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Abstract: Joint angle and frequency estimation is an important branch in array signal processing
with numerous applications in radar, sonar, wireless communications, etc. Extensive attention has
been paid and numerous algorithms have been developed. However, existing algorithms rely on
accurately quantified measurements. In this paper, we stress the problem of angle and frequency
estimation for sensor arrays using one-bit measurements. The relationship between the covariance
matrices of one-bit measurement and that of the accurately quantified measurement is extended to
the tensor domain. Moreover, a one-bit parallel factor analysis (PARAFAC) estimator is proposed.
The simulation results show that the angle and frequency estimation can be quickly achieved and
correctly paired.

Keywords: one-bit quantification; angle and frequency estimation; array signal processing; parallel
factor analysis

1. Introduction

Source localization is one of the most important branches of array signal processing [1,2]. It has
been actively conducted in the fields of communication, radar, sonar, seismic exploration, and cognitive
radio [3–7]. Source localization using a sensor array always involves spectrum estimation, such as
direction-of-arrival (DOA) estimation, delay estimation, frequency estimation, polarization estimation,
or a combination of them. Among the enormous research topics, joint angle and frequency estimation
are particularly prominent, since the two parameters are very important in various fields, and they can
improve the detection ability and anti-interference ability of the spatial source signals. For instance,
the two parameters can be adopted in passive radar systems for target locating and tracking; in space
division multiple access-based wireless communications systems, these two parameters can be utilized
to locate the user and allocate pilot tones; also, these two parameters are useful for channel estimation
and beamforming. Moreover, the algorithms used for joint DOA and frequency estimation can be easily
extended for angle-delay estimation, delay-frequency estimation, angle-delay-frequency estimation,
etc., since problems of multiple parameter estimation using a sensor array are very similar to each
other. Due to the above reasons, we focus on the problem of joint DOA and frequency estimation in
this paper.

In the past decades, various spectrum estimation algorithms have been proposed. Typical
algorithms including multiple signal classification (MUSIC) [8–10], estimating signal parameters
via rotational invariance technique (ESPRIT) [11,12], propagator method [13], maximum likelihood

Sensors 2019, 19, 5422; doi:10.3390/s19245422 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-9910-0663
http://www.mdpi.com/1424-8220/19/24/5422?type=check_update&version=1
http://dx.doi.org/10.3390/s19245422
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 5422 2 of 14

(ML) [14,15], tensor-based approaches [16–20], and optimization-aware algorithms [21–27]. Generally
speaking, MUSIC is computationally inefficient as it requires multiple peak search. Also, an ML
estimator has high complexity due to exhaustive iteration. Unlike MUSIC and ML, ESPRIT can obtain
closed-form solution, at the expense of decreased array aperture. Both MUSIC and ESPRIT need
eigen decomposition to obtain the signal subspace or the noise subspace, and the complexity of eigen
decomposition is on the third order of the matrix dimension. To avoid eigen decomposition, the
propagator method has been introduced, which can obtain the subspaces via the least squares (LS)
method. Optimization-aware algorithms always make sure accurate spectrum estimation; however,
they are often too complex to be applied. Usually, the above-mentioned algorithm rely on matrix
decomposition—approaches based on tensor decomposition are often superior than the matrix-based
methods as they have better de-noising performance than the latter. A tensor can be viewed as a
multi-dimensional (more than three) vector (matrix can be interpreted as a two-dimensional vector).
Two tensor models are frequently used, namely parallel factor analysis (PARAFAC) and Tucker tensor.
The former factorize a high-dimensional low-rank tensor into sums of rank-one tensors, the latter is
highly analogy to multi-dimensional eigen decomposition.

To perform high-resolution spectrum estimation, some optional techniques are helpful, e.g.,
large-scaler sensor array, wideband signals, high-precision, analog-to-digital converter (ADC). However,
these techniques would bring massive measurements and challenge the sampling system. On the one
hand, high-precision ADCs are expensive and are of high energy consumption, which leads to an
increased cost and complexity. On the other hand, massive measurements require more storage and
processing resource; thus the real-time performance of the system is difficult to guarantee. To overcome
these disadvantages, the concept of compressed sensing (CS) has been proposed [28,29], which may
provide new inspirations for signal acquisition and processing. Several CS-based sampling frameworks
have been developed, e.g., random sampler, random demodulation, modulated wideband converter,
time encoding machine. Nevertheless, these architectures rely on high-precision quantification.
Recently, the concept of one-bit CS [30], i.e., quantization with only one bit, has been proposed.
With one-bit quantization, only one data bit need to be stored and processed, the system complexity
can be reduced accordingly. Owing to its potential prospect, one-bit quantization has aroused
much attentions in massive multiple-input multiple-output (MIMO) communications and DOA
estimation [31]. Generally, spectrum estimation with one-bit measurements is linked to a sparse
inverse problem, which is resolved via the optimization method. More recently, a one-bit MUSIC
framework was driven in [32]. It is dproven that the covariance matrix with one-bit measurements can
be approximated by a scaled unquantized covariance matrix, thus the traditional subspace algorithms
can be directly applied. Besides, many efforts have been devoted to the sparse recovery problem
from one-bit measurement [33,34]. In addition, some works have been done to the waveform design
problems in MIMO radar with the problem of one-bit DAC [35].

It should be pointed out that, as mentioned previously, one-bit quantization is a lossy compression
method; thus, the performance of spectrum estimation algorithms with one-bit quantization are
suffering from degradation. For performance enhancement, this paper tries to integrate the tensor
approach with joint DOA and frequency estimation in the presence of one-bit measurement. To this
end, a new spatial-time sampling framework is presented, in which a one-bit ADCs are adopted.
The relationship between the covariance matrices of one-bit measurement and that of the unquantized
covariance matrix is extended to the tensor domain. A one-bit PARAFAC algorithm is proposed for
joint DOA and frequency estimation, in which closed-form and automatically paired parameters are
achieved. Compared with the one-bit ESPRIT algorithm, the proposed algorithm offers a more accurate
estimation performance. Numerical simulations verify the effectiveness of the proposed algorithm.

The rest of the paper is organized as follows. In Section 2, we present the signal model and analyze
the impact of measurement process on signal noise. Section 3 provides the proposed ASCS scheme.
The simulation results are given in Section 4. Finally, conclusions are given in Section 5.
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Notation: Lower case and capital letters in bold denote, respectively, vectors and matrices.
The superscript (•)T, (•)H, (•)−1, and (•)† represent the operators of transpose, Hermitian transpose,
inverse, and pseudo-inverse, respectively; ‖•‖F denotes the Frobenius norm. angle(·) returns the phase
of a vector in radian. E[·] is to get the mathematical expectation of a variable. Dm(A) returns a diagonal
matrix with the diagonal entities are the m-th row of A.

2. Signal Model and One-Bit Quantization

Herein, we consider a uniform linear array scenario with M-element sensors, the inter-element
interval is d. Suppose that there are K uncorrelated narrow-band sources appearing on the far-field of
the array. Besides, the signal and noise are uncorrelated, and both of them are modeled as independent,
zero-mean, circular, complex Gaussian random processes, then the received signal of the m-th sensor
can be expressed as [36]

ym(t) =
K∑

k=1

am(θk, fk)sk(t) + nm(t)(m = 1, . . . , M) (1)

where am(θk, fk) = e− j2π(m−1)d fk sin (θk)/c denotes the response entity of the m-th sensor with respect to
the k-th (1 ≤ k ≤ K) signal, c represents the speed of light, sk(t) represents the k-th incident far-field
narrowband signal, θk and fk are the DOA and carrier frequency of the k-th signal. nm(t) denotes the
noise signal of the m-th sensor. Then the received signal is sampled using a one-bit ADC, i.e.,

xm(t) = O(ym(t)) (2)

where O(·) is the complex value quantization processing of the received signal, such as

O(z) =
1
√

2
(sign(real(z)) + jsign(imag(z))) (3)

where if z > 0, sign(z) returns 1, otherwise returns −1. real(z) and imag(z) represent the real and
imaginary parts of the complex value, respectively.

The relationship between the covariance matrix Ry of ym(t) and the covariance matrix Rx of the
one-bit measurement xm(t) is discussed as follows. First of all, the m-th diagonal element of Ry is δ2

ym

δ2
ym =

[
Ry

]
mm

=
K∑

k=1

∣∣∣am(θk, fk)
∣∣∣2δ2

k + δ2
n (4)

where δ2
k and δ2

n represent the power of the k-th signal and noise, the element correlation coefficient of
the (m, n)-th position of Ry can be expressed as follows

ρym yn =
E[ym(t)y∗n(t)]
δymδyn

=
[Ry]mn√

[Ry]mm

√
[Ry]nn

=

K∑
k=1

am(θk, fk)a∗n(θk, fk)δ2
k√

K∑
k=1
|am(θk, fk)|

2
δ2

k+δ
2
n

√
K∑

k=1
|an(θk, fk)|

2
δ2

k+δ
2
n

=

K∑
k=1

am(θk, fk)a∗n(θk, fk)ξk√
K∑

k=1
|am(θk, fk)|

2
ξk+1

√
K∑

k=1
|am(θk, fk)|

2
ξk+1

(5)
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where ξk is defined as

ξk =
δ2

k

δ2
n

(6)

Since all the sensors are identical,
∣∣∣am(θk, fk)

∣∣∣ = 1. Therefore, Equation (4) can be simplified to

ρ =
[
Ry

]
mm

=
K∑

k=1

δ2
k + δ2

n (7)

Assuming that the powers of the signals are the same, i.e., ξk = ξ, then we have

ρym yn =

K∑
k=1

e j2π f (τm(θi)−τn(θi))

K + ξ−1
(8)

which implies
∣∣∣ρym yn

∣∣∣ < 1. More importantly, we find the value of both the real and imaginary parts of
the correlation coefficient decrease as ξ decreases.

Next, we focus on Rx. It is obviously that xm(t) is a zero-mean, unit variance, i.e., E[xm(t)] = 0,
δ2

xm = 1. The (m,n)-th entity of Rx can be expressed as

ρxmxn =
E[xm(t)x∗n(t)]

δxmδxn

= [Rx]mn (9)

It is obvious that if m = n, ρxmxn =
[
Ry

]
mm

= 1. According to the inverse sine law [37], we have

ρxmxn =
2arcsine(ρym yn)

π

, 2
π

(
arcsin

(
real

{
ρym yn

})
+ jarcsin

(
imag

{
ρym yn

})) (10)

Hence the relationship between Rx and Ry is

Rx =
2
π

arcsine
(1

a
Ry

)
(11)

It can be seen from Equation (11) that

Ry = a sin e
(
π
2

Rx

)
(12)

where sin e(z) , sin(real{z}) + j sin(imag{z}), a is an unknown scaling factor. Furthermore, it is proven
that [32]

Rx ≈
2Ry

aπ
+

(
1−

2
π

)
I (13)

where I is an identity matrix. Although a is unknown, we can see from Equation (13) that Rx and Ry

share the same eigenvectors. This is why the traditional subspace-based algorithm can be directly
applied to Rx for spectrum estimation. Now we consider L one-bit snapshots are available, and the
quantified data is arranged into matrix format as

X = O
(
AS̃

T
+ N

)
(14)

where A = [a(θ1, f1), a(θ2, f2), · · · , a(θK, fK)] ∈ CM×K denotes the direction matrix,
a(θk, fk) = [1, a2(θk, fk), · · · , aM(θk, fk)]

T accounts for the steering vector, S̃ ∈ CL×K is an unquantized
signal measurement matrix, N is the array noise sample matrix. We know it that the signal subspace
obtained from eigenvalue decomposition of the covariance matrix span the same subspace of the signal



Sensors 2019, 19, 5422 5 of 14

subspace achieved from singular value decomposition. Combined with the result of in Equations (13)
and (14) can be rewritten as

X0 ≈ εAS̃
T

U + βNU
= εAST + βE0

(15)

where ε and β are scalers, U ∈ CL×L is a unitary matrix, S = UTS̃, E0 = NU. Generally, K < min{M, P, L}.
It should be pointed out that E0 is a Gaussian white noise matrix, as proven in [32].

3. The Proposed Framework

In this paper, the delay-based sampling framework is proposed for joint DOA and delayed
estimation. As shown in Figure 1, the P delay units τp (p = 1, 2, · · · , P) are follows the sensor array.
If 0 < τ1 < τ2 < · · · < 1/max( fk), the array signal from the p-th delay units can be expressed as

XP = εAΦPST + βEP, p = 1, 2, · · · , P (16)

where

ΦP =


e− j2π f1τp

e− j2π f2τp

. . .
e− j2π fKτp

 ∈ C
K×K (17)

Define the delay matrix as

Φ =


1 1 · · · 1

e− j2π f1τ1 e− j2π f2τ1 · · · e− j2π fKτ1

...
...

. . .
...

e− j2π f1τP e− j2π f2τP · · · e− j2π fKτP

 ∈ C
(P+1)×K (18)
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Then Equation (16) defines a PARAFAC slicing model of the array output. In addition, outputs
from all the delay units can be expressed as a third-order tensor χ with the (m,l,p)-th entity given by

χm,n,p = ε
K∑

k=1
am,ks̃l,kΦq,k + em,n,q

(m = 1, 2, · · · , M; l = 1, 2, · · · , L; q = 1, 2, · · · , P + 1)
(19)

where am, f is the (m, k)-th element of matrix A, s̃l,k is the (l, k)-th element of matrix S and Φq,k is the ()-th
element of matrixΦ. em,n,q is the associate noise measurement.

The trilinear alternating least squares (TALS) algorithm is a very popular technique for trilinear
models. The basic principle of TALS is to update one-factor matrix via least squares (LS) technique
while treating other factor matrices as known parameters. Based on the previous estimation, TALS
update the residual matrices successively. The above iterations will repeat until the converge conditions
have been satisfied. The LS fitting for S is to solve

min
A,S,Φ

‖


X0

X1
...

XP

−


AD1(Φ)

AD2(Φ)
...

ADP+1(Φ)

S
T
‖

F

(20)

where Xp (p = 1, 2, · · · , P) is the p-th signal slice of χ from the ‘source’ direction. The LS update for S
(denoted by Ŝ) is then given by

Ŝ
T
=


AD1(Φ)

AD2(Φ)
...

ADP+1(Φ)


†

X0

X1
...

XP

 (21)

Similarly, the l-th slice of χ from the ‘DOA’ direction can be expressed as Yl = ΦDl(S)AT + Ñl,
l = 1, 2, · · · , L, Ñl is the corresponding noise. The LS update for A (denoted by Â) is given by

ÂT
=


ΦD1(S)
ΦD2(S)

...
ΦDL(S)


†

Y1

Y2
...

YL

 (22)

In addition, the slice of χ from the ‘frequency’ direction can be formulated as Zm(t) = SDm(A)ΦT +

Nm (m = 1, 2, · · · , M), Nm is the corresponding noise. The LS update toΦ (denoted by Φ̂) is

Φ̂T =


SD1(A)

SD2(A)
...

SDM(A)


†

Z1

Z2
...

ZM

 (23)

Before the first calculation of TLAS, A andΦmust be initialized. Usually, A andΦ are randomly
initialized or initialized with ESPRIT or PM. Firstly, Equation (21) is computed to estimate S. Then,
Equation (22) is calculated to update A (based on the initialized Φ and previously estimated S).
Thereafter, Equation (23) is computed to updateΦ. Finally, iterations in Equations (21)–(23) will repeat
until convergence. In this paper, we adopted the COMFAC algorithm for PARAFAC decomposition [38],
which can be quickly converge after only a few iteration.
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It is well known to us that matrix decompositions are usually not unique unless some constrains
are enforced. Unlike matrix decomposition, tensor decompositions are often unique under mild
conditions. The following Theorem 1 gives the uniqueness of PARAFAC analysis.

Theorem 1. Consider the matrices A,Φ, and S that establish the PARAFAC model in (19). If the k-rank of A,
Φ, and S (denoted by kr(A), kr(Φ), and kr(S)) satisfy

kr(A) + kr(Φ) + kr(S) ≥ 2K + 2 (24)

Then the estimation of A, Φ, and S are unique up to permutation and scaling of columns, which can be
expressed as 

Â = AΠ∆1 + E1

Φ̂ = ΦΠ∆2 + E2

Ŝ = SΠ∆3 + E3

(25)

where Π is a permutation matrix, E1, E2, and E3 stand for the fitting errors, and ∆1, ∆2, and ∆3 are diagonal
scaling matrices with ∆1∆2∆3 = Ik.

The k-th column of the delay matrixΦ is

g( fk) =
[
1, e− j2π fkτ1 , · · · , e− j2π fkτP

]T
(26)

Thus, we can get the phase of g( fk) as

h = −angle(g( fk)) = [0, 2π fkτ1, · · · , 2π fkτP]
T (27)

It is easy to find
P1b = h (28)

where

P1 =


1 0
1 2πτ1
...

...
1 2πτP

 (29)

where b0 is a scaler that we do not care about. Suppose the k-th column of Φ̂ is ĝ( fk), and let the
estimation of h is ĥ. The LS solution of b is

b̂ = P†1ĥ (30)

From the second entity of b̂, we can get f̂k. On the other hand, we define

u = −angle(a(θk, fk))
= [0, 2πd fk sinθk/c, · · · , 2πd(M− 1) fk sinθk/c]T

(31)

Similarly, we have
P2c = u (32)

with

P2 =


1 0
1 2πd fk/c
...

...
1 (M− 1)2πd fk/c

 (33)
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where c1 is a uninteresting constant. Replace fk with f̂k, we can get P2. Let the estimation of u be û,
then the LS solution of c can be obtained via

ĉ = P†2û (34)

and finally the DOA can be estimated via

θ̂i = arcsin(ê1) (35)

4. Simulation Results and Discussions

In this section, numerical simulations are carried out to verify the effectiveness of the proposed
framework. In the simulations, we consider there are K = 3 uncorrelated far-field narrow-band signals
with DOA-frequency pairs are (10◦, 0.5 MHz), (20◦, 0.7 MHz) and (30◦, 0.9 MHz), and L snapshots
are collected. An M-element ULA with half-wavelength spacing is adopted to receive the incoming
signals. Assume there are 3 uniform delay units, with the delay interval is 10−7 s. The signal-to-noise
ratio (SNR) is defined as 10lg(Ps/Pn) (dB), where Ps and Pn are the powers with respect to signal
and noise counterparts, respectively. The root mean square error (RMSE) is utilized for performance
assessment. Herein, RMSE is defined as

RMSE =

√√√√
1
Q

Q∑
q=1

(
ϑq − ϑ0

)2
(36)

where ϑq is the estimated DOA or frequency of the q-th Monte Carlo trial, ϑ0 is the true value of the
DOA or frequency, Q is the total number of Monte Carlo trials.

Firstly, we illustrate Q = 500 scatter results of the one-bit PARAFAC framework in Figures 2 and 3,
where M = 12 and L = 1000 are considered, and SNRs are set to 5 dB and 10 dB, respectively. It is
shown that both DOA and frequency of the sources can be estimated and correctly paired from one-bit
measurements. Moreover, it seems the estimated accuracy can be improved with increasing SNR, as
the scatter results are more concentrated with larger SNR.
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Secondly, the RMSE performance of the proposed algorithm with various SNR is depicted in
Figures 4 and 5, where M = 12 and L = 1000. For the performance comparison, the performance of
traditional ESPRIT with one-bit measurement (marked with O-ESPRIT) and the traditional ESPRIT with
un-quantified measurement (marked with U-ESPRIT) are added. RMSE with respect to DOA estimation
and frequency estimation are shown in Figures 4 and 5, respectively. It is seen that at low SNR regions
(SNR < 0), there is no visible performance difference between the three algorithms. Notably, there is
a performance gap between the algorithm with un-quantified measurements and that with one-bit
measurement, this is because the one-bit measurement is lossy. As the SNR increases, the performance
gap becomes larger. Another interesting finding is that when SNR is larger than a given threshold
(SNR = 10), RMSE will not decrease with the increasing SNR. Besides, the proposed O-PARAFAC
algorithm achieves better RMSE than O-ESPRIT, since the tensor structure has been exploited.
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Thirdly, the RMSE curves with different snapshot number L are given in Figures 6 and 7, where M
= 12 and SNR = 0 dB are considered. Clearly, RMSE on DOA estimation and frequency estimation
would improve with L increasing. Similarly, O-PARAFAC algorithm provides more accurate DOA and
frequency estimation than O-ESPRIT. Also, both algorithms offer higher RMSE than the U-ESPRIT,
since the one-bit measurement is lossy.
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Fourthly, the RMSE performances versus sensor number M are depicted in Figures 8–10, where
L = 1000 and SNR = 0 dB. It is shown that estimation performance would improve with the increasing



Sensors 2019, 19, 5422 11 of 14

M. A similar observation can be seen that the performance corresponding to O-PARAFAC is between
that of the O-ESPRIT and U-ESPRIT. In addition, one can observe that the proposed algorithm requires
less calculation time then O-ESPRIT and U-ESPRIT when M is larger than 60, which implies that
the proposed algorithms is much more efficient than the compared algorithms is the presence of
massive antennas.
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Finally, the RMSE curves with various delay P are depicted in Figures 11 and 12, respectively,
where M = 12 and SNR = 0 dB are considered. Similar to our previous findings, RMSE on DOA
estimation and frequency estimation would improve with P increasing. In addition, the performance
of O-PARAFAC is better than O-ESPRIT but worse than U-ESPRIT.
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5. Conclusions

In this article, we stress the one-bit quantization problem in joint DOA and frequency estimation
using a sensor array. A one-bit PARAFAC framework has been accomplished, in which the relationship
of one-bit quantization and de-quantization measurement has been extended to tensor domain.
Simulation results show the feasibility of the proposed framework. Since the one-bit quantization
is lossy, the performance of the traditional subspace-based algorithms may degrade. However, the
proposed one-bit PARAFAC can still offer good parameter estimation accuracy. As we all know, the
one-bit quantization system is more flexible than the high-precision quantization and is less sensitive
to storage capacity than the latter; the one-bit quantization system will have a bright prospect in
further applications.
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