and a test dataset (20%). A validation set was not used because the model
hyperparameters were defined as having previous experiments as reference, as described later in
this section. As a result, the training and test datasets always contained, respectively, 13,806 and
3452 samples when the first dataset was adopted (careful animal framing), and 23,182 and 5796 samples
when the second dataset was used (regular grid). In order to avoid biased results due to skewed data
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distributions caused by the random dataset division, a 10-fold cross-validation was adopted. In other
words, 10 models were trained for each pair of input dimension and CNN considered.

As mentioned before, all image blocks generated during the labeling process had 224 × 224 pixels.
In order to simulate coarser GSDs, the original image blocks were downsampled to 112 × 112 pixels
and 56 × 56 pixels, simulating GSDs of 2 and 4 cm/pixel or, equivalently, simulating flight altitudes
of 60 and 120 m, which is the current legal limit in most countries without the need for some special
exemption [1].

The experiments were carried out using the Keras library (keras.io, version 2.2.4) with TensorFlow
v. 1.4. Keras library had available all models used in the experiments, thus avoiding the need for direct
coding or using third-party sources. With this setup, most CNNs could be trained using images of any
dimension as input, even when using pretrained networks (transfer learning), as was the case in this
study. However, there are some architectures that require the input dimensions to be either a fixed or
above a certain lower limit (see Table 1). In cases like these, it is necessary to upsample the images
after downsampling to meet the requirements of those architectures. It is important to emphasize that
a direct comparison between architectures is still possible even if the input dimensions are different
because the downsampling causes a loss of information that is not reverted by the upsampling.

Fifteen different CNN architectures were tested (Table 1) using the following hyperparameters:
fixed learning rate of 0.0001, 10 epochs (most models converged with fewer than five epochs),
mini-batch size of 128 (larger values caused memory problems with deeper architectures) and sigmoid
activation function. Transfer learning was applied by using models pretrained on the Imagenet
dataset [25] and freezing all convolutional layers and updating only the top layers. Training was
performed in a workstation equipped with two RTX-2080 Ti GPUs.

Table 1. Convolutional neural networks (CNNs) architectures tested in the experiments.

CNN Architecture Required Input Size Reference

VGG-16 None Simonyan and Zisserman [26]
VGG-19 None Simonyan and Zisserman [26]
ResNet-50 v2 None He et al. [27]
ResNet-101 v2 None He et al. [27]
ResNet-152 v2 None He et al. [27]
MobileNet None Howard et al. [28]
MobileNet v2 None Sandler et al. [29]
DenseNet 121 None Huang et al. [30]
DenseNet 169 None Huang et al. [30]
DenseNet 201 None Huang et al. [30]
Xception ≥75 × 75 pixels Chollet et al. [31]
Inception v3 ≥75 × 75 pixels Szegedy et al. [32]
Inception ResNet v2 ≥75 × 75 pixels Szegedy et al. [33]
NASNet Mobile 224 × 224 pixels Zoph et al. [34]
NASNet Large 331 × 331 pixels Zoph et al. [34]

Finally, model assessment was carried out by taking the trained models and applying them to the
independent test sets. Four performance metrics were extracted:

Accuracy = (TP + TN)/(TP + TN + FP + FN), (1)

Precision = TP/(TP + FP), (2)

Recall = TP/(TP + FN), (3)

F1Score = 2× (Recall × Precision)/(Recall + Precision), (4)

where TP, TN, FP and FN are the number of true positives, true negatives, false positives and false
negatives, respectively.
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3. Results

Table 2 summarizes the results obtained having the first dataset as reference (“cattle” image blocks
centered exactly at the position of each animal). The objective of this experiment was to assess the
performance of the models when trained with samples carefully generated to represent each class
as consistently as possible. Only the 224 × 224 pixel samples were used in this case because this
experiment was carried out only to serve as a reference for the more realistic one shown in Table 3.

Table 2. Results obtained using the dataset labelled with exact animal locations.

CNN Accuracy Precision Recall F1 Score

VGG-16 0.972 0.973 0.973 0.970
VGG-19 0.973 0.973 0.973 0.975

ResNet-50 v2 0.977 0.978 0.978 0.975
ResNet-101 v2 0.983 0.985 0.985 0.985
ResNet-152 v2 0.967 0.970 0.970 0.965

MobileNet 0.983 0.980 0.980 0.983
MobileNet v2 0.787 0.855 0.790 0.778
DenseNet 121 0.852 0.895 0.868 0.865
DenseNet 169 0.935 0.943 0.933 0.935
DenseNet 201 0.935 0.945 0.938 0.938

Xception 0.969 0.968 0.968 0.968
Inception v3 0.979 0.975 0.975 0.975

Inception ResNet v2 0.983 0.983 0.983 0.985
NASNet Mobile 0.857 0.890 0.858 0.853
NASNet Large 0.992 0.993 0.993 0.995

Table 3 is similar to Table 2, except the samples used in the training were generated using the
second dataset (regular grid). This is a more challenging situation, as some “cattle” image blocks may
contain only small parts of the animals which need to be properly detected by the models. In addition,
Figure 7 shows graphically the average and range of accuracies obtained for each model.

Table 3. Results obtained using the dataset labelled with exact animal locations.

CNN Input Size Accuracy Precision Recall F1 Score
224 × 224 0.892 0.903 0.895 0.893

VGG-16 112 × 112 0.911 0.918 0.915 0.910
56 × 56 0.878 0.888 0.880 0.878

224 × 224 0.891 0.900 0.893 0.890
VGG-19 112 × 112 0.910 0.915 0.910 0.908

56 × 56 0.888 0.898 0.885 0.885
224 × 224 0.848 0.883 0.848 0.845

ResNet-50 v2 112 × 112 0.939 0.940 0.943 0.940
56×56 0.796 0.815 0.793 0.788

224 × 224 0.893 0.910 0.895 0.890
ResNet-101 v2 112 × 112 0.908 0.913 0.908 0.910

56 × 56 0.848 0.875 0.850 0.845
224 × 224 0.827 0.868 0.820 0.815

ResNet-152 v2 112 × 112 0.914 0.890 0.885 0.890
56 × 56 0.832 0.865 0.835 0.830

224 × 224 0.870 0.898 0.870 0.868
MobileNet 112 × 112 0.937 0.943 0.938 0.938

56 × 56 0.464 0.508 0.485 0.450
224 × 224 0.643 0.793 0.648 0.595

MobileNet v2 112 × 112 0.852 0.888 0.855 0.853
56 × 56 0.705 0.755 0.705 0.690
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Table 3. Cont.

CNN Input Size Accuracy Precision Recall F1 Score

224 × 224 0.760 0.840 0.773 0.755
DenseNet 121 112 × 112 0.814 0.865 0.820 0.813

56 × 56 0.553 0.763 0.555 0.448
224 × 224 0.828 0.873 0.828 0.823

DenseNet 169 112 × 112 0.880 0.900 0.878 0.875
56 × 56 0.684 0.778 0.688 0.658

224 × 224 0.867 0.898 0.873 0.868
DenseNet 201 112 × 112 0.912 0.923 0.913 0.910

56 × 56 0.596 0.773 0.598 0.518
224 × 224 0.946 0.948 0.943 0.943

Xception 112 × 112 0.955 0.953 0.953 0.955
56 × 56 0.855 0.865 0.858 0.855

224 × 224 0.908 0.908 0.910 0.908
Inception v3 112 × 112 0.842 0.843 0.838 0.838

56 × 56 0.565 0.740 0.703 0.648
224 × 224 0.925 0.933 0.925 0.923

Inception ResNet v2 112 × 112 0.891 0.890 0.890 0.890
56 × 56 0.900 0.898 0.895 0.890

224 × 224 0.880 0.905 0.883 0.880
NASNet Mobile 112 × 112 0.851 0.885 0.855 0.850

56 × 56 0.825 0.858 0.818 0.810
224 × 224 0.958 0.963 0.960 0.958

NASNet Large 112 × 112 0.962 0.963 0.963 0.963
56 × 56 0.964 0.965 0.965 0.965

Table 4 shows the average time that it took to train each CNN over one epoch.

Table 4. Average training time for different input sizes (in seconds per epoch).

CNN Architecture 224 × 224 112 × 112 56 × 56

VGG-16 65 14 6
VGG-19 74 17 6

ResNet-50 v2 41 11 7
ResNet-101 v2 68 19 8
ResNet-152 v2 94 27 12

MobileNet 18 8 7
MobileNet v2 20 8 7
DenseNet 121 56 15 9
DenseNet 169 65 18 10
DenseNet 201 81 22 11

Xception 60 13 -
Inception v3 29 9 -

Inception ResNet v2 72 19 -
NASNet Mobile 35 - -
NASNet Large 334 * - -

* NasNet only runs with 331x331 input size.
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Figure 7. Range of accuracies obtained for each CNN architecture. The three bars associated to each architecture correspond to input sizes of 224 × 224 (left),
112 × 112 (middle) and 56 × 56 (right). The circle in each bar represents the average accuracy, and the bottom and top extremities represent the lowest and highest
accuracies observed during the application of the 10-fold cross-validation.
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4. Discussion

The results shown in Table 2 reveal that most models were able to reach accuracies above 95%
when training and test image blocks were carefully generated to provide the best characterization
of each class. Very deep structures, like NasNet Large, were able to yield accuracies close to 100%.
In practice, using models trained this way is challenging: the positions of the animals in a new image to
be analyzed by the model will not be known a priori (otherwise the problem would be solved already),
so image blocks cannot be properly generated to perfectly encompass the animals to be detected. One
possible solution to this problem is to sweep the entire image using a sliding window in such a way
each animal will appear, at least partially, in multiple image blocks to be analyzed by the model. This
approach, which has been explored by [15,17,18], enables the construction of a heat map showing the
likely positions of the animals in the image. The problem with this approach is that the number of
image blocks to be analyzed may be very high; on the other hand, applying the models is much faster
than training them, which makes this approach adequate in many situations.

Overall, CNNs were remarkably robust to almost all variations in illumination conditions.
No noticeable differences in accuracy were observed when only images with illumination issues
(insufficient and excessive brightness, shadows) were considered. The only exception was with
the presence of severe specular reflection, in which case the contrast between animals and ground
tended to become too slight for the models to detect then correctly. Excessively blurred images also
caused problems. Specular reflection and blur explain most of the errors observed when the dataset
labeled with exact animal locations was used. Models like NasNet Large and the ResNet were fairly
robust even under these poor conditions. Those models did not reach 100% accuracy because, in a
few instances, the number of problematic images in the test set was proportionally much higher, a
consequence of the randomness of the division process.

As expected, accuracies were lower when the regular grid was used. Interestingly, for 12 of
the 15 models, the best results were achieved using the 112 × 112 input size. This indicates that
the ideal GSD for cattle detection is 2 cm/pixel. At a first glance, this may seem counterintuitive,
because higher resolutions tend to offer more information to be explored by the models. However,
the way most CNNs architectures are designed (filter and convolution sizes), features related to cattle
can be more effectively extracted at this GSD. As an added bonus, these results indicate that we
could fly twice as high (thus covering a much larger area) without losing any accuracy. It is worth
mentioning that another method for simulating different GSDs was considered, in which the entire
image is downsampled and then the regular grid is applied, instead of first applying the grid and
then downsampling the image blocks. The main difference between both approaches is that in the
latter the relative area occupied by animals within each block is kept the same, while in the former
the area occupied by the animals will decrease in the same proportion as the downsampling. In both
cases, the number of pixels associated with the animals will be exactly the same, but in the approach
adopted here the amount of background will be much lower (Figure 8). Some limited experiments
were performed using the alternative approach, and a drop in accuracy was observed for all models
but Inception v3, for which the accuracy was slightly better.
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Figure 8. Examples of the two possible approaches to simulate coarser ground sample distances (GSDs).
In the left, the entire image is downsampled and then the regular grid is applied; in the right, the grid
is first applied and then image blocks are downsampled.

The drop in accuracy observed when the regular grid approach was adopted is almost exclusively
due to many image blocks annotated as “cattle” having very few pixels actually associated with an
animal (Figure 8). Because such blocks contain mostly background, it may be difficult for the model to
learn the correct features associated with cattle during training—if the wrong features are learned, the
potential for misclassifications rises considerably. The reverse problem occurs during the application
of the model: since the background is so dominant, the number of pixels associated with animals may
not be enough for proper detection. However, considering the amount of “cattle” blocks showing only
a small fraction of the animals’ bodies (Figure 9), it is remarkable that some models were able to yield
accuracies above 95%. It is also important to remark that errors of this kind are not very damaging:
blocks with small animal parts will almost certainly have one or more neighboring blocks containing
the remainder of the animal, in which case correct detection is more likely. Errors caused by missed
small parts can be compensated by other image processing techniques, which can be used to refine the
delineation of the animals. There are some approaches that tackle this problem explicitly, like region
proposal networks [4] and the concept of anchor boxes used in YOLO [7]. These alternative techniques
will be investigated in future experiments.

Figure 9. Examples of “cattle” blocks with very small animal parts visible (red elipses).
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Most CNN architectures performed well under the experimental conditions of this study. Taking
only accuracy into consideration, the most successful CNN was NasNet Large. The very deep and
complex structure associated with this architecture made it very robust to all the challenging conditions
found in the dataset used in the experiments. The Xception architecture had slightly lower accuracies,
especially when the 112 × 112 input size was used, but its training time was several times faster than
that associated with NasNet large. Among the lightest architectures (mostly developed for use in
mobile devices), MobileNet (version 1) showed the best performance. All trained models took less
than one second to fully analyze a 4864 × 3648-pixel image when ran in the workstation mentioned in
Section 2.2. Operational time differences between models are expected to increase when devices with
less computational power are used (e.g., mobile devices), but testing the models under more restricted
setups was beyond the scope of this study.

As mentioned before, most of the experiments were performed with animals of the Canchim
breed, whose colors range from white to light beige, with some darker coating occurring in some
animals. Because of its Nelore roots, it shares many visual characteristics with this breed, and as a
result, the models generated in this work were also effective in detecting Nelore animals. Other breeds
would probably require the training of new models, and the degree of success that can be potentially
achieved in each case would have to be investigated. However, taking into consideration the results
reported in the literature for other breeds and other experimental setups, it seems evident that deep
learning architectures are remarkably successful in extracting relevant information that can lead to
accurate detection of cattle in images captured by UAVs.

5. Conclusions

This article presented a study on the use of deep learning models for the detection of cattle
(Canchim breed) in UAV images. The experiments were designed to test the robustness of 15 different
CNN architectures to factors like low illumination, excessive brightness, presence of blur, only small
parts of the animal body visible, among others. Most models showed a remarkable robustness to such
factors, and if a few precautions are taken during the imaging missions, accuracy rates can be close to
100%. In terms of accuracy, NasNet Large yielded the best results, with the Xception architecture also
producing very high accuracies with a faction of NasNet’s training times. The most accurate results
were obtained with a GSD of 2 cm/pixel, indicating that images can be captured at relatively high
flight altitudes without degrading the results. Future work will focus on testing new approaches for
animal detection. In particular, future experiments will investigate how techniques that generate a
bounding box around the objects of interest (e.g. YOLO) and semantic segmentation methods perform
under the same conditions tested in this work. At the same time, the image dataset will continue to
receive new images, thus expanding, even more, the variety of conditions. Breeds other than Canchim
are also expected to be included. The image database used in this experiment is currently unavailable
for external researchers, but this will likely change as soon as the database is properly organized and
some restrictions are lifted.
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