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Abstract: Accurately estimating grassland carbon stocks is important in assessing grassland
productivity and the global carbon balance. This study used the regression kriging (RK) method to
estimate grassland carbon stocks in Northeast China based on Landsat8 operational land imager
(OLI) images and five remote sensing variables. The normalized difference vegetation index (NDVI),
the wide dynamic range vegetation index (WDRVI), the chlorophyll index (CI), Band6 and Band7
were used to build the RK models separately and to explore their capabilities for modeling spatial
distributions of grassland carbon stocks. To explore the different model performances for typical
grassland and meadow grassland, the models were validated separately using the typical steppe,
meadow steppe or all-steppe ground measurements based on leave-one-out crossvalidation (LOOCV).
When the results were validated against typical steppe samples, the Band6 model showed the best
performance (coefficient of determination (R2) = 0.46, mean average error (MAE) = 8.47%, and
root mean square error (RMSE) = 10.34 gC/m2) via the linear regression (LR) method, while for the
RK method, the NDVI model showed the best performance (R2 = 0.63, MAE = 7.04 gC/m2, and
RMSE = 8.51 gC/m2), which were much higher than the values of the best LR model. When the
results were validated against the meadow steppe samples, the CI model achieved the best estimation
accuracy, and the accuracy of the RK method (R2 = 0.72, MAE = 8.09 gC/m2, and RMSE = 9.89 gC/m2)
was higher than that of the LR method (R2 = 0.70, MAE = 8.99 gC/m2, and RMSE = 10.69 gC/m2). Upon
combining the results of the most accurate models of the typical steppe and meadow steppe, the RK
method reaches the highest model accuracy of R2 = 0.69, MAE = 7.40 gC/m2, and RMSE = 9.01 gC/m2,
while the LR method reaches the highest model accuracy of R2 = 0.53, MAE = 9.20 gC/m2, and
RMSE = 11.10 gC/m2. The results showed an improved performance of the RK method compared
to the LR method, and the improvement in the accuracy of the model is mainly attributed to the
enhancement of the estimation accuracy of the typical steppe. In the study region, the carbon stocks
showed an increasing trend from west to east, the total amount of grassland carbon stock was
79.77 × 104 Mg C, and the mean carbon stock density was 47.44 gC/m2. The density decreased in the
order of temperate meadow steppe, lowland meadow steppe, temperate typical steppe, and sandy
steppe. The methodology proposed in this study is particularly beneficial for carbon stock estimates
at the regional scale, especially for countries such as China with many grassland types.
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1. Introduction

Grassland ecosystems, which cover some 40% of the terrestrial surface, make up one of the most
important and widely distributed terrestrial ecosystems and play an important role in biodiversity
conservation and soil protection as well as in global carbon cycle and climate regulation [1–4]. They
also provide important resources to modern society, especially for developing countries [5]. Grassland
is a highly complex biome, whose species composition, density and biomass vary greatly with time
and space, making it sensitive to changes of soil conditions, local management, climate and weather
conditions [6]. Unfortunately, due to high-intensity use, cultivated land reclaimation, and climate
variability, grasslands have been degraded worldwide in the past decades [7–10]. It is reported that
more than 90% of the grassland in Inner Mongolia, which is characterized by a semiarid inland climate,
is facing serious degradation, with the quality and area of pasture grass decreasing [11].

In pasture areas, the amount of grassland carbon stocks determines the forage availability and
herbivore carrying capacity [12–14]. Timely and accurate monitoring of the amount of grassland carbon
stocks can provide scientific data that can be used to regulate stocking rates for the sustainable use of
grassland resources [15,16]. Traditional methods used to estimate carbon stocks are mainly conducted
through field surveys, but even though they can provide a better estimation of vegetation carbon
stocks, they are too labor- and time-intensive over large areas [17,18] which limits their use [19,20].
Remote-sensing data, which have high temporal resolution and the capacity for large-scale observation,
are widely used for large-area carbon stock estimations and can be the most effective means of scaling
up grassland carbon stocks from the sample scale to the regional scale [21].

A number of carbon stock estimation methods have been developed to ues remote-sensing
data [19,21–40]. The most popular and commonly used approaches are empirical statistical
methods [18,21–23,26,31], which link various predictor variables derived from remotely sensed
data to carbon stock values measured at the ground. Another widely used type of approach is
machine-learning methods, such as artificial neural networks [18,31,35,36], support vector machines [37],
and random forests [31,32,38–40]. Unlike regression methods, these approaches can easily handle
a large number of explanatory variables derived from remotely sensed and ancillary data that are
linearly or nonlinearly related to biomass [41]. Geostatistical prediction methods, including ordinary
kriging (OK) [42], universal kriging (UK) [42,43], and regression kriging (RK), which model the data
structure through spatial autocorrelation and incorporate this information into the response variables
of unsampled locations [44], have been widely studied for the interpolation of meteorological data
and spatial distributions of soil carbon stocks, and they have also been used to map environmental
variables [19,45–49]. But there is still a lack of research on the remote-sensing inversion of vegetation
carbon stocks, especially grassland carbon stocks. Recent studies have shown the superiority of RK
when compared to the other two methods [45,46]. In the study area, RK performs better than the
other machine learning methods (ANN and RF) in terms of predicting grassland leaf area index values
across the duration of the growing season [45].

Carbon stocks have been estimated using a variety of sources of remote-sensing data.
The spaceborne signal aperture radar (SAR) is widely used for the estimation of forest above-ground
biomass (AGB) [50–52], because it can work under dark and bad-weather conditions. Lidar is an
active remote-sensing technology which determines the distance between the sensor and the target
using laser energy [40]. Lidar is able to provide accurate information on the vertical structure of
forests through recorded discrete returns or waveforms [53–55]. The height of vegetation during the
nongrowing season of a meadow steppe in northeast China was estimated using lidar data acquired
by unmanned aerial vehicles (UVAs) [56]. Passive optical remote sensing provides perhaps the best
tool for biomass estimation at regional to global scales because of its global coverage, multiple spatial
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resolutions, repeat visits, and cost-effectiveness [41]. Landsat-series satellites, as medium-resolution
satellites, are widely used in areas of ecological monitoring. The operational land imager (OLI) carried
on Landsat8 includes 9 bands with a spatial resolution of 30 m. The OLI includes all the bands of
the Enhanced Thematic Mapper+ (ETM+) sensor and adjusts OLI Band5 (0.845–0.885 microns) to
exclude the water vapor absorption characteristics at 0.825 microns. In addition, there are two new
bands: deep blue Band1 (0.433–0.453 microns), which mainly applies to coastal-zone observations,
and short-wave infrared (SWIR) Band9 (1.360–1.390 microns), which includes strong water vapor
absorption characteristics and can be used for cloud detection. Near-infrared Band5 and SWIR Band9
are close to the bands corresponding to MODIS [57–59]. Vegetation indexes (VIs) are derived based
on the combination of multispectral bands of optical satellites are becoming more frequently used in
biomass estimation because they can enhance green vegetation signals and minimize the impacts from
the soil background, Sun-canopy-sensor geometry, and atmosphere [41]. The normalized difference
vegetation index (NDVI), enhanced vegetation index (EVI), simple ratio (SR), wide dynamic range
vegetation index (WDRVI), and chlorophyll-based indexes (e.g., chlorophyll index (CI)) are the most
commonly used VIs [60].

To better estimate grassland carbon stocks, this study used the RK method to build models
incorporating spectral bands and VIs from Landsat8 OLI images. First, we analyzed the correlation
between seven bands and five commonly used VIs (NDVI, WDRVI, CI, EVI and SR) and carbon stocks,
and we selected the highly correlated parameters as the prediction variables. Then, these variables
were used for RK modeling and validation based on ground measurements. A linear regression (LR)
model was also built for each variable to compare the results with those of the RK method. Finally, the
carbon stock characteristics of the study area were analyzed using the model simulation results with
the highest accuracies. The methodology proposed in this study is particularly beneficial for carbon
stock estimates at the regional scale, especially for countries such as China with many grassland types.
The first draft of this article used the RK method to estimate grassland AGB based on the Landsat8
OLI images, band4, NDVI, and EVI, which were used to build RK models separately and to explore
their capability for modeling spatial distribution of grassland AGB [61]. In this study, we have made
improvements in the following aspects: (1) In terms of the methods, two databases of typical grasslands
and meadow grasslands were added for validation respectively, to explore the model performance.
(2) To obtain more accurate models, the WDRVI, the CI, the SR and other spectral bands were added as
regression parameters. (3) We converted the aboveground biomass into carbon stocks. (4) We enriched
the contents of the Introduction, Results, and Discussion sections.

2. Methods and Data

2.1. Study Area

Chenbarhu Banner is located in the backland of Hulunber (48◦48′–50◦12′ N, 118◦22′–121◦02′ E) in
the northeastern part of Inner Mongolia, China, and is part of the Mongolian Plateau in central Asia
(Figure 1). This region is characterized by a semiarid inland climate, with an annual mean precipitation
of 300–550 mm and an annual mean temperature of about 1 ◦C [62]. This region is vulnerable and
sensitive to climate change, and the average elevation is 677 m, with the elevation and rising from
west to east. The length of the growing season is approximately 140 days and lasts from May to
September [63]. Grasslands are the largest ecosystem in this region, and four main grassland types are
included: lowland meadow steppe, temperate meadow steppe, temperate typical steppe and sandy
steppe. Among them, temperate typical steppe and sandy steppe are typical steppes, and lowland
meadow steppe and temperate meadow steppe are meadow steppes. The total area of the available
steppe is approximately 1.68 × 106 hm2, in which the area of meadow steppe is 0.93 × 106 hm2 and the
area of typical steppe is 0.75 × 106 hm2.



Sensors 2019, 19, 5374 4 of 19
Sensors 2019, 19, 5374 22 of 19 

 

 
Figure 1. Study area and sampling plots. 

2.2. Sample Design and Measurement of Field Carbon Stocks 

A field survey was performed from 9 July to 16 July in 2015. The 1:1,000,000 digital vegetation 
map of the People’s Republic of China [64] was used to guide the selection of the location of the 
survey plots relative to the different vegetation types, including typical steppe, meadow steppe, 
swamp, crops, and broadleaf deciduous forest. Each survey sample plot was 30 m × 30 m and had a 
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the dry weight of all aboveground live mass per unit area [65], and provides the basis upon which to 
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content or conversion coefficient from biomass to carbon storage is 0.5 [67]. For grasslands, we use a 
value of 0.45, as mentioned in [23,68]. The grassland AGB was obtained using the harvest method [39]. 
First, fresh grass was cut from ground with stubble no taller than 0.5 cm, and the fresh grass was 
brought to the laboratory. The fresh grass was dried at 65 °C for 48 h in the oven, and the weight was 
measured and recorded. A sample plot’s AGB is the average weight of three quadrats. A handheld 
differential global positioning system (GPS) receiver capable of providing real-time positioning with 
2-m accuracy was used to obtain the coordinates of these sample plots. In total, data from 84 sample 
plots were obtained, including 55 typical steppe samples and 29 meadow steppe samples. 
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Landsat8 OLI lever-1 standard data products [58] were acquired from the United States 
Geological Survey (USGS) Earth Explorer website (http://earthexplorer.usgs.gov/). The images were 
radiometrically and geometrically corrected and were projected as UTM coordinates (WGS84  
datum, Zone 51 N). To cover the study area, four scenes of Landsat8 images corresponding to the 
dates of the field survey were collected in this study. Two of the images (Path 123, rows 25 and 26) 
were acquired on 5 July, and the other two scenes (Path 124, rows 25 and 26) were acquired on 12 July. 
All images were of high quality and had minimal (<10%) or no cloud contamination (Table 1). To obtain 
the reflectance of the top of the canopy (TOC), the images were atmospherically corrected using the 
Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) program embedded in 
ENVI 4.8 software [69]. 
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2.2. Sample Design and Measurement of Field Carbon Stocks

A field survey was performed from 9 July to 16 July in 2015. The 1:1,000,000 digital vegetation
map of the People’s Republic of China [64] was used to guide the selection of the location of the survey
plots relative to the different vegetation types, including typical steppe, meadow steppe, swamp, crops,
and broadleaf deciduous forest. Each survey sample plot was 30 m × 30 m and had a homogeneous
canopy, which was well-suited for the 30 m-resolution Landsat data. Three 1 m × 1 m quadrats were
randomly selected in each sample plot [39]. The above ground biomass is defined as the dry weight
of all aboveground live mass per unit area [65], and provides the basis upon which to estimate the
aboveground net primary productivity [66]. Usually, for forest ecosystems, the carbon content or
conversion coefficient from biomass to carbon storage is 0.5 [67]. For grasslands, we use a value of 0.45,
as mentioned in [23,68]. The grassland AGB was obtained using the harvest method [39]. First, fresh
grass was cut from ground with stubble no taller than 0.5 cm, and the fresh grass was brought to the
laboratory. The fresh grass was dried at 65 ◦C for 48 h in the oven, and the weight was measured and
recorded. A sample plot’s AGB is the average weight of three quadrats. A handheld differential global
positioning system (GPS) receiver capable of providing real-time positioning with 2-m accuracy was
used to obtain the coordinates of these sample plots. In total, data from 84 sample plots were obtained,
including 55 typical steppe samples and 29 meadow steppe samples.

2.3. Satellite Data Collection and Processing

Landsat8 OLI lever-1 standard data products [58] were acquired from the United States Geological
Survey (USGS) Earth Explorer website (http://earthexplorer.usgs.gov/). The images were radiometrically
and geometrically corrected and were projected as UTM coordinates (WGS84 datum, Zone 51 N).
To cover the study area, four scenes of Landsat8 images corresponding to the dates of the field survey
were collected in this study. Two of the images (Path 123, rows 25 and 26) were acquired on 5 July, and
the other two scenes (Path 124, rows 25 and 26) were acquired on 12 July. All images were of high quality
and had minimal (<10%) or no cloud contamination (Table 1). To obtain the reflectance of the top of the
canopy (TOC), the images were atmospherically corrected using the Fast Line-of-sight Atmospheric
Analysis of Spectral Hypercubes (FLAASH) program embedded in ENVI 4.8 software [69].

http://earthexplorer.usgs.gov/
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Table 1. Landsat 8 OLI data acquisition information.

Process Level Bands Used Path-Row Acquisition Date

Level-1 Band1-Band7 123-25 5 July 2015
Level-1 Band1-Band7 123-26 5 July 2015
Level-1 Band1-Band7 124-25 12 July 2015
Level-1 Band1-Band7 124-26 12 July 2015

Five vegetation indexes were calculated based on the TOC reflectance images and used in this
study, which were the NDVI [70], the WDRVI [71], the CI [72,73], the EVI [74] and the SR [75].
The indexes were computed using the following equations:

NDVI = (NIR−R)/(NIR + R) (1)

WDRVI =
αNIR−R
αNIR + R

(2)

CI = NIR/G− 1 (3)

EVI =
2.5(NIR−R)

NIR + C1R−C2B + L
(4)

SR =
NIR

R
(5)

where B, G, R, and NIR refer to the reflectances in the blue, green, red and near-infrared bands,
respectively. In this study, a value of 0.1 is used for the weighting coefficient α [65], L = 1, C1 = 6, and
C2 = 7.5, because the values calculated according to the WDRVI formula are very small and mostly
negative, so a value of 0.9/1.1 is added during modeling.

2.4. Regression Kriging

RK is a hybrid geostatistical method that combines the LR method with ordinary kriging of the
residuals [28]. It is a powerful spatial prediction technique that can be used to interpolate sampled
environmental variables (both continuous and categorical) from large point sets [44]. In the process of
RK, two parts of the predictions are combined—one is the predictive trend (obtained by regressing
the primary variable on the auxiliary predictor using LR), and the other is the residuals, which are
interpolated using OK [19]. OK has been proven to be a very reliable and accurate interpolation
method [76]. Finally, predictions at unvisited locations ẑRK(s0) are performed by summing the predicted
trend and residuals [43]:

ẑRK(s0) =

p∑
k=0

β̂kqk(s0) +
n∑

i=1

λie(si) (6)

Here, β̂k corresponds to the estimated trend model coefficients; qk(s0) represents the predictive
variables at location s0; p is the number of auxiliary predictors or variables, with common auxiliary
environmental predictors including land surface parameters, remote-sensing images, and geological,
soil, and land-use maps [77]; e(si) is the residual of the regression model at site si; λi is the kriging weight
determined by the spatial autocorrelation structure of the residual; and n is the number of known
points used to estimate the unknown points. The predicted and residual values were calculated, as the
structure of the regression model was established for both Landsat8 dates to ensure that these values
met the assumptions of normality and homoscedasticity. The structure of the empirical variograms
was also determined according to these datas through tests. Three theoretical variograms (exponential,
Gaussian, and spherical) [78] were also assayed. The analysis was accomplished using the “gstat”
package [79] within the statistical software package R 3.3.3.
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2.5. Model Assessment

The carbon stock estimation models were built using data from all of the field samples, with
samples of typical steppe and meadow steppe validated separately. Cross-validation can be used
to compare the performances of different predictive modeling procedures [80], and it is especially
suitable for small samples. As a special type of cross-validation, LOOCV provides an almost unbiased
estimate of the generation error and can be considered to provide reliable criteria for parameter
selection [81–83]. To obtain relatively accurate verification results, LOOCV was used in the model
assessment. The coefficient of determination (R2), mean average error (MAE), and root mean square
error (RMSE) were used to determine which models had more precision in the estimation of grassland
carbon stocks:

R2 = 1−

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − yi)

2 (7)

MAE =
1
n

n∑
i=1

(
∣∣∣yi − ŷi

∣∣∣) ∗ 100% (8)

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2 (9)

Here ŷi is the predicted carbon stock value, yi is the measured carbon stock value, yi is the
measured mean values of carbon stock, and n is the number of measured values in the validation data.

3. Results

3.1. Field Carbon Stock Measurements

The detailed summary statistics of the carbon stocks are shown in Table 2. According to the
Shapiro-Wilk normality test, the three databases all conform to a normal distribution.

Table 2. Descriptive statistics of the measured carbon stocks dataset 1.

Grassland Types Typical Steppe Meadow Steppe All Steppe

No. of samples 55 29 84
Mean 35.82 44.55 38.84
Min 7.54 17.43 7.54
Max 61.20 92.05 92.05
stdev 14.09 18.61 16.23

1 Carbon in units of gC/m2.

3.2. Correlation Analysis

The linear correlation analysis (Pearson) is shown in Table 3. All vegetation indexes were
significantly correlated with the carbon stocks (p < 0.01). For all-steppe and meadow steppe samples,
the CI was more noticeable based on its highest positive coefficient value, followed by the WDRVI.
For the typical steppe samples, the NDVI showed the strongest correlation with carbon stocks, followed
by the WDRVI. In terms of spectral bands, Band4 (red), Band6 (SWIR1) and Band7 (SWIR2) had the
highest correlations, respectively, for the all-steppe, typical steppe and meadow steppe samples. Band5
(near-infrared) had a very low correlation with the carbon stocks of the typical steppe. After the above
analysis, we finally chose the NDVI, the WDRVI, the CI, Band6 and Band7 as predictive variables.
Compared with other variables, they were highly correlated with the measured carbon stocks.
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Table 3. Correlation coefficients between the image variables and carbon stocks.

Variables

Correlation Coefficients
All Steppe

(n = 84)
Typical Steppe

(n = 55)
Meadow Steppe

(n = 29)

NDVI 0.731 ** 0.657 ** 0.820 **
WDRVI 0.736 ** 0.641 ** 0.840 **

CI 0.737 ** 0.635 ** 0.848 **
EVI 0.708 ** 0.590 ** 0.829 **
SR 0.723 ** 0.630 ** 0.836**

Band1 (coastal) −0.731 ** −0.689 ** −0.773 **
Band2 (blue) −0.735 ** −0.681 ** −0.792 **

Band3 (green) −0.719 ** −0.682 ** −0.749 **
Band4 (red) −0.746 ** −0.695 ** −0.794 **

Band5 (near-infrared) 0.471 ** −0.004 0.737 **
Band6 (SWIR 1) −0.744 ** −0.697 ** −0.770 **
Band7 (SWIR 2) −0.721 ** −0.662 ** −0.802 **

** refers to a significant correlation between the image variables and carbon stocks (p < 0.01).

Scatter plots between the image variables and carbon stocks for each grassland type are shown in
Figure 2. It could be seen that Band6 had the highest correlation (R2 = 0.49) with the plot-measured
carbon stocks of the typical steppe, followed by Band4 (R2 = 0.48), Band1 (R2 = 0.47), Band3 (R2 = 0.46),
Band2 (R2 = 0.46), Band7 (R2 = 0.44), the NDVI (R2 = 0.44), the WDRVI (R2 = 0.41), the CI (R2 = 0.40),
the SR (R2 = 0.40), the EVI (R2 = 0.35), and Band5 (R2 = 0.40). For the meadow steppe, the CI had
the highest correlation (R2 = 0.72) with the plot-measured carbon stocks, followed by the WDRVI
(R2 = 0.71), the SR (R2 = 0.70), the EVI (R2 = 0.69), the NDVI (R2 = 0.67), Band7 (R2 = 0.64), Band4
(R2 = 0.63), Band2 (R2 = 0.63), Band1 (R2 = 0.60), Band 6(0.59), Band3 (R2 = 0.56), and Band5 (R2 = 0.54).
For the typical steppe, the VIs had relatively lower correlations with the plot-measured carbon stocks
than did spectral bands due to the bad correlation of Band 5 (near-infrared), which is used to calculate
the VIs (see Equations (1)–(5)).

3.3. Model Accuracy

The accuracies of the 15 models based on RK and five models based on LR were tested according
to the three databases. To facilitate comparison, the highest accuracy (higher R2 and lower MAE
and RMSE) of the three models of theoretical variograms (exponential, Gaussian, and spherical) is
listed. As R2 cannot represent overestimation or underestimation by the model system [84], we also
considered the MAE and RMSE when selecting the model with the best accuracy, the results are shown
in Table 4. When the models were validated against the all-steppe samples, the model based on Band6
showed the best performance (R2 = 0.52, MAE = 9.07 gC/m2, and RMSE = 10.46 gC/m2) for the LR
method, while for the RK method, the model based on the WDRVI showed the best performance
(R2 = 0.68, MAE = 7.61 gC/m2, and RMSE = 9.67 gC/m2).

When the models were validated against the typical steppe samples, the model based on Band6
showed the best performance (R2 = 0.46, MAE = 8.47 gC/m2, and RMSE = 10.34 gC/m2) for the LR
method, while for the RK method, the model based on the NDVI showed the best performance (R2 = 0.63,
MAE = 7.04 gC/m2, and RMSE = 8.51 gC/m2), which were much higher than the corresponding values
of the best LR model. When the models were validated against the meadow steppe samples, the model
using the CI as the variable showed the best estimation accuracy, and the accuracy of the RK Gaussian
method (R2 = 0.72, MAE = 8.09 gC/m2, and RMSE = 9.89 gC/m2) was higher than that of the LR method
(R2 = 0.70, MAE = 8.99 gC/m2, and RMSE = 10.69 gC/m2).
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The black dots represent the typical steppe samples, and the gray triangles represent the meadow 
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The VI models showed more accurate results than those obtained from a single spectral band for 
the RK model. Upon combining the results of the most accurate models of typical steppe and meadow 

Figure 2. The plot-measured carbon stocks (gC/m2) versus 12 variables derived from the Landsat 8
OLI for the study: (a) carbon stocks versus the NDVI; (b) carbon stocks versus the WDRVI; (c) carbon
stocks versus the CI; (d) carbon stocks versus the EVI; (e) carbon stocks versus the SR; (f) carbon stocks
versus Band1; (g) carbon stocks versus Band2; (h) carbon stocks versus Band3; (i) carbon stocks versus
Band4; (j) carbon stocks versus Band5; (k) carbon stocks versus Band6; (l) carbon stocks versus Band7.
The black dots represent the typical steppe samples, and the gray triangles represent the meadow
steppe samples.
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Table 4. Validation of the RK and LR methods by leave-one-out.

Validation Samples Variable
RK LR

Model R2 MAE RMSE R2 MAE RMSE

all-steppe

NDVI exponential 0.65 7.96 9.59 0.51 9.54 11.07
WDRVI exponential 0.68 7.61 9.17 0.52 9.23 11.52

CI exponential 0.66 7.69 9.44 0.52 9.24 11.13
band6 exponential 0.60 8.37 10.15 0.52 9.07 10.46
band7 spherical 0.53 9.17 11.01 0.50 9.47 10.69

typical steppe

NDVI exponential 0.63 7.04 8.51 0.41 8.99 10.92
WDRVI exponential 0.64 7.10 8.63 0.39 9.30 11.31

CI exponential 0.60 7.39 9.17 0.38 9.38 11.36
band6 exponential 0.57 7.68 9.20 0.46 8.47 10.34
band7 exponential 0.45 8.59 10.50 0.42 8.84 10.74

meadow steppe

NDVI exponential 0.63 9.72 11.37 0.63 10.57 12.04
WDRVI Gaussian 0.70 8.34 10.09 0.68 9.08 10.86

CI Gaussian 0.72 8.09 9.89 0.70 8.99 10.69
band6 spherical 0.60 9.63 11.68 0.55 10.22 12.59
band7 spherical 0.65 10.24 11.94 0.61 10.68 12.56

The VI models showed more accurate results than those obtained from a single spectral band
for the RK model. Upon combining the results of the most accurate models of typical steppe and
meadow steppe, the RK method reaches the highest model accuracy of R2 = 0.69, MAE = 7.40 gC/m2,
and RMSE = 9.01 gC/m2, while the LR method reaches the highest model accuracy of R2 = 0.53,
MAE = 9.20 gC/m2, and RMSE = 11.10 gC/m2. The models based on the RK method presented an
improved accuracy over that of the LR method.

3.4. Carbon Stock Distribution in the Study Area

According to the regression and accuracy analysis, the NDVI exponential model of the RK method
was used to estimate the carbon stocks of the typical steppe, while the CI spherical model of the RK
method was used to estimate the carbon stocks of the meadow steppe. By mosaicking the estimated
rasters of a typical steppe and meadow steppe, we finally obtained the carbon stock spatial distribution
of Chenbarhu Banner (Figure 3). In general, the carbon stocks showed an increasing trend from west
to east. The carbon stocks of different grassland types was shown in Table 5, the total grassland carbon
stock was 79.77 × 104 Mg C in the study region, and the mean density was 47.44 gC/m2. The maximum
carbon stock density was 221.65 gC/m2 in the lowland steppe. The carbon stock density of the temperate
meadow steppe (63.02 gC/m2) was much higher than those of the other steppe types. The carbon
stock density of the lowland meadow was the second highest (52.75 gC/m2), followed by those of the
temperate typical steppe (32.83 gC/m2) and sandy steppe (29.17 gC/m2). The total carbon stocks of the
temperate meadow steppe account for half of the carbon stocks in the study region. The area of the
temperate typical steppe is the largest (accounting for nearly 40% of the study region), and its total
carbon stock was the second highest, accounting for 26.22% of that in the study region. The sandy
steppe, which has the smallest area and carbon stock density, had the smallest total carbon stocks
(3.39 × 104 Mg C), only accounting for 4.25% of the total carbon stocks in the entire region.
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Figure 3. The carbon stocks spatial distribution of Chenbarhu Banner.

Table 5. The carbon stocks of different grassland types.

Grassland Types Area
(104 hm2)

Min
(gC/m2)

Max
(gC/m2)

Mean
(gC/m2)

Total
(104 MgC)

Proportion
(%)

Lowland meadow steppe 29.36 0.00 221.65 52.75 15.49 19.42
Temperate meadow steppe 63.43 0.00 187.52 63.02 39.97 50.11
Temperate typical steppe 63.74 0.00 153.79 32.83 20.92 26.22

Sandy steppe 11.61 0.00 137.75 29.17 3.39 4.25
All-steppe 168.14 0.00 221.65 47.44 79.77 100.00

3.5. Carbon Stock Distribution of Each Steppe Type

The distribution of carbon stocks was calculated for each steppe type (Figure 4). There was a
similar carbon stock distribution between lowland meadow steppe and temperate meadow steppe.
Over 70% of their carbon stocks were distributed from 20 to 80 gC/m2. There were very few areas of
meadow steppe with carbon stocks of less than 20 gC/m2. However, 9.42% of lowland meadow steppe
and 14.03% of temperate meadow steppe had carbon stocks of over 100 gC/m2. Most of the carbon
stocks of temperate typical steppe and sandy steppe ranged from 20 to 40 gC/m2. Only a small amount
of carbon stocks (20.6% for temperate typical steppe and 5.83% for sandy steppe) were greater than
40 gC/m2. Less than 1% of temperate typical steppe and sand steppe carbon stocks were higher than
60 gC/m2 and 50 gC/m2, respectively.



Sensors 2019, 19, 5374 11 of 19
Sensors 2019, 19, 5374 29 of 19 

 

 
Figure 4. Carbon stock distribution of each steppe. 

4. Discussion 

4.1. Improvement Analysis of the RK Model 

Figure 5 shows scatterplots of the predicted versus observed carbon stocks to show the 
improvement of the RK model compared with the corresponding LR model at the study site. The RK 
model-predicted carbon stocks were the cross-validation valuea of the NDVI exponential model (R2 
= 0.63, MAE = 7.04 gC/m2, and RMSE = 8.51 gC/m2) and CI Gaussian model (R2 = 0.72, MAE = 8.09 
gC/m2, and RMSE = 9.89 gC/m2) for the typical steppe and meadow steppe, respectively, and the LR 
model-predicted carbon stocks were the cross-validation values of the NDVI model (R2 = 0.41, MAE 
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remains when carbon stocks are over 80 gC/m2. 

 

Figure 4. Carbon stock distribution of each steppe.

4. Discussion

4.1. Improvement Analysis of the RK Model

Figure 5 shows scatterplots of the predicted versus observed carbon stocks to show the
improvement of the RK model compared with the corresponding LR model at the study site.
The RK model-predicted carbon stocks were the cross-validation valuea of the NDVI exponential
model (R2 = 0.63, MAE = 7.04 gC/m2, and RMSE = 8.51 gC/m2) and CI Gaussian model (R2 = 0.72,
MAE = 8.09 gC/m2, and RMSE = 9.89 gC/m2) for the typical steppe and meadow steppe, respectively,
and the LR model-predicted carbon stocks were the cross-validation values of the NDVI model
(R2 = 0.41, MAE = 8.99 gC/m2, and RMSE = 10.92 gC/m2) for typical steppe and the CI model (R2 = 0.70,
MAE = 8.99 gC/m2, and RMSE = 10.69 gC/m2) for meadow steppe. As can be seen, compared with the
LR results, the accuracy of the predicted values was improved, especially for the typical steppe. The RK
model improves the underestimation when carbon stocks are low (<30 gC/m2), but the overestimation
still remains when carbon stocks are over 80 gC/m2.
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Figure 5. Comparison between the measured carbon stocks and the predicted grassland carbon stocks
using (a,b) the RK model and (c,d) the LR model. The black dots represent the typical steppe samples,
and the gray triangles represent the meadow steppe samples. The long dash lines are 1:1 line and the
solid lines are linear regression line.

4.2. Comparison between Univariate and Multivariate Regression

There are two main steppe classes in the research area: typical and meadow steppes. The two
main steppe classes possess different climate conditions and vegetation statuses. Typical steppes are
composed of typical drought-growing plants, which are mainly clumps of grass, accompanied by
middle drought-growing hybrid grass and rhizome moss and sometimes mixed with drought-growing
shrubs or small semi-shrubs. Under the conditions of moderate rain and a suitable climate, grassland
vegetation is dominated by perennial caespitose grass, and root grass is called meadow steppe grass.
The two steppe classes are validated separately. The best accuracy results of the models are listed in
Table 4. Upon combining the results of the typical steppe (NDVI exponential model) and meadow
steppe (CI Gaussian model), the univariate regression based on RK method reaches the highest model
accuracy of R2 = 0.69, MAE = 7.40 gC/m2, and RMSE = 9.01 gC/m2. We also explored multivariate
regression, the accuracy results are shown in Table 6. The best accuracy model, which used the five
variables as input, had a lower accuracy (R2 = 0.68, MAE = 7.45 gC/m2, and RMSE = 9.19 gC/m2) than
that of the combined univariate regression.

Table 6. The accuracy results of multivariate regression based on RK.

Variable Model R2 MRE RMSE

NDVI, WDRVI, CI exponential 0.68 7.70 9.24
Band6, Band7 exponential 0.61 8.32 10.14

NDVI, WDRVI, CI, Band6, Band7 exponential 0.68 7.45 9.19

The importance of the input variables was valued according to the absolute value of the standard
coefficient in the process of multiple linear regression contained in the RK model. As can be seen in
Table 7, the CI contributes the most in the multivariate regression, followed by Band6, the NDVI, the
WDRVI and Band7.
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Table 7. The importance of the variables for carbon stock prediction measured using RK.

Variable Absolute Value of
the Standard Coefficient Ranking

CI 1.278 1
Band6 0.572 2
NDVI 0.553 3

WDRVI 0.495 4
Band7 0.003 5

4.3. Selection of Regression Variables

In this study, vegetation indexes and spectral bands were used as regression variables, and terrain
or climate factors were not selected, as the carbon stocks in the selected region were more affected
by grazing behaviors, and the carbon stocks converted through the AGB were based on the residual
carbon after livestock feeding. The vegetation indexes selected in this paper included the NDVI, the
WDRVI, and the CI, and the and the spectral bands selected were Band6 and Band7, which were both
highly correlated with the measured carbon stocks (Table 3). The NDVI is the most commonly used
vegetation index, and it can reflect the background influence of the plant canopy, such as soil, wet
ground, snow, dead leaves, roughness, etc., and is related to the vegetation cover. Generally, when the
vegetation is dense, it approaches saturation asymptotically, and the sensitivity decreases [71,73,85–88].
This phenomenon can be seen in Figure 2, which shows that when the carbon stock reached 100 gC/m2,
the NDVI was almost at its maximum (value of 1). However, the inversion results show that 9.42% of
lowland meadow steppe and 14.03% of temperate meadow steppe have a carbon stocks over 100 gC/m2

(Figure 4). The WDRVI is a vegetation index established to improve the saturation of the NDVI.
It is suitable for cases in which the leaf area index (LAI) is greater than 3.0 m2/m2 [70]. The CI is a
vegetation index created to estimate the chlorophyll content [71,72]. According to previous research
results, the LAI of a grazed meadow grassland in early July was 0.5–1.5 m2/m2, and that of a mowed
meadow grassland was 2.0–3.0 m2/m2 [45,89]. The correlation analysis of carbon stocks and vegetation
indexes shows that the NDVI is highly correlated with the carbon stocks of typical steppe, which
may be related to the fact that the vegetation density of typical steppe is not as high. For meadow
steppe, the CI showed the highest correlation with carbon stocks, followed by the WDRVI, and the
relationship between the chlorophyll content and carbon stocks needs to be further studied. Band6
(1.56–1.66 microns) and Band7 (2.10–2.30 microns) are both SWIR bands and show better correlation
with the carbon stocks than do other spectral bands. SWIR imaging is mainly based on the principle of
target-reflected light imaging. Its imaging features are similar to those of visible light-gray images,
with high contrast and clear expression of target details. There is strong light absorption by liquid
water in the SWIR [90]. Early July is the period of grassland growth, when the plants are well watered,
and this may be the reason for the high correlation between SWIR bands and carbon stocks.

4.4. Study Innovation and Limitation

In this study, Landsat8 OLI level-1 standard data products were used as data sources, and the
RK method was used to predict the steppe carbon stocks in Hulunber, which produced better results
compared with the LR method. There are major innovations in this paper. First, in contrast to other
Landsat images, Landsat8 OLI narrows the range of the near-red light band, reduces the influence of
water vapor absorption and is more conducive to the inversion of ecological parameters. Second, RK is
a hybrid geostatistics method that combines the LR method with the ordinary kriging of residuals [28],
thereby reducing the estimation error (see Table 4 and Figure 5). For this reason, it has also been used
to map environmental variables [19,45–49]. In the study area, RK performs better than do the other
machine learning methods (ANN and RF) in terms of predicting the grassland leaf area index across
the duration of the growing season [45]. However, for many years, GIS technologies and geostatistical
techniques have been developing independently, and there is a lack of user-friendly GIS environments
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in which to run RK, which limits the extension and application of this method [33]. There is still a lack
of research on the remote-sensing inversion of vegetation carbon stocks, especially for grasslands. This
study addresses the lack of research using RK to invert grassland carbon stocks. In addition, modeling
typical steppe and meadow steppe separately improves the precision of the model (see Section 4.2).
The study area is located in the backland of Hulunber, the northeastern part of Inner Mongolia, China.
There exist few scale-up estimate of carbon stocks in the inner Monglia. Some efforts were made at
larger region sacle [29,39] or another province Xilingol [91]. Our predicted model show a accuracy of
R2 = 0.69, MAE = 7.40 gC/m2, and RMSE = 9.01 gC/m2, which is considerable with the larger region
sacle [39] (R2 = 0.68) [29] (R2 = 0.66). The other research conducted in Xilingol, obtained a accuracy of
R2 = 0.60 (meadow steppe) and 0.56 (typical steppe), were lower than our results.

This study has some limitations. First, the RK model also has great limitations, because more
points are needed for kriging interpolation, and the established model cannot be used for other regions
and times. This is also a common shortcoming of all empirical models. Second, there is a lack of
sample points in the mountainous area of the most eastern part of the study area, where there are
higher carbon stock values (Figure 3). There is a need for further improvement by incorporating newly
observed data that is representative of high-carbon stock areas that were under-sampled. Third, this
study is based on a field survey, which was performed on 9 July to 16 July in 2015, and it only covered
one of the stages of the growth period. To obtain the dynamic changes of carbon stocks, regularly
monitored ground data is needed. Therefore the next step is to explore the applicability of these
methods in various stages of grassland growth. Additionally, due to the influence of soil and mixed
pixels, the estimation accuracy of the carbon stocks of typical steppe is not as good as that of meadow
steppe. In future research, this aspect needs to be further considered. The Sentinel-2 or Gao-fen 2 data,
which were not available within the field survey time of this study and have better spatial resolutions
than that of Landsat 8, can be considered. In a recent study, Sentinel-1, Landsat-8, and Sentinel-2 data
were used both individually and integrally to estimate the seasonal dynamics of the LAI and AGB
in a tallgrass pasture in the United States. By comparison, the integration of Sentinel-1, Landsat-8,
and Sentinel-2 has the potential to improve the estimation of the LAI and AGB by more than 30%
relative to the performance of the data of Landsat-8, and Sentinel-2 data with high vegetation cover
(LAI > 2m2/m2, AGB > 500 g/m2) [92]. However, the AGB of the study area during the peak-growth
stage is lower than 500 g/m2 [39], and the grass is not as tall as it is in the United States. Another study
in irrigated grasslands showed that the use of polarimetric parameters did not improve the estimation
of soil moisture and vegetation parameters (FPAR and LAI) [93], so using radar penetration to improve
the estimation accuracy may not work.

5. Conclusions

This study explored the RK method of estimating grassland carbon stocks in northeast China.
The NDVI, the WDRVI, the CI, Band6 and Band7 were used as the independent variables to build
RK models separately. The results of typical steppe and meadow steppe showed the highest model
accuracies of R2 = 0.69, MAE = 7.40 gC/m2, and RMSE = 9.01 gC/m2 via the RK method; and R2 = 0.53,
MAE = 9.20 gC/m2, and RMSE = 11.10 gC/m2 via the LR method. The validation results show that
the RK models for the five variables all have an improved accuracy over those of the LR method
and the improvement in the accuracy of the model is mainly attributed to the enhancement of the
estimation accuracy of the typical steppe. In general, the carbon stocks showed an increasing trend
from west to east. The total grassland carbon stock in the study region was 79.77 × 104 Mg C, and the
mean carbon stock density was 47.44 gC/m2. The density decreased in the following order: temperate
meadow steppe, lowland meadow steppe, temperate typical steppe, and sandy steppe. Collecting
newly observed data that is representative of high-carbon stock areas and using high-spatial resolution
data to explore the applicability of the RK method in various stages of grassland growth is the next
step of this research.
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