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Abstract: Hyperspectral imaging is capable of acquiring the rich spectral information of scenes
and has great potential for understanding the characteristics of different materials in many
applications ranging from remote sensing to medical imaging. However, due to hardware limitations,
the existed hyper-/multi-spectral imaging devices usually cannot obtain high spatial resolution.
This study aims to generate a high resolution hyperspectral image according to the available low
resolution hyperspectral and high resolution RGB images. We propose a novel hyperspectral image
superresolution method via non-negative sparse representation of reflectance spectra with a data
guided sparsity constraint. The proposed method firstly learns the hyperspectral dictionary from the
low resolution hyperspectral image and then transforms it into the RGB one with the camera response
function, which is decided by the physical property of the RGB imaging camera. Given the RGB
vector and the RGB dictionary, the sparse representation of each pixel in the high resolution image is
calculated with the guidance of a sparsity map, which measures pixel material purity. The sparsity
map is generated by analyzing the local content similarity of a focused pixel in the available high
resolution RGB image and quantifying the spectral mixing degree motivated by the fact that the pixel
spectrum of a pure material should have sparse representation of the spectral dictionary. Since the
proposed method adaptively adjusts the sparsity in the spectral representation based on the local
content of the available high resolution RGB image, it can produce more robust spectral representation
for recovering the target high resolution hyperspectral image. Comprehensive experiments on two
public hyperspectral datasets and three real remote sensing images validate that the proposed method
achieves promising performances compared to the existing state-of-the-art methods.

Keywords: hyperspectral image superresolution; sparse representation; data guided sparsity; spectral
mixing; local content similarity
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1. Introduction

Hyperspectral (HS) imaging is an emerging technique for simultaneously obtaining a set of images
of the same scene on a large number of narrow band wavelengths. The rich spectral information
significantly benefits for analyzing the characterization of the obtained scene and greatly enhances
the performance in different computer vision tasks including object recognition and classification,
tracking, and segmentation [1–5]. In addition, HS imaging has also been a promising tool for different
applications in disease diagnosis in medical images [6], land resource management/planning in remote
sensing [7,8], etc. Although HS imaging can provide high spectral resolution, it imposes a severe
limitation on the spatial resolution compared with the general RGB cameras. In order to guarantee
a sufficient signal-to-noise ratio, enough exposure amount is needed for each narrow wavelength
window, which can be generally solved in the existing hyperspectral cameras via collecting exposures
in a much larger spatial region than the common RGB cameras, resulting in much lower spatial
resolution. The low spatial resolution may result in the possible spectral mixture of different materials
and thus restricts its performances for scene analysis and understanding. On the other hand, the
high spatial resolution multi-spectral (e.g., RGB and RGB-NIR) images are easily available for the
same scene with the common color cameras. Therefore, how to fuse the available low resolution HS
(LR-HS) image and the HR-RGB image to generate a high resolution HS (HR-HS) image has become an
attractive topic. The fusion method can effectively utilize the spectral correlation property in the LR-HS
image and the detailed spatial structure in the HR-RGB image and thus generate a more accurate
HR-HS image.

This study aims to generate an HR-HS image according to the spectral mixture model with a
sparse constraint. Formally, in the spectral mixture model, a pixel spectrum z in an HS image can be
assumed to be a weighted combination of K spectral bases {bk}K

k=1 ∈ R+. Each spectral base is called
an endmember, which denotes the pure spectrum of a signal material such as “water” or “grass” in
the physical meaning or a spectral prototype (atom) in a mathematical formula. Specifically, to ensure
the non-negativity of the composite percentage in physical meaning, the pixel spectrum z is generally
approximated by a nonnegative linear combination as:

z =
K

∑
k

bkαk (1)

where αk is the composite percentage (weighted coefficient) of the kth spectral base. Generally, both
spectral bases {bk}K

k=1 and the weighted coefficient αk are unknown and thus result in an NP-hard
problem. In order to make the problem solvable, prior knowledge is required to restrict the solution
space to constrain the solution toward a robust representation. Various constraints on the composite
weights and the spectral bases have been exploited, where the sparse constraints [9–13], via using
the l0 norm: ‖ α ‖0 or the l1 norm: ‖ α ‖1= ∑ | αk | on the composite weights, are the most popular
ones. Although the actively investigated sparse spectral representation has manifested impressive
performance, the conventional methods [14–17] usually exploit an identical strength of the sparse
constraint on all the spectral samples. The identical sparse constraint does not consider the individual
property of each spectral sample, which may not meet the practical situation.

This study proposes a novel spectral representation with the data guided sparse constraint for the
HS image superresolution task. Motivated by the fact that the mixing degree of each pixel spectrum
should be different from each other, we investigate the possible purity (mixing degree) of each pixel in
the HR-RGB image. Intuitively, the spectrum of a pixel that has a similar spectrum as the surrounding
pixels should be pure, otherwise it would lie on an edge between different materials. Then, we explore
the local content similarity of a focused pixel as an indication of spectral purity and incorporate the
material purity as the sparsity constraint into the non-negative sparse spectral representation. Our
proposed method adaptively adjusts the strength of the sparsity constraint in the spectral representation
based on the explored material purity and thus can produce more robust spectral representation for
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recovering the target HR-HS image. To our best knowledge, this is the first time the spectral purity
has been adopted to adjust the sparsity strength of the representation coefficients for the HS image
superresolution. Compared with our previous work in [18], we further conduct an ablation study to
compare our proposed method, the baseline sparse representation, and the generalized simultaneous
orthogonal matching pursuit (G-SOMP+) [13] to optimize under different parameters. We also provide
the comprehensive results’ comparison in both performance and computation cost. In addition, we
extend our method for the superresolution of three real satellite images with many more bands: 103,
128, and 224, respectively, compared with the HS image datasets used in [18]. Experimental results
on two public HS datasets and the real satellite images manifest that our propose method achieves
impressive performances compared with the existing state-of-the-art methods.

2. Related Work

Although the HR-HS image has proven potential prospects in different application fields ranging
from remote sensing to medical imaging, it is still difficult to achieve high resolution simultaneously
in both spatial and spectral domains due to hardware limitations [19]. On the other hand, the HR-RGB
images are easily obtained with a common color camera. Thus, this has inspired much research effort
to generate the HR-HS images via image processing and machine learning techniques based on the
available LR-HS and HR-RGB images. In the remote sensing field, an HR panchromatic image is
usually available accompanying the LR multi-spectral or HS image, and fusing these two images to
generate an HR-MS or HS image is generally known as the pansharpening technique [20–25]. In this
scenario, most approaches perform reliable illumination restoration based on intensity substitution
and projection with the explored hue saturation and principle component analysis [20,21], which
usually result in spectral distortion in the generated HR image [26].

Recently, HS image superresolution based on matrix factorization and spectral unmixing has
been actively investigated [9,10,27,28]. Spectral matrix factorization and unmixing based methods
assume that the HS observations can be decomposed into two matrices, where one represents a set
of bases as the spectral reflectance functions (the spectral response of the pure material) and the
other is the corresponding coefficient matrix denoting the composite fraction of each material on each
pixel location. Yokoya et al. [28] investigated a coupled non-negative matrix factorization (CNMF) to
generate an HR-HS image from a pair of HR-MS and LR-HS images. Although the CNMF approach
achieved promising spectral recovery performance, its solution was generally not unique [29]. Thus,
the spectral recovery results were not always satisfactory. Lanaras et al. [10] proposed a coupled
spectral unmixing strategy for HS superresolution and estimated the HR-HS image via simultaneously
minimizing the reconstruction errors of the observed LR-HS and HR-RGB images using the proximal
alternation linearized minimization method for optimization. Considering the physical meaning of the
reflectance functions and the implementation robustness, the number of pure materials in the observed
scene is often assumed to be smaller than the spectral band number, which does not always meet the
real application.

There have existed many image restoration methods [14,15,30,31] for nature images. Motivated
by the successes of sparse representation in natural image analysis, the sparsity promoting approaches
have been widely applied for HS superresolution [11–13]. The sparse representation based method
does not need to impose explicitly the physical meaning constraint on the bases and thus permits
over-complete bases. Grohnfeldt et al. [11] proposed a joint sparse representation of the corresponding
HS and MS (RGB) patches. They firstly learned the joint HS and MS (RGB) patch dictionaries using
the prepared corresponding pairs and estimated the sparse coefficients of the combined MS and
previously reconstructed HS patches for each individual band. This method mainly focused on
reconstructing the local structure (patch) and completely ignored the correlation between channels.
Therefore, several works [12,13] explored the sparse spectral representation instead of the local spatial
structure. Akhtar et al. [12] explored a Bayesian dictionary learning and sparse coding algorithm for
HS image superresolution and manifested impressive performance. Dong et al. [32] investigated a
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non-negative structured sparse representation (NSSR) approach to recover an HR-HS image, which
imposed the similarity constraints in a spatial structure region to estimate robust sparse representation
and proposed to use the alternative direction multiplier method (ADMM) technique for solving. NSSR
manifested promising recovery performance compared to the other existing approaches. However,
most of these methods aimed at recovering the HR-HS image via minimizing the reconstruction
errors of the observed HR-RGB and LR-HS images in couple, thus requiring the precise alignment
of the HR-RGB and LR-HS images, where most available images cannot satisfy the strict situation.
In [13], Akhtar et al. explored a sparse spatio-spectral representation via assuming the same atoms
used for reconstructing the spectra of the pixels in a local grid region and proposed a generalized
simultaneous orthogonal matching pursuit (G-SOMP+) method for estimating the sparse coefficients.
The G-SOMP+ method can integrate the spectral correlation property in the LR-HS image and the HR
spatial structure in the HR-RGB image, but does not need the precise alignment between the observed
images. Although simultaneously selecting the common set of spectral bases for the pixel spectra in a
grid of a local region can take the spectral similarity into consideration, the size of the selected base set
is the same for all pixels in the local region and not always the optimized one for approximating all of
the pixel spectra. Our study is most related to the work [13]. However, we select the support set of the
previously learned spectral dictionary for each pixel only one time, where the size of the support set is
adaptively adjusted with the spectral mixing degree according to local content similarity analysis in
the observed HR-RGB image.

3. Problem Formulation

Our goal is to estimate an HR-HS image Z′ ∈ RW×H×L, where W and H denote the spatial
dimensions and L is the spectral channel number, from an LR-HS image X′ ∈ Rw×h×L (w � W,
h � H) and an HR-MS (RGB) image Y′ ∈ RW×H×l (l � L). Since the observed HR-MS image is
an RGB image, the spectral channel number l in the HR-RGB image is three. We reformulate Z′, X′,
and Y′ as the pixel-wise spectral representations (matrix forms), denoted as Z ∈ RL×N (N = W × H),
X ∈ RL×O (O = w× h), and Y ∈ R3×N , respectively. Both the matrix forms X and Y of the LR-HS and
HR-RGB images can be expressed as a linear combination of the HR-HS image Z:

X = ZD, Y = RZ, (2)

where D ∈ RN×O is the blurring and down-sampling operators on the HR-HS image to generate
the LR-HS image X, and R ∈ R3×L represents the spectral response function (transformation matrix)
decided by the camera design, which maps the HR-HS image Z to the HR-RGB image Y. Since the
number of the unknowns (NL) in the desired HR-HS image is much larger than the total number
of measurements (OL + 3N) from the observed images X and Y, the HS image superresolution is a
severely ill posed problem. In order to provide a stable estimation of the HR-HS image, regularized
constraints for integrating the prior knowledge about the unknown Z are widely explored to narrow
the solution space. A general strategy is to assume that the pixel spectrum in the HR-HS image lies in
a low-dimensional space and can be decomposed into the spectral reflectance of several pure materials
and their corresponding composition fractions as follows:

zn =
K

∑
k=1

bkαk,n = Bαn

subject to: bi,k ≥ 0, αk,n ≥ 0,
K

∑
k=1

αk,n = 1,

(3)

where B ∈ RL×K represents the spectral response functions (spectral signatures) of K distinct materials
(also called endmembers) in the observed LR-HS image and αn denotes the fractional abundance of
the K materials in the covered area for the nth pixel. Taking the physical phenomenon of the spectral
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reflectance into consideration, the elements in the spectral endmember and the fraction magnitude of
the abundance are non-negative, as shown in the first and second constraint terms. The abundance
vector for each pixel is summed to one, where each element means the composite percentage of a
distinct material. The above formulation of the spectral representation is popularly known as the
linear mixture model [33]. Since the regularized term ∑K

k=1 αk,n = 1 with a nonnegative constraint is
equivalent to the l1 norm, which is a relaxation of the l0 norm for the sparse constraint, Equation (3)
can also be considered as a sparse spectral representation via alleviating the limitation of the spectral
atom number. The observed HR-RGB image can be formulated as Y = RZ, and each pixel yn ∈ R3 is
written as:

yn = Rzn = RBαn = Blαn, (4)

where Bl is the RGB spectral dictionary, which is obtained via transforming the HS dictionary B with
the spectral transformation matrix R: Bl = RB. With a corresponding set of the spectral dictionaries
Bl and B, the sparse fractional vector αn of the HS pixel zn can be predicted from the HR-RGB pixel yn.
We reformulate Equation (3) as the objective function for minimization via replacing the known RGB
vector in the HR-RGB image:

arg min
A

‖A‖1, subject to: ‖Y− BlA‖F ≤ η, A ≥ 0 (5)

G-SOMP+ Method

Akhtar et al. [13] proposed a generalization of a popular greedy pursuit algorithm, called
generalized simultaneous orthogonal matching pursuit (G-SOMP+) for optimizing Equation (5).
Motivated by the fact that nearby pixels are likely to represent the same materials in the scene, the
G-SOMP+ method processes the HR-RGB image Y in terms of small disjoint spatial patches for
computing the coefficient matrix. Denoted the HR-RGB image patch by P′ ∈ RWO×HP×3 with matrix
representation P ∈ R3×WO HP , G-SOMP+ estimates its corresponding coefficient matrix AP ∈ Rl×WO×HP

via solving the constrained simultaneous sparse approximation problem:

arg min
AP

‖AP‖row_0, subject to: ‖P− BlAP‖F ≤ η, αPi ≥ 0 (6)

where αPi denotes the ith column of the matrix |AP. In Equation (6), ‖AP‖row_0 is the row l0
quasi-norm [34] of the matrix, which represents the cardinality of its row support, formulated as:

‖AP‖row_0 ⇔ | ∪WP HP
i=1 Supp(αPi )| (7)

where supp(·) denotes the support of a vector and | · | indicates the cardinality of a set. G-SOMP+
was proposed for optimizing the objective function in Equation (6) and allows the selection of
multiple dictionary atoms in each iteration of orthogonal matching pursuit for efficient computation.
The algorithm pursues an optimized approximation of the input spectral matrix P, the spectral
representation of a local patch, by selecting the dictionary atoms Bl

P indexed in a set Ξ ∈ Ω (Ω is
the index space of the RGB dictionary Bl), such that Ξ � Ω, and the selected Bl

P contributes to the
approximation of all the pixel spectra in the local patch. Similar to orthogonal matching pursuit (OMP),
G-SOMP+ also exploits the iteration procedure for calculating the sparse vector. In the ith iteration,
firstly, the algorithm computes the cumulative correlation of each dictionary atom with the residue
of its current approximation of all pixel spectra in the focused local patch, where the initial residue
in the first iteration is the pixel spectra themselves in the patch. Then, M dictionary atoms with the
highest cumulative correlations are selected and are added to an index subspace: Ξ, which is empty at
initialization, of the index set: Ω. Finally, the dictionary atoms in the aforementioned index subspace:
Ξ are used for a non-negative least squares approximation of the patch. At the same time, the residue
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is updated for the next iteration and judging if the algorithm would stop or not according to a fraction
γ of the residue in the previous iteration. Although the G-SOMP+ method is able to select different
numbers of dictionary atoms for different patches, the section criteria pursue the common dictionary
atoms for all pixel spectra in a local patch, which is not always optimized for all pixels. Furthermore,
the highest cumulative correlations to the residual not the raw pixel spectra cannot guarantee the good
reconstruction of the raw pixels.

4. Data Guided Sparsity Regularized Spectral Representation

The matrix representation of the spectral representation model in Equations (3) and (4) can be
rewritten as:

Z = BA, Y = BlA, (8)

where A = [α1, α2, · · · , αK] ∈ RK×N
+ is the non-negative sparse coefficient matrix. Both spectral

dictionary B or Bl and coefficient matrix A are unknown, and regularization for exploring the
prior knowledge of the unknown is often integrated to give a stable solution. As in the work [13],
we firstly learn the HS dictionary from the observed LR-HS image via a hierarchical clustering
method with correlation similarity as elaborated in the next subsection such that the spectral sample
can be represented by a weighted combination of the learned over-complete spectral dictionary
B ∈ RL×K(K > L). Then, the transformed RGB dictionary Bl = RB can be used for estimating the
sparse vector using Equation (5) for each HR RGB pixel, which in turn can approximate the HR
hyperspectral pixel with the HS dictionary B. However, the conventional sparse methods usually
explore an identical strength of constraints on all the spectral samples without considering the
individual property, which may not meet the practical situation. This study proposes a data guided
sparsity regularized nonnegative spectral representation for the hyperspectral superresolution task.
Motivated by the fact that the material purity of each pixel spectrum might be different from the others,
we firstly explore the possible purity (mixing degree) of each pixel according to the local content
similarity of a focused pixel and incorporate the material purity as the sparsity constraint into the
non-negative sparse spectral representation, which adaptively imposes the sparse constraint for each
pixel. Next, we will introduce how to learn the HS dictionary B, calculate the data guided sparsity for
each pixel, and optimize the sparse coefficient matrix A in our method.

4.1. On-Line Hyperspectral Dictionary Learning

Due to the large variety of HS reflectance for different materials, learning a common HS dictionary
for different observed scenes with different materials leads to considerable spectral distortion for the
approximated pixel spectra. This study proposes to generate the HS dictionary from the observed
LR-HS image of the under-studied scene. It is known that the raw hyperspectra in the observed LR-HS
image can be directly used as the HS dictionary and then are transformed into the RGB bases for
calculating the sparse representation of all the pixels in the observed HR-RGB image. However, in spite
of the low resolution in the observed HS image, it is still possible to have some similar spectral pixels,
and this leads to redundancy in the HS dictionary. Therefore, in order to reduce the redundancy of the
HS bases via directly using the raw hyperspectra, we propose an online dictionary learning algorithm
for generating more compact hyperspectral bases. Since different scenes may be composed of different
numbers of materials, we do not fix the number of the learned spectral bases in the dictionary and
adaptively decide the bases’ number according to the similarity degree of the spectra in the observed
scene. The detail procedure of the on-line dictionary learning is manifested in Algorithm 1. Algorithm 1
is implemented via clustering high correlated spectra with a pre-defined threshold 0.999 and then
adaptively generating a different number of HS bases according to the contents of the available LR-HS
images.

After the HS dictionary B is learned online from the observed HR-HS image, the corresponding
multispectral dictionary Bl is then obtained by transforming B with the camera spectral response matrix
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R as Bl = RB. Via fixing the learned HS and RGB dictionaries B, Bl , we aim to calculate the sparse
coefficient matrix A with the available HR-RGB image Y with the data guided sparsity constraint.

Algorithm 1 On-line hyperspectral dictionary learning algorithm.

Initialization : Taking the HS reflectance of all pixels in the observed LR-HS image as the HS
sample set {S}, initialize dictionary set B as {φ}, and set the correlation similarity threshold θ;
1. Randomly select an HS reflectance st as temporary set {St} = {st} from {S}, and update {S} by
removing st;
2. Calculate the normalized correlation coefficients ri between st and any sample si in {S}:

ri =
∑L

l=1 st,lsi,l√
∑L

l=1 st,l

√
∑L

l=1 si,l

If ri > θ, we take si from {S} into {St} {S} ⇒si {St}.
3. Repeat the same process for all samples in {S}
4. Calculate the mean vector in {St} as the HS basis bt; put it into the dictionary B bt ⇒ B; and
re-set {St} as φ.
6. If {S} is φ, finish; otherwise go to Step 1.

4.2. Calculation of the Data Guided Sparsity Map

The data guided sparsity map is trained from the HR-RGB image that describes the strength
of priors (constraints) for each individual sample via measuring the mixed level of each pixel.
The calculation of the sparsity for each pixel is motivated by the observation that the mixed level of
each pixel should be different from each other with a high mixed level in the transition area and a low
mixed level in the smoothed area. It can be calculated by the similarity of the spatially neighboring
pixels, and the greater the mixed level, the weaker sparsity of the pixels in the transition area.

Given the available HR-RGB image Y with N pixels and L channels, we measure the uniformity
of neighboring pixels as the adaptive sparsity prior, which is the inverse of the mixed level, over the
entire image. For the ith pixel, its sparsity measurement p(i) could be estimated by exploring the
similarity between spatially neighboring pixels as follows:

p(i) = ∑
j∈NNi

sij (9)

where NNi is the neighborhood of the ith pixel that includes four neighbors; sij is the similarity
between the ith pixel and its neighboring pixel yj by the dot-product metric:

sij = exp(−
‖yi − yj‖2

σ
) (10)

The value of σ controls the smoothness of the sparsity map. Some examples of the calculated
sparsity maps for three images are given in Figure 1, which shows that the smoothed regions in the
input RGB images have large magnitudes (strong sparsity) in the sparsity maps and the transition
areas have small magnitudes (weak sparsity).
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Figure 1. Three examples of the calculated sparsity maps. The first row manifests the RGB images, and
the second row gives the calculated sparsity maps.

4.3. The Non-Negative Sparse Vectors with the Adaptive Sparsity

This section estimates the non-negative sparse vector A by optimizing the objective function:
minA ‖ Y− BlA ‖2

F with sparsity constraint and non-negativity on A. The generally used constraint
for sparsity is the l0 norm: ‖ αt

n ‖0< η, which is implemented by matching pursuit methods and
needs the computational cost as O(K2) (Kis the atom number in the dictionary). On the other hand,
Yu et al. [35,36] empirically observed that SCresults tend to be local, which means nonzero coefficients
are often assigned to bases near the encoded data, and proposed a locality constrained linear coding
method for explicitly encouraging local encoding and efficiently approximation with computational
cost: O(K). This study explores a nonnegative locality constrained linear coding for obtaining the
sparse vector of an RGB spectral yn (the RGB spectral of the nth pixel in Y) in the observed HR-RGB
image as follows:

min
αn
‖ yn − Bl

NN(yn)
αn ‖2

subject to: Bl
NN(yn)

are the K′ nearest bases of yn,

αk,n >= 0,

(11)

In the above equation, we firstly use the Euclidean distance for calculating the K nearest bases
from B for the input sample yn and apply the non-negative least squares algorithm to calculate the
non-negative coefficient for the selected basis only, which are just a small part of the whole basis B.
Generally, the selected basis number K′ is previously defined and is fixed for all samples. As analyzed
in the above section, since the sparsity for different samples should be different, we adaptively set
the selected basis numbers for different pixels according to the calculated sparsity map. Given the
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processed images, we learned K HS bases for representing spectral pixels and calculated the sparsity
p(i) for the ith pixel. The selected basis number for the ith pixel can be adaptively set as:

K′ = M ∗ exp{−[p(i)− 1
N

N

∑
j=1

p(i)]} (12)

where N is the pixel number in the processed image and M is a hyper-parameter, which is pre-defined
and can be considered as the average number of dictionary atoms used for all pixels in the under-studied
scene. With Equation (12), we can adaptively calculate the required basis number K′ for representing the
spectrum of each pixel.

5. Experimental Results

We evaluated the proposed approach using two publicly available HS imaging database:
the CAVEdataset [37] and the Harvard dataset [38], and three real satellite images including the
Hyperspec-VNIR Chikusei image [39], Salinas, and University of Pavia scenes [40–42]. The CAVE
dataset consists of 32 indoor images including paintings, toys, food, and so on, captured under
controlled illumination, and the Harvard dataset has 50 indoor and outdoor images recorded under
daylight illumination. The dimensions of the images from the CAVE dataset are 512× 512 pixels, with
31 spectral bands of 10 nm wide, covering the visible spectrum from 400 to 700 nm; the images from the
Harvard dataset have the dimensions of 1392× 1040 pixels with 31 spectral bands of a width of 10 nm,
ranging from 420 to 720 nm, from which we extracted the top left 1024× 1024 pixels in our experiments.
The Hyperspec-VNIR Chikusei image is an airborne HS dataset, which was taken by Headwall’s
Hyperspec-VNIR-C imaging sensor over Chikusei, Ibaraki, Japan, on 29 July 2014. The dataset comprises
128 bands in the spectral range from 0.363 to 1.018 µm. The scene consists of 2517× 2335 pixels with a
GSD of 2.5 m, mainly including agricultural and urban areas. A selected 540× 420 pixel size image
was used in the experiment. The Salinas image comprising 512× 217 pixels with 220 bands was
also collected by the AVIRIS sensor, capturing an area over Salinas Valley, California, with a spatial
resolution of 3.7 m. The University of Pavia scenes (PaviaU) were collected by the Reflective Optics
System Imaging Spectrometer (ROSIS) sensor. This image with 610× 340 pixels and 103 spectral bands
covering the city of Pavia, Italy, was collected under the HySens project managed by DLR (the German
Aerospace Agency).

For the CAVE and Harvard datasets, we treated the original images in the databases as the ground
truth Z and down-sampled them by a factor of 32 to create 16× 16 images, which was implemented
by averaging over 32× 32 pixel blocks, as done in [13,27]. The observed HR-RGB images Y were
simulated by integrating the ground truth over the spectral channels using the spectral response R
of a Nikon D700 camera. For the Hyperspec-VNIR Chikusei data, we used the released LR-HS (size:
90× 70× 128) and HR-MS (size: 540× 420× 8) images by Yokoya [39] as the input and estimated an
HR-HS image with a size of 540× 420× 128. Since the the camera spectral response function R for the
generation the MS image from the HS image is unknown, we exploited the quadratic programming
method for automatically estimating R. Since Salinas and PaviaU data are generally used for HS image
classification, there are no corresponding HR multi-spectral (MS) images and LR-HS images for our
HS image superresolution scenario. We considered the Salinas and PaviaU data as the ground truth
HR-HS images and simulated the corresponding LR-HS images via simply average down-sampling
with a factor of: six for both the horizontal and vertical directions and the eight-band HR-MS images
via generating the spectral response with Gaussian functions. Then, we adopted different HS image
superresolution methods on the simulated LR-HS and HR-MS images to estimate the HR-HS image
for evaluation.

To evaluate the quantitative accuracy of the estimated HS images, four objective error metrics
including root-mean-squared error (RMSE), peak-signal-to-noise ratio (PSNR), relative dimensionless
global error in synthesis (ERGAS) [43], and spectral angle mapper (SAM) [9] were evaluated. The metrics:



Sensors 2019, 19, 5401 10 of 18

ERGAS [43] calculates the average amount of the relative square error, which is normalized by the
intensity mean in each band as defined below:

ERGAS = 100× O
N

√√√√ 1
L

L

∑
l=1

(
MSE(i)

µi
) (13)

where O
N is the ratio between the pixel sizes of the available HR-RGB and LR-HS images, µi is the

intensity mean of the ith band of the LR-HS image, and L is the band number in the LR-HS image.
The smaller the ERGAS, the smaller the relative error in the estimated HR-HS image. SAM [9] measures
the spectral distortion between the ground truth and the estimated HR-HS images, and the distortion
of two spectral vectors zn and ẑn is defined as follows:

SAM(zn, ẑn) = arccos(
< xn, ẑn >

‖ zn ‖2‖ ẑn ‖2
) (14)

The overall SAM was finally obtained by averaging the SAMs computed from all image pixels.
Note that the value of SAM is expressed in degrees and thus belongs to (−90, 90]. The smaller the
absolute value of SAM, the less important the spectral distortion.

As introduced in Section 4.1, we trained the HS dictionary from the observed LR-HS image for
the under-studied scene instead of learning the common dictionary for different scenes. The histogram
of the dictionary number of all images in the CAVE and Harvard databases is shown in Figure 2a,b,
respectively, which manifested a much smaller number of learned bases than the raw spectral numbers
(256 for the images in CAVE and 1024 in Harvard). As we know that the computational cost of the
sparse coding procedure in Equation (5) is proportional to the basis number used, thus the calculating
time of the sparse coding would be greatly reduced for the images in both the CAVE and Harvard
datasets. The online dictionary learning (denoted as OLD) took much less than 0.01 s, which is
much less than the computational time of the sparse coding. Since our proposed method explored
the spectral representation with the pixel-wise sparsity constraint, we modified the G-SOMP+ [13]
method for selecting the dictionary atom of each pixel separately instead of the whole patch for fair
comparison, called pixel-wise G-SOMP+, where the hyper-parameter M was the predefined number
of the simultaneously selected dictionary atoms. We also fixed the number of used dictionary atoms
for the pixel spectral representation and adaptively adjusted the used atom number according to
our proposed data guided sparsity map. We conducted experiments on all images in the CAVE
and Harvard datasets and calculated the average RMSE, PSNR, SAM, and ERGAS for comparison.
The compared quantitative results with different hyper-parameters M are shown in Figures 3 and 4
for the CAVE and Harvard datasets, respectively. From Figure 3, it can be seen that the pixel-wise
G-SOMP+ could achieve better performance than the fixed number of the used dictionary atoms
for spectral representation (denoted “Fixed”), and our proposed method with data guided sparsity
could further improve the performance for most hyper-parameters and all quantitative metrics in
the CAVE dataset. For the Harvard dataset, the “Fixed” number of the used dictionary atoms for
spectral representation provided better results than the G-SOMP+ method, and our proposed method
could further improve the performance, especially for the ERGAS metric. In addition, we provide the
computational time of the pixel-wise G-SOMP+, the spectral representation with the fixed number,
and the data guided number of the dictionary atoms in Figure 5. Figure 5 manifests that our method
had comparable computational cost with the fixed number of dictionary atoms, but about seven times
faster than the pixel-wise G-SOMP+ method.
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(a) (b)

Figure 2. The histogram of the dictionary number of all images in the CAVEand Harvard databases.
(a) Cavedataset; (b) Harvard dataset.
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Figure 3. Quantitative compared results with the pixel-wise generalized simultaneous orthogonal
matching pursuit (G-SOMP+) method, the spectral representation of the fixed number, and the data
guided number of the dictionary atoms (our proposed method) under different hyper-parameters M
on the CAVE dataset. (a) RMSE; (b) PSNR; (c) spectral angle mapper (SAM); (d) relative dimensionless
global error in synthesis (ERGAS).
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Figure 4. Quantitative compared results with the pixel-wise G-SOMP+ method, the spectral
representation of the fixed number, and the data guided number of the dictionary atoms (our proposed
method) under different hyper-parameters M on the Harvard dataset. (a) RMSE; (b) PSNR; (c) SAM;
(d) ERGAS.
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Figure 5. The compared computational time for both the CAVE and Harvard datasets.

Next, we show the performance of our proposed method, compared with the state-of-the-art HSI
SR methods including: the matrix factorization method (MF) method [27], coupled non-negative matrix
factorization (CNMF) method [28], sparse non-negative matrix factorization (SNNMF) method [44],
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generalization of simultaneous orthogonal matching pursuit (G-SOMP+) method [13], and Bayesian
sparse representation (BSR) method [9]. The average RMSE, PSNR, SAM, and ERGAS results of the
32 recovered HR-HS images from the CAVE dataset [37] are shown in Table 1, while the average results
of the 50 images from the Harvard dataset [38] are given in Table 2.

Table 1. Quantitative compared results on the CAVE dataset. matrix factorization method (MF) method,
coupled non-negative matrix factorization (CNMF) method, sparse non-negative matrix factorization
(SNNMF) method, generalization of simultaneous orthogonal matching pursuit (G-SOMP+) method,
and Bayesian sparse representation (BSR) method.

RMSE PSNR SAM ERGAS

MF [27] 3.03 ± 1.44 39.37 ± 3.76 6.12 ± 2.17 0.40 ± 0.22
CNMF [28] 2.93 ± 1.30 39.53 ± 3.55 5.48 ± 1.62 0.39 ± 0.21
SNNMF [44] 3.26 ± 1.57 38.73 ± 3.79 6.50 ± 2.32 0.44 ± 0.23
GSOMP [13] 6.47 ± 2.53 32.48 ± 3.08 14.19 ± 5.42 0.77 ± 0.32
BSR [9] 3.13 ± 1.57 39.16 ± 3.91 6.75 ± 2.37 0.37 ± 0.22
Ours 3.27±1.63 38.76 ± 4.00 6.17 ± 2.17 0.41 ± 0.22

Table 2. Quantitative compared results on the Harvard dataset.

RMSE PSNR SAM ERGAS

MF [27] 1.96 ± 0.97 43.19 ± 3.87 2.93 ± 1.06 0.23 ± 0.14
CNMF [28] 2.08 ± 1.34 43.00 ± 4.44 2.91 ± 1.18 0.23 ± 0.11
SNNMF [44] 2.20 ± 0.94 42.03 ± 3.61 3.17 ± 1.07 0.26 ± 0.27
GSOMP [13] 4.08 ± 3.55 38.02 ± 5.71 4.79 ± 2.99 0.41 ± 0.24
BSR [9] 2.10 ± 1.60 43.11 ± 4.59 2.93 ± 1.33 0.24 ± 0.15
Ours 1.99±1.35 43.59 ± 4.85 2.96 ± 1.08 0.27 ± 0.15

From Tables 1 and 2, we observe that for all error metrics, our approach achieved better than or
comparable performance as the state-of-the-art methods. It should be noted that most existing methods
excepting the G-SOMP+ approach [13] simultaneously (coupled) minimized the reconstruction errors
of the available HR-RGB and LR-HS images. Since we attempted to validate the efficiency of the
adaptive sparsity strategy for different samples, our proposed method simply optimized the sparse
representation with the available HR-RGB image only like in the G-SOMP+ approach [13] and can be
extended to any other coupled method for more accurate performance. Figure 6 shows an example
of the recovered HR-HS images (the image of the 20th band) with the pixel-wise G-SOMP+ method,
the fixed, and the adaptive basis number and the corresponding difference image between the ground
truth and the recovered images in the CAVE dataset, while Figure 7 manifests an example of the
recovered HR-HS image (the image of the 20th band) with the pixel-wise G-SOMP+ method, our
proposed method, and the corresponding difference image between the ground truth and the recovered
images in the Harvard dataset.

Finally, we provide the compared results with the pixel-wise G-SOMP+ method, the spectral
representation with the fixed number, and the data guided number of the dictionary atoms on three
real satellite images including the Hyperspec-VNIR Chikusei image, PaviaU image, and Salinas image.
The compared quantitative results are manifested in Table 3. Table 3 also validates that our proposed
method with the data guided sparsity could not only improve the performance, but also reduced
the computational time compared with the pixel-wise G-SOMP+ method. The recovered HS images
(the pseudo-color images with the 72nd, 76th, and 80th bands) and the absolute difference images with
respect to the ground truth in an expanded region are visualized in Figure 8, which also manifests
the smaller difference error in our proposed method with the data guided sparsity. The input HS
images and the recovered HS images for Salinas and PaviaU data (the pseudo-color images with the
72nd, 76th, and 80th bands for Salinas data and the 22nd, 100th and 170th for PaviaU data) are given
in Figure 9.
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Input LR image         Pixel-wise G-SOMP+ (Diff.)        Fixed (Diff.) Our (Diff.) 

255

0

20

0

GT HR image           Pixel-wise G-SOMP+                   Fixed                     Our

Figure 6. An example of the recovered HR-HS images with the pixel-wise G-SOMP+ method, the fixed
and the adaptive basis number, and the corresponding difference images between the ground truth
and the recovered images from the CAVE dataset.

Input LR image       Pixel-wise G-SOMP+ (Diff.) Our (Diff.) 

255

0

GT HR image         Pixel-wise G-SOMP+ Our

20

0

Figure 7. An example of the recovered HR-HS images with the pixel-wise G-SOMP+ method and
the corresponding difference images between the ground truth and the recovered images from the
Harvard dataset.
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GT HR image                    Pixel-wise G-SOMP+                     Fixed                                    Our

Input LR Image           Pixel-wise G-SOMP+ (Diff.)           Fixed (Diff.) Our (Diff.)

Figure 8. The recovered HR-HS images on the Hyperspec-VNIR Chikusei data with the pixel-wise
G-SOMP+ method, the fixed and adaptive basis number, and the absolute difference images in an
expanded regions between the ground truth and the recovered images.

GT HR image            Pixel-wise G-SOMP+                   Fixed                     Our

Input LR Image           Our (Recovered) Input LR Image      Our (Recovered)

(a) (b)

Figure 9. The input HR-HS image and the recovered HR-HS images on the Salinase and PaviaU images.
(a) Salinas image. (b) PaviaU image.
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Table 3. Quantitative compared results using three real satellite images.

(a) The Hyperspec-VNIR Chikusei Image

RMSE PSNR SAM ERGAS Time (s)

Pixel-wise G-SOMP+ 2.68 39.57 3.42 2.85 268.84
Fixed 3.35 37.63 4.35 2.96 94.21
Ours 2.50 40.17 3.19 2.80 95.94

(b) The Salinas Image

RMSE PSNR SAM ERGAS Time (s)

Pixel-wise G-SOMP+ 1.97 42.24 2.18 0.97 267.57
Fixed 2.15 41.48 2.39 1.06 81.87
Ours 1.96 42.30 2.18 0.97 83.76

(c) The PaviaU Image

RMSE PSNR SAM ERGAS Time (s)

Pixel-wise G-SOMP+ 1.04 47.75 1.18 1.29 155.47
Fixed 1.07 47.35 1.20 1.17 47.57
Ours 1.03 47.80 1.17 1.09 48.67

6. Conclusions

This study proposed a novel data guided sparse spectral representation method for the HS image
superresolution task. The proposed method firstly learned the HS dictionary using the available LR-HS
image and then transformed it into the RGB one with the camera response function. The non-negative
sparse representation of each pixel in the HS image could be calculated given the RGB vector and the
RGB dictionary. The state-of-the-art methods generally calculate the sparse vector with the previously
defined sparsity strength regardless of the property of different samples. This study investigated
the spectral property via analyzing the local content similarity of a focused pixel in the available
high resolution RGB image and generated a sparsity map for guiding the calculation of the sparse
spectral representation. Motivated by the fact that the pixel spectrum of a pure material should have
more sparse representation of the spectral dictionary, we quantified the spectral mixing degree via
measuring the similarity of a pixel with the surrounding pixels and then controlled the sparsity in
the computation of the spectral representation. Since the proposed method adaptively adjusted the
sparsity in the spectral representation based on the local content of the available high resolution RGB
image, it could produce more robust spectral representation for recovering the target high resolution
hyperspectral image. Comprehensive experiments on two public HS datasets and three real remote
sensing images validated that the proposed method achieved promising performances compared with
the existing state-of-the-art methods.
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