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Abstract: This work presents a spectral color-imaging procedure for the detailed colorimetric study
of real artworks under arbitrary illuminants. The results demonstrate this approach to be a powerful
tool for art and heritage professionals when deciding which illumination to use in museums, or
which conservation or restoration techniques best maintain the color appearance of the original piece
under any illuminant. Spectral imaging technology overcomes the limitations of common area-based
point-measurement devices such as spectrophotometers, allowing a local study either pixelwise or
by selected areas. To our knowledge, this is the first study available that uses the proposed CIE
(Commission Internationale de l’Éclairage) light-emitting diode (LED) illuminants in the context
of art and heritage science, comparing them with the three main CIE illuminants A, D50, and D65.
For this, the corresponding colors under D65 have been calculated using a chromatic adaptation
transform analogous to the one in CIECAM02. For the sample studied, the CIE LED illuminants with
the lowest average CIEDE2000 color differences from the standard CIE illuminants are LED-V1 for
A and LED-V2 for D50 and D65, with 1.23, 1.07, and 1.57 units, respectively. The work studied is
a Moorish epigraphic frieze of plasterwork with a tiled skirting from the Nasrid period (12th–15th
centuries) exhibited in the Museum of the Alhambra (Granada, Spain).
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1. Introduction

Spectral imaging has become a state-of-the-art tool in many fields of research [1]. New portable
and fast imaging devices, together with powerful computers, enable researchers to retrieve valuable
information from spectral images. Within the field of spectral imaging, applications related to art and
cultural heritage are increasingly taking advantage of this promising technology [2–4].

With spectral information, scientists can develop many different applications where color can be
handled without constraints regarding the selection of a fixed illuminant or a given spectral sensitivity
of the imaging system. In this regard, new solid-state lighting products are rapidly filling the lighting
market. In particular, white light-emitting diode (LED) sources are replacing banned incandescent
lamps and other lighting technologies in most general lighting applications because of their high
efficiency at a low cost. However, the spectral power distributions (SPDs) of white LEDs differ markedly
from those of conventional light sources. This fact raises questions concerning possible modifications of
color appearance of specific objects such as human skin. Such matters can be addressed by comparing
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color rendition properties of modern white LEDs with those of lamp types that LEDs are intended to
replace [5,6].

LEDs are nowadays the first choice when dealing with art-related applications because their
spectral characteristics allow the visible illumination of art and heritage works without radiating them
with harmful UV or IR light. This was studied by Luo et al. [7] for the specific case of photographic
material displayed in museums, though the same problems can be found for artworks such as paintings
or ceramics. Several authors have studied LED illumination for museums in terms of its color
appearance. However, as pointed out in a study by Garside et al. [8], although illumination is a key
factor in museum management, there is a lack of either standardization or sharing of best practices.
This leads to a great variability in the illumination selection process.

In a study by Berns [9], the possibility of using white LED illumination composed of RGB (Red,
Green, Blue) LED combinations for museum lighting was analyzed, adapting some chosen primaries
to match D65 chromaticity over 24 reflectance samples. Soltic and Chalmers [10] used 14 color samples
and mixed LED spectra to create white LED illumination that minimized CIEDE2000 color differences
compared to CIE (Commission Internationale de l’Éclairage) standard illuminants A and D65, and
CIE illuminant D50. Amano, Linhares, and Nascimento [11] made use of spectral imaging using a
liquid crystal tunable filter (LCTF) attached to a monochrome camera, to study the color constancy of
postcards reproducing real works of art under different illuminants (including LEDs). They studied
the spectral and color differences, as well as color constancy in pseudo-randomly selected local areas
of skin and non-skin regions.

Several works have also reported the results of psychophysical experiments investigating how
illuminance levels and correlated color temperatures (CCT) of the illumination affect observer
preferences, especially for museum lighting [12–15].

The present study used the hyperspectral image capturing and processing techniques presented
by Martínez et al. [2], but rather than colorimetrically studying a particular piece of art, we aimed
to use hyperspectral imaging technology in order to present a complete approach for the pixelwise
quantitative and graphic analysis of the final color appearance of art or heritage works displayed
under a selected illuminant. We considered for this study only one nearly flat art piece, though the
whole workflow presented here can be used for similar pieces. In addition, as far as our knowledge
goes, this is the first study available in which CIE LED illuminants [16] are studied and compared
with classical CIE illuminants such as A, D50, and D65, within the context of cultural heritage. The
methods and results presented in this manuscript are not intended for setting a standard in museum
lighting. Nevertheless, we feel they can be useful to professionals working in art and cultural-heritage
science [8], who usually use point-measurement-based devices such as spectrophotometers [17]. The
broad potential of these results opens the possibility of a more thorough study of the colorimetric
characteristics of pieces of art under arbitrary illuminants.

2. Materials and Methods

2.1. The Art Piece

The work studied consists of a portion of a Moorish epigraphic frieze of plasterwork and a tile
skirting panel from the Nasrid period (Nasrid Kingdom of Granada, 1238–1492) and later Moorish
additions (14th–16th centuries). It is on permanent display in the Museum of the Alhambra (Palace of
Carlos V of the Alhambra, Granada, Spain), with inventory number R-1612. From a larger wall section
measuring 152.5 cm high and 128.5 cm wide, the portion analyzed in this study measures 40 cm × 60 cm.
Its original location was presumably the southern hall of Comares Palace (Hall of the Myrtles) [18,19].
Thus, it was most likely that its original illumination was mainly indoor illumination. This artwork
was chosen for being representative of both plasterwork and tiling from the Islamic tradition.

The plaster frieze at the top of the panel bears epigraphic decoration in Nasrid calligraphy and
is framed in the upper and lower parts by a double interlocking motif [20]. Below the frieze is a
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polychrome tile skirting made by the tiling technique called zellige, which consists of glazed tiles
composed of pieces (tesserae) of varying complexity [21]. In this case, the decorative geometric design
is formed by thick black, blue, green, and yellow curvilinear lines interlocking to form repeating
designs over a white background. Figure 1 shows the complete piece, as well as the illumination and
capturing system used in this study (described in Section 2.3.1.).
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Although no specific materials analysis on the plaster frieze are available at the moment, it is
possible to make an approximation of its composition taking as reference the analysis of other or
similar plasterwork. The samples analyzed in a plasterwork from the Hall of the Mexuar (Mexuar
Palace, Alhambra de Granada), examined by polarized light microscopy (PLM) and scanning electron
microscopy-energy dispersive X-ray (SEM-EDX) show two white layers divided by an intermediate
reddish-orange layer. The white layers are made of gypsum (hydrated calcium sulphate, –CaSO4.
2H2O–) as the main component, in addition to calcium carbonate (CaCO3), clays, and iron oxides.
In the reddish-orange layer, silicon, aluminum, potassium, iron, calcium, and sulfur were identified,
which suggests the presence of iron clays, gypsum, and calcite [22].

In the same way, no chemical analyses on the panel of tiles are available. However, we made
colorimetric and chemical analyses on tilework from the Courtyard of the Maidens of the Real Alcázar
of Seville [23–25], whose tiles were also made by Nasrid crafters, much like the Alhambra ones. The
referred analyses by scanning electron microscopy-energy dispersive X-ray (SEM-EDX) confirm the
presence of lead-based glazes with different metal elements that make oxides. These are the main
chemical elements identified that add color to the glazes: copper (green), manganese (black), tin
(white), cobalt (blue), and iron (yellow-orange). Silicon always appears as a vitrifier and lead as a flux.

2.2. Illuminants

The nine LED illuminants recently recommended by CIE [16] represent current typical white LED
lamp spectra. They were determined from experimental measurements of spectral power distributions
of 1298 white LED sources available in the market [26]. Table 1 shows the main colorimetric data
of the nine CIE LED illuminants: CIE x, y chromaticity coordinates, correlated color temperature
(CCT), distance to the Planckian locus in the u, v diagram (∆uv), CIE general color rendering index
(Ra) [27], and CIE 2017 color fidelity index (Rf) [28]. The positive/negative signs in ∆uv indicate that
the illuminant is positioned above/below the Planckian locus in the u, v diagram. The values of Ra and
Rf are in the range of 0–100. The CIE illuminants B1 to B5 represent typical phosphor-converted blue
LEDs at different CCTs, which are the most commonly used. The CIE illuminant BH1 is representative
for white LEDs that consist of a mixing of phosphor-converted blue LED and red LED (also called
a blue-hybrid LED). The CIE illuminant RGB1 represents typical spectral shapes for mixing of red,
green, and blue LEDs. Finally, the CIE illuminants V1 and V2 represent typical spectral shapes for
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phosphor-converted violet LEDs at two different CCTs. Currently, LED white sources similar to RGB1,
V1, and V2 are not commonly used [26].

In addition to the above-mentioned CIE LED illuminants, three classical CIE illuminants were also
studied. Specifically, the nine CIE LED illuminants were compared against the CIE standard illuminants
A and D65, which are considered representative of indoor and outdoor lighting, respectively. In addition,
the CIE illuminant D50 was also considered here because currently CIE Technical Committee 2-82 is
preparing a revision of CIE S 014-2, which will include CIE illuminant D50 as a new CIE standard
illuminant [16]. The approximate CCTs of CIE illuminants A, D65, and D50 are 2856 K, 6500 K, and
5000 K, respectively. The normalized spectral power distributions (SPDs) of the 12 illuminants studied
are plotted in Figure 2. The normalization applied is such that the tristimulus value Y equals 100 for
each illuminant.

Table 1. The main colorimetric data of nine light-emitting diode (LED) illuminants recommended by
the CIE [16].

CIE LED B1 B2 B3 B4 B5 BH1 RGB1 V1 V2

x 0.4560 0.4357 0.3756 0.3422 0.3118 0.4474 0.4557 0.4548 0.3781
y 0.4078 0.4012 0.3723 0.3502 0.3236 0.4066 0.4211 0.4044 0.3775

CCT (K) 2733 2998 4103 5109 6598 2851 2840 2724 4070
∆uv (× 103) −0.7 −1.0 −0.7 +0.5 +0.9 −0.3 +4.3 −1.9 +1.0

Ra 82 83 85 77 80 92 57 95 96
Rf 84 84 85 77 79 85 71 87 94

2.3. Workflow

This section is divided into five subsections, each explaining one stage of the overall capturing
and processing workflow. A scheme of this workflow is shown in Figure 3.

2.3.1. Spectral Image Capture and Post-Processing

The spectral images represented below were captured using a hyperspectral image scanner model
Resonon Pika L. The linear sensor size was 900 pixels. The operating wavelength range was from 380
to 1080 nm. The spectral resolution after applying hardware binning was 4.1 nm. Since this study
focuses on color differences, only the range from 380 to 780 nm was used.
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The light sources used to illuminate the sample were two 36 W Cromalite Nanguan CN-600CSA
LED (Nanguang Photo&Video Systems Co., Ltd, Shantou, China) panels, which were placed on sturdy
tripods at the left and right sides of the sample, and a 500 W halogen lamp. The exposure time used
was 28 ms, and the ISO gain was set to 1. This means that each scanned line was exposed for 28 ms.
Since the final image was 1160 lines wide, the total capturing time was roughly 32 s. This was enough
for the illuminance impinging on the piece, which was 720 lux at the center of the piece.
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Figure 3. Workflow scheme from the spectral image capture for the analysis of final color-difference
results. The small figures in each step are just meant for illustrating them.

To correct the sensor spectral responses of the imaging system and the spectrally and spatially
non-uniform illumination (i.e. the so-called “flat-field correction” explained in [29] and used in [2]),
we captured two extra images using exactly the same settings used to capture the image of the sample.
These extra images are called the black and gray images. Figure 4 shows the sRGB rendering of
the original spectral images captured for the sample and the flat-field uniform gray sample. Also,
Figure 4 depicts the heatmap of the illumination over the flat-field sample, and the sRGB rendering
of the final flat-filed-corrected image. Note that the corrected image shows only those regions of the
uncorrected image covered by the flat-field sample. Hence, the studied corrected image was completely
flat-field corrected. It is evident from an examination of the illumination heatmap (where red/blue
colors indicate areas with the highest/lowest illuminances), that the illumination over the sample is not
spatially uniform (nor is it spectrally uniform). Hence, flat-field correction becomes necessary to gain a
realistic and useful spectral reflectance image.
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illumination with CIE standard illuminant D65.
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2.3.2. Color Calculation

After computing the spectral reflectance image (last plot in Figure 3), we calculated the XYZ
tristimulus values for each pixel using the CIE 1931 standard observer and the 12 different illuminants
explained in Section 2.2. From XYZ tristimulus values, the transformations to different color spaces
are straightforward. CIE L*, a*, b* images were calculated, as were sRGB images. As an example of
the results found, Figure 5 shows the three two-dimensional projections in the L*, a*, b* color space
of the color image under the CIE standard illuminant D65, using true color for the dots. Sometimes
researchers compare these kinds of plots for two different illuminants, seeking information on the
perceptual changes in the appearance of a given sample under two illuminants. However, this practice
requires the origin of coordinates for any of these plots under two different illuminants to be the same,
and therefore we must use the technique of “corresponding colors” described in the following section
to plot in CIELAB the results for two different illuminants.
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2.3.3. Corresponding Color Calculation

“Corresponding colors” are defined as pairs of color stimuli (e.g., two sets of different tristimulus
values) that have the same color appearance when one is seen under one set of adaptation conditions
(e.g., a first illuminant) and the other is seen in a different set (e.g., a second illuminant) [30]. Both
stimuli come from the same object color under two different illuminants. This is not the same as
illuminant metamerism, which studies how the color between a pair of different object colors change
when the illuminant is changed. It is used as a reference illuminant with the same CCT as the source to
compute the CIE general color rendering index [27] or the CIE color fidelity index [28] of a light source.
However, in this article we are studying color inconstancy when changing from a CIE LED illuminant
to one of the three main CIE illuminants (A, D50, and D65). This is done by calculating corresponding
colors before using the CIEDE2000 color-difference formula. In the current paper, the computations of
corresponding colors were made from all studied illuminants to D65, using the CAT16 (Chromatic
Adaptation Transform) model [31], assuming an average surround, complete adaptation (D = 1), and
adapting luminance LA = 64 cd/m2 (typical value for surface color evaluation in a light booth). For the
purposes of the current study, the results found using the CAT16 model can be considered equivalent to
those using the current CIE-recommended model, CAT02 [32]. Nonetheless, the comparison between
the accuracies of both CATs is out of the scope of this article. Hence, in this study, the most recent
CAT16 model was considered.

2.3.4. Color-Difference Calculations

When the same object color is studied under two different illuminants, a color-difference formula
like CIELAB or CIEDE2000 cannot be used since there are two different reference whites, one for each
illuminant. After the calculation of the corresponding colors under D65, there is only one reference
white point and hence the CIEDE2000 color differences (∆E00) [33] can be computed. We calculated
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them pixelwise in order to compare how much the final color of the sample changed when using the
nine CIE LED illuminants compared to the classical CIE illuminants (A, D50, and D65). Then, each
LED illuminant was compared against A, D50, and D65. This color-difference formula was chosen
because it is the latest recommendation made by CIE and ISO as a standard [34]. In fact, CIEDE2000
was initially recommended for a set of “reference conditions” (e.g., uniform samples with CIELAB
color differences below 5.0 units) which are different from the current ones. However, different authors
have employed the CIEDE2000 color-difference formula under many different viewing conditions,
including complex images as test samples [35–37].

2.3.5. Masking

To perform a more detailed analysis of the sample, we also studied the CIEDE2000 color differences
separately by colors. The sample studied in this work has six main colors, denoted as black, blue, green,
plaster, white, and yellow. To separate them, we manually segmented binary masks, as indicated in
Figure 6, in order to extract the color difference information only from the desired color in each case
(white areas), disregarding the rest (black areas). The top plaster region was an area (plaster). For the
ceramic tiles’ region, despite some variability among different tiles, in the current piece it was easy to
make the segmentation into the five different colors by visual inspection (mainly hue inspection).
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3. Results

This section is divided into two subsections. First, the sRGB renderings are plotted for visual
comparisons of color appearance under the nine CIE LED illuminants and the three main CIE
illuminants (A, D50, and D65), considering their corresponding CCTs. Then, the CIEDE2000 color
differences are presented in two different formats for each pair of illuminants and for each color of
the sample.

3.1. Visual Comparisons of Color Appearance and Related CCTs

Figure 7 shows the sRGB images rendered using the 12 different illuminants. This simulation is
a powerful tool for art and heritage professionals when deciding the illumination to be used over a
specific piece in a museum. In this way, the final color appearance of the sample under the different
illuminants can be viewed before the illuminant is finally chosen.

At a glance, the reddish appearance of the piece can be appreciated under five of the LED
illuminants: B1, B2, BH1, RGB1, and V1. These illuminants have CCTs below 3000 K. Hence, they
look closer to the appearance under CIE standard illuminant A. Then, the LED illuminants B3, B4,
and V2, which have CCTs ranging from roughly 4000 K to 5000 K, resemble the CIE illuminant D50.
Furthermore, the LED illuminant B5, with a CCT of 6598 K, takes on a color appearance similar to that
of CIE standard illuminant D65. In any case, as will be shown below, for images under two different
illuminants, the minimum difference in their CCTs is not always equivalent to the minimum average
color difference in CIEDE2000 units. Specifically, for the main CIE illuminants A, D50, and D65, the CIE
LED illuminants with the lowest average CIEDE2000 color differences are V1 and V2 (see Section 3.2),
while the ones with the lowest CCT differences are BH1, B4, and B5, respectively.

In addition, a close examination of the plots shown in Figure 8 reveal several differences for
images under illuminants with very similar CCTs. This is not surprising because CCT is only a rough
approach to the color of a white source (e.g., cool/warm source), while the specific spectral power
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distributions of light sources are the essential factors in the determination of the overall appearance of
an image.

3.2. Color-Difference Analysis

Figure 8 plots the mean spectral reflectances (and their standard deviation) measured for the six
different colors studied. Using the masks shown in Figure 6, all reflectances under the white pixels of
the mask were averaged for each color. As expected from visual inspection of the images in Figure 7,
plaster was the region with highest standard deviation since the heterogeneity in this not completely
flat region is high.

Figure 9 shows bar plots of the CIEDE2000 color differences calculated for each LED illuminant
and each color of the sample against illuminants A (top row), D50 (second row), and D65 (third row).
The bottom row in Figure 9 shows the average color differences for all the colors of the sample.

Figure 9 shows that different CIE LED illuminants would be selected depending on which of the
CIE illuminants A, D50, and D65 we wish to match. For the sample studied, using the criterion of the
minimum average CIEDE2000 color difference, we found that the best CIE LED illuminant to match
standard illuminant A was V1, since it presents the lowest average color difference (1.23 CIEDE2000
units). On the contrary, for matching D50 or D65, we chose V2 in both cases (1.06 and 1.57 CIEDE2000
units, respectively).

As a reference, in previous studies the visual threshold value to detect average color differences in
images was about 2.0 CIELAB units [38], while the acceptability value for complex images may be
around twice that [39]. While there is no scale factor to transform from CIELAB into CIEDE2000 units,
for uniform samples, 1.0 CIELAB unit is equivalent to approximately 0.6 of a CIEDE2000 unit [40].

Nonetheless, analyzing the color differences color-wise, we can appreciate differences concerning
the most suitable CIE LED illuminant to choose depending on the color of the sample. For instance, in
an effort to mimic the D65 illuminant (third row), V2 is the CIE LED with the lowest average CIEDE2000
color difference for the whole sample (1.57 CIEDE2000 units) and for individual colors it yields the
best results only for black and plaster (1.92 and 1.47 CIEDE2000 units, respectively). However, for blue,
green, and white, B3 performs best (with 0.94, 1.45, and 1.28 CIEDE2000 units, respectively), whereas
for yellow, BH1 would be the best choice (with 1.52 CIEDE2000 units).

For a more complex piece where the different color areas are not so clearly segmented, this
information is easier to visualize using a color-difference heatmap which indicates the areas of the
image that present higher or lower color differences in comparisons of two illuminants. This is the
case shown in Figure 10, which presents the color-difference heatmaps comparing the illuminant D65
with the best average (V2, left) and worst average (RGB1, right) LED illuminants. Both heatmaps are
equally scaled in order to show the differences between them, using the scale shown in the center of
Figure 10. We see that the heatmap on the left represents weaker color differences (which is darker
and bluer) than the heatmap on the right (which is lighter and yellower). Note that the comparison
in this case is made pixelwise between the image under the illuminant D65 and the image under the
aforementioned CIE LED illuminants.

A closer examination of the right heatmap indicates that areas with the highest color differences
(CIEDE2000 of approx. 10 units, represented with yellowish colors), correspond to the yellow
areas of the sample, which are the ones with the strongest color difference in Figure 9 (third row,
illuminant RGB1).

This methodology provides a powerful tool to visualize the regions of a specific sample, where a
given illuminant proves better or worse at matching the color appearance of another illuminant.

4. Conclusions

In this work, we have shown how spectral imaging with a hyperspectral imaging scanner can be
used to represent a spectral reflectance image of an artwork and simulate its colorimetric attributes
pixelwise. This technology enables an exhaustive analysis of the color appearance under a selected
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illuminant. The complete workflow is presented and explained, and results are shown with a real
historical work from the Museum of the Alhambra (Granada, Spain).

The sample was studied under nine CIE LED illuminants and compared with the classical CIE
illuminants, A, D50, and D65. These comparisons were made possible using the calculations of the
corresponding colors with a chromatic adaptation transform analogous to CAT02. The results reveal
that, for the studied sample, in terms of minimum average CIEDE2000 color differences, V1 illuminant
is the best choice for matching the A illuminant, and V2 is the best choice for matching both the D50
and D65 illuminants.

However, even though the CCT of each illuminant was demonstrated to give some information of
the overall appearance of the sample under it in terms of warmer or cooler color appearance, the CIE
LED illuminants with CCTs closest to the main CIE illuminants were not the same with the closest
average CIEDE2000 color differences.

We have also shown how, for the sample studied, even if the above-mentioned CIE LED illuminants
were on average the best choices for matching the A, D50, and D65 illuminants, when the piece was
studied locally using a masking technique, different colors of the sample presented different CIE LED
choices with lowest CIEDE2000 color differences. This information was easily discerned by means of
color-difference heatmaps that show these differences pixelwise.
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