
sensors

Article

Magnetic Angular Rate and Gravity Sensor Based
Supervised Learning for Positioning Tasks

Balázs Nagy * , János Botzheim and Péter Korondi

Department of Mechatronics, Optics and Mechanical Engineering Informatics, Faculty of Mechanical
Engineering, Budapest University of Technology and Economics, 4-6 Bertalan Lajos Street, 1111 Budapest,
Hungary; botzheim@mogi.bme.hu (J.B.); korondi@mogi.bme.hu (P.K.)
* Correspondence: nagybalazs@mogi.bme.hu

Received: 23 October 2019; Accepted: 2 December 2019; Published: 5 December 2019
����������
�������

Abstract: This paper deals with sensor fusion of magnetic, angular rate and gravity sensor (MARG).
The main contribution of this paper is the sensor fusion performed by supervised learning, which
means parallel processing of the different kinds of measured data and estimating the position in
periodic and non-periodic cases. During the learning phase, the position estimated by sensor fusion
is compared with position data of a motion capture system. The main challenge is avoiding the
error caused by the implicit integral calculation of MARG. There are several filter based signal
processing methods for disturbance and noise estimation, which are calculated for each sensor
separately. These classical methods can be used for disturbance and noise reduction and extracting
hidden information from it as well. This paper examines the different types of noises and proposes a
machine learning-based method for calculation of position and orientation directly from nine separate
sensors. This method includes the disturbance and noise reduction in addition to sensor fusion.
The proposed method was validated by experiments which provided promising results on periodic
and translational motion as well.

Keywords: MARG sensor; supervised learning; sensor fusion; position estimation

1. Introduction

Estimation of the orientation and position of a robot is essential for robot navigation.
The navigation system is an important part of an autonomous mobile robot. There are numerous
practical applications which use global positioning system (GPS) [1,2], onboard camera [3,4],
light detection and ranging (LIDAR) sensor [5,6] or other external observation system [7,8].

Navigating a robot requires a reliable solution that can be implemented even on robots with
limited computational capacity. The concept of iSpace is based on the idea that computationally
expensive algorithms can be outsourced from the onboard computer of the robot into the environment
of the robot [9]. In this setup, there is no need for a powerful computer with high computation
capacity onboard [10]. In this case, the energy consumption can be maintained at a lower level
on the mobile robot so the battery life increases. However, the previously mentioned applications
have some major disadvantages. External sensors with wireless connections may lose connection
with the moving agent causing navigation breakdown in this way. These applications are sensitive
to the environment. On the other hand image processing or 3D point, cloud-based applications
have a high demand for computational capacity to perform simultaneous localization and mapping
(SLAM) [11]. These methods are not suitable for small robots with limited computational capacity.
Generally speaking, most of the localization algorithms use a predefined map. Building a map from
the beginning is a challenging task. A fully automated small robot has to be able to run independently

Sensors 2019, 19, 5364; doi:10.3390/s19245364 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5275-9439
https://orcid.org/0000-0002-7838-6148
https://orcid.org/0000-0002-0016-0384
http://www.mdpi.com/1424-8220/19/24/5364?type=check_update&version=1
http://dx.doi.org/10.3390/s19245364
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 5364 2 of 23

from external sensors, using only onboard sensors. In this manner, a magnetic, angular rate and gravity
sensor (MARG) sensor seems to be a good choice to be a sensor.

The main interest of Madgwick et al. was to implement an algorithm, which can calculate the
distance information from a MARG sensor. In this application [12,13] the MARG sensor was mounted
on a leg of a human being and an Arduino collected the data. After the measurement, the algorithm
calculated the path of the sensor. The calculation was performed offline, as opposed to real-time,
and the unique features of the test case were programmed into the algorithm. The calculation was
based on the stepping frequency of the walking motion. Frequency analysis can provide useful
information only in the case of periodic movements. During walking another notable feature is that the
leg hits the floor in every step. This impact is detectable and can be used to eliminate the collected error
during one step. This correction can prevent the cumulated error in position data. Since the measured
signal is acceleration the algorithm has to perform a double integral step to estimate the position.
Integrating noise is the main problem because noise integration is the main cause of the shifting
position signal. The shifting error can be compensated by additional sensor fusion [14]. The main
question is whether a similar algorithm can be extended to deal with non-periodic movement in a
more general case. This question is also investigated in this paper.

It is proven that MARG sensors are capable of estimating the orientation of the sensors [15].
The accelerometer provides information about the gravitational force, the gyroscope can handle
the quick movement and the magnetometer can prevent the long term shifting error. The fusion
of these three sensors for orientation estimation tasks combines the advantages of each sensor.
The complementary filter [16] is a fast and computationally inexpensive method to estimate orientation
from MARG sensor data.

The estimation of the position is more challenging because of the sensory noise and disturbance.
Several methods are introduced for disturbance rejection in the frequency domain, an overview is
published in [17]. This paper is an application-oriented paper, where machine learning can be applied
for sensor fusion and disturbance rejection. Machine learning techniques are very popular for handling
complex problems and providing solutions for regression, classification, and optimization tasks [18,19].
In this paper deep learning [20] is applied using a long short-term memory (LSTM) based neural
network architecture [21].

Recently a popular topic is human activity recognition, where deep learning algorithms are used
to classify human motions [22–24]. These applications use the data from a smartphone accelerometer.
Smartphones are powerful computers to run deep learning networks, but these applications provide
solutions for a classification problem. Predicting velocity or position is a regression problem.
A smartphone sensor-based walking speed estimation algorithm is developed by Shrestha et al. [25].
This paper proposes a regression method with deep learning to predict speed. Position estimation
is a complex task even with using neural networks. Kalman filter is developed to address this
task [26]. A pre-defined model is used to reduce noise and predict the position from accelerometer
data. The algorithm cumulates errors during the run but works well in a short timeperiod. According
to the measurements, this algorithm worked for approximately 10 s. After this time the prediction
becomes untrustworthy.

The structure of the paper is as follows. In Section 2 the problem statement is described. Section 3
details the proposed methodology. In Section 4 simulation results and measurement results are
presented and discussed. Section 5 concludes the paper.

2. Problem Statement

The main goal is to estimate the position of a moving robot or agent by using only sensors mounted
on the moving agent. Numerous studies addressed this problem and provided solutions but not every
application is suitable for small autonomous robots with limited computational capacity. This study
focuses on a possibility to produce a method which does not depend on an external observation system,
it uses only onboard sensors and calculations and does not use a wireless connection. The method



Sensors 2019, 19, 5364 3 of 23

has to be small enough to mount on a robot that has no capacity to work with image processing or
3D point cloud-based mapping methods. To keep a low computational demand a Phidget Spatial
3/3/3 (Phidgets Inc., Calgary, AB, Canada) [27] magnetic angular rate and gravity sensor was chosen
to proceed with the task. The Phidget Spatial 3/3/3 sensor can be seen in Figure 1. The sensor contains
a three-axis accelerometer, a three-axis gyroscope, and a three-axis magnetometer.

Figure 1. Problem description.

The study aims to predict position from a sensor fusion using mainly acceleration data.
This means that the data has to be integrated. The theoretical relation between acceleration and
position is defined by Equation (1).

a(t), v(t) = v0 +
∫ t

0
a(τ)dτ, r(t) = r0 +

∫ t

0
v(τ)dτ, (1)

where t is the time, a(t) is the acceleration, v(t) is the velocity and r(t) is the position.
Acceleration data are, however, heavily affected by noise and the integration of measurement

noise causes a shift in the position calculation and ruins the prediction. The noise affected relations are
defined by Equations (2)–(4).

a(t) + na(t) (2)

v0 +
∫ t

0
(a(τ) + na(τ))dτ = v(t) + ev(t) (3)

r0 +
∫ t

0
(v(τ) + e(τ))dτ = r0 +

∫ t

0
(v0 +

∫ τ1

0
(a(τ2) + na(τ2))dτ2)dτ1 = r0 + v0t + r(t) + er(t), (4)

where e is the calculated error and na is the noise. If the initial conditions are known and r0 = 0 and
v0 = 0 then the relation can be reduced to Equation (5).

∫ t

0

∫ τ1

0
(a(τ2) + na(τ2))dτ2dτ1 = r(t) + er(t). (5)

Double integration of the acceleration data equals the position data but the result of the double
integration of the noise is an unwanted shift error (er) in the position estimation. Error handling is
a key step but the type of error and the parameters of the error, like the distribution or offset, is not
known in every case. In most cases er(∞) = ∞. To calculate the position information the necessary



Sensors 2019, 19, 5364 4 of 23

information is included in the acceleration measurement but the noise data ratio is high. The position
calculation error is also big. In a full case study we have to take into consideration the following
disturbance parameters:

• distribution of the noise
• offset of the noise
• occurrence of the noise (sampling time, input feature, reference signal)

These parameters are examined in a simulation or during a real-life test case. Using a MARG
sensor to estimate the path of the movement and the current position and orientation of a robot can
reduce the calculation needs of a mapping algorithm. Current methods use previously defined maps
or image matching or point cloud matching algorithms to build maps. Using pre-defined maps means
this map has to be taken by an external observation system and the robot is not independent in this
case. Using image or 3D point cloud matching algorithms means, that the robot has to deal with huge
databases and perform a lot of computations. If the path of the robot can be estimated by a MARG
sensor which produces fewer measurement points means, that the heavy computational load of a
SLAM algorithm can be reduced. Instead of simultaneous performance, it can be done in a serial
manner. Using the MARG sensor in close or mid-range makes it possible to use the computationally
expensive methods on long-range prediction with less frequently. For example, a robot with a blank
memory after initialization has to take a picture. During the motion of the robot, pictures have to
be taken so frequently that every new picture overlaps with the previous one. In this case, a robot
can calculate the distance and build the map simultaneously. With a MARG sensor-based position
estimation algorithm the robot has the opportunity to take not only overlapping pictures.

3. Proposed Methodology

This study aims a method that has a lower demand for computational capacity, so it can be
mounted on small autonomous robots as well. The method is based on an onboard MARG sensor
to make the system robust and eliminate the uncertainty of the wireless connections. To achieve this
goal our proposed method uses neural networks to process the data provided by a MARG sensor and
predict the position and orientation from it.

The solution for the problem can be a neural network which learns how to estimate the robot
position according to the sensor data. Existing methods [15,16] approached mainly the orientation
estimation task with an explicit model like the schematic illustration in Figure 2. The data of each
sensor is filtered separately and after the filtering step, the sensor data are combined according to a
predefined order.

Figure 2. Predefined sequential approach (F: filter; C: calculation).

The problem with this approach is that the directions and connection point of the sensor fusion
are predetermined. The algorithm is not flexible. Using a neural network means, that the algorithm
has the flexibility to combine the data of the sensors freely. The proposed architecture can be seen in
Figure 3.



Sensors 2019, 19, 5364 5 of 23

Figure 3. Proposed approach.

To teach such a network during the learning phrase an external camera system provides the
reference data. In this manner, the task can be interpreted as a supervised learning regression task.
Figure 4 shows the schematic drawing of the proposed method.

Figure 4. Proposed training system. After the training phase the camera system will not be
used anymore.

A synchronised measurement system can log the position of the robot in an absolute coordinate
system and the data from the onboard MARG sensor at the same time. Detailed information about the
measurement system will be provided in Section 4.4. The external camera system provides the 3 axis
position and the orientation of the robot in quaternion form. The onboard MARG sensor provides
three-axis acceleration, gyroscope and magnetometer data. The data from the external camera system
is used only during the learning phase as reference. After the algorithm learns how to predict the
position according to the pattern in the data of the sensor, in the prediction state only the data of the
sensor is needed. The implementation on an autonomous mobile robot can be executed according to
the following Algorithm 1.

Algorithm 1 Prediction.

1: while Sensor is running do
2: if Data buffer is full then
3: Delete the oldest measurement record
4: end if
5: Save new measurement record
6: Calculate the time difference from previous measurement
7: Run neural network to predict the change in position
8: Calculate the absolute position by summarising the previously calculated position changes
9: end while



Sensors 2019, 19, 5364 6 of 23

The aimed solution is mainly based on acceleration data. To estimate position from acceleration
data the measurement data has to be integrated. The sensor data are affected by different noises and
the integration of noise causes a shift in the position data. Different neural network layer types are
capable of filtering or modelling time series data [20]. To examine the effect of different noise types
to the learning capability a simulation was executed. The main aim of the simulation is to model
some phenomena noticed in real life applications and examine it in a fully controlled environment.
The examined test case includes noise on the sampling time, noise on the signal amplitude, and noise
on the reference signal.

In the simulation environment a 300 samples wide time window was generated. The sampling
time (T) was set to a constant value. Additional random noise with Gaussian distribution can modify
the sampling time according to Equation (6) to determine the noise affected sampling time (dtime).
Using the same noise affected sampling time vector 2 sine functions were generated according to
Equations (7) and (8) as input functions. As a desired output, two possible signals were generated
using the input signals according to Equations (9) and (10). With the help of these signals the effect of
time multiplication and numerical integration can be examined. These type of calculations are likely to
be required in a real life scenario.

dtime = T + dt (6)

where T = 0.9 ms and d is random noise with Gaussian distribution.

A1 · sin(ω1 · dtime + ϕ1) + d1 = sin1 (7)

where A1 = 1, ω1 = 0.5, ϕ1 = 90 and d1 is random noise.

A2 · sin(ω2 · dtime + ϕ2) + d2 = sin2 (8)

where A1 = 1.5, ω1 = 0.01, ϕ1 = 0 and d2 is random noise.

(sin1 · dtime + sin2) + diY = iY (9)

(
t

∑
k=0

iY) + diY = ciYk (10)

where t is the time spent from the start of the measurement.
Universal approximation theorem or universal approximation capability of feedforward neural

networks states that any continuous function defined on a closed set can be uniformly approximated
to an arbitrary degree of accuracy by a three-layer feedforward neural network [28].

As a base line solution a simple long short-term memory network was built according to Figure 5.
LSTM networks are the best option to fit time series data. The three input parameters are the two sine
functions (sin1 and sin2) and the sampling time (dtime). The desired output functions can be iY or ciY.
We used an eight-measurement wide window to take into consideration the previous time steps and
set the epoch size to 50. The hyperparameters did not change during the whole study. In this case, we
can make a comparison of the layers efficiency in different cases and focus on the effect of the noise.
Tests were made using different noise levels. The results are explained in Section 4.2.



Sensors 2019, 19, 5364 7 of 23

Figure 5. Neural network model used in the simulation.

In the second step to improve the performance of the application a deeper neural network
was built. The extended neural network architecture is illustrated in Figure 6. The implemented
network contains two LSTM layers with 64 and eight neurons, two dense layers with 64 neurons
and one neuron, and a sliding average filter is applied at the end of the neural network to make the
prediction smoother. The LSTM layers modelled the time series data and the dense layers made the
final prediction. To prevent the network from getting stuck in local optimum point a dropout layer
is added to the architecture. The result of the extended network on simulated data are explained in
details in Section 4.2.

Figure 6. Extended neural network model.

A real test was carried out in order to transfer the knowledge from the simulation case. As a
measurement test case, the sensor was mounted on a pendulum. The motion of an ideal pendulum
has one degree of freedom. This case is simple enough to test different deep learning algorithms.
After testing different algorithms, the method provided acceptable results, the use case can be extended
to a more complex motion pattern. The measurements took place in the observation space of a motion
capture laboratory containing 18 cameras. The camera system can track the position and orientation of
different agents tagged with special markers inside the observation space. The sensor was mounted
with three markers to obtain position and orientation. The measurement setup is introduced in detail
in Section 4.4.

The position and orientation from the motion capture laboratory serves as a reference, or desired
output for a learning task, whilst the sensor data serves as input data for a neural network. The output
of the applied neural networks is only one variable in every case. The effect can be examined separately
and after the test case, the different output specialized networks can be merged or run in parallel.
In these measurements, an additional error type is occurred due to the different sampling frequencies



Sensors 2019, 19, 5364 8 of 23

of the different sensors and motion capture laboratory. This error case, shown in Figure 7, is not
covered by the simulation environment. In best-case scenario, the MARG sensor data and the motion
capture data are synchronized. In some cases, the data are not in align like in the case of type A or type
B errors. This can happen when the measurement system sampling time is smaller than the sampling
time of the two included systems. These cases can be handled by keeping the data of the motion
capture system as long as a new measurement is taken. We wanted to keep every piece of useful
information from the MARG sensor and avoiding interpolation for the missing data. Interpolating
the missing data would cause the neural network to learn an unwanted calculation inside the data
pool. The timing of the MARG sensor is forced in such a way that type B errors do not occur anymore.
Type A errors can occur if the motion capture system loses track of the markers, but this case was not
present during the measurement. Type C error is the most common error type. Since the magnetometer
sensor sampling frequency is less than the sampling frequency of the accelerometer and the gyroscope.
Handling type C errors is left to the neural networks. Depending on the measurement setup sampling
time option the ratio of the appearance of type C errors can change. Looking at the whole process of
learning it is easier to handle this error type inside the neural network. Type D error is a combined
case of type A and type C errors, but with the previous ideas, it can be reduced to type C errors.

Figure 7. Error types in the measurement.

After the error handling a signal preprocessing step was performed. At every time step,
a differential position (dx, dy, dz) and time (dtime) are calculated by extracting the new measurement
data from the previous step. Neural networks may work better on differential data, because the
range is predictable. Thus, two methods are investigated as shown in Figure 8. The application has
predictable limits and ranging the data are part of the preprocessing stage as data normalization, also
known as feature scaling.

Figure 8. Possible neural network application concepts.

Absolute time stamps (time) from the measurement has to be converted into a ranged signal
(dtime). This step can be implemented in the final application as well. The full data frame can be seen
in Figure 9. The orange cells serve as the input information to the neural network, while the blue cells
are the optional desired outputs of the neural network.



Sensors 2019, 19, 5364 9 of 23

Figure 9. Data frame.

The sliding window size is 30 time step wide. It means LSTM layers can process 30 previous
measurements from the past. The used epoch size is 50. The input feature vector contains 10 different
features. Using a batch gradient method on one measurement file with 6332 measurements the
dimensions of the input tensor is 6324 × 30 × 10.

4. Experimental Results

To prove the validity of the idea first a simulation was performed. Inside the simulations we tested
the effect of different noise types and different neural network layer types on controlled sinusoidal
functions. After the simulation a real life test was performed. During the test the MARG sensor was
mounted on a pendulum. In this setup the one-degree-of-freedom (DoF) motion of the pendulum
was tracked. The source code and the measurement data sets can be seen in the Supplementary
Materials. The code development based on the work of Jason Brownlee [29].

4.1. Simulation Setup

The simulation can model the noise on the sampling time shown in Figure 10. This noise is present
in every application which is not hard real time. Furthermore, noise can be added to the amplitude
of each sine function, which creates the output function. The used input signals and the noise on the
signals can be seen in Figure 11.

Figure 10. Sampling time.



Sensors 2019, 19, 5364 10 of 23

(a) First input sine wave (b) Noise on the first sine wave

(c) Second input sine wave (d) Noise on the second sine wave

Figure 11. The input features of the simulation: two sine waves with Gaussian random noise.

Combining the two input signals with a desired noise level different output signals are calculated
(Equations (9) and (10)). In the first case (Equation (9)) a simple multiplication was implemented. In the
second case (Equation (10)) a numerical integral type calculation was made. The difference between the
two cases can model the relative position of a robot and the absolute position of a robot. The absolute
position calculation task can be defined as summarising the relative position changes in every time
step. However, summarising the position information we also summarise the error which creates a
shift in the position data. This shift is the result of integrating the noise during the position calculation.
This harmful effect is also present in the case of estimating position data from velocity or acceleration
data. The possible output signals are depicted in Figure 12. In order to maintain traceability, the epoch
number was set to 50. In this case, every teaching task used the same hyperparameters and only the
noise level and output signal type changed.

(a) Time integrated output (iY) (b) Cumulated output (ciY)

Figure 12. Possible output signals combining the two generated sine waves and sample times with
noise.



Sensors 2019, 19, 5364 11 of 23

4.2. Simulation Results

The simulation environment introduced in Section 4.1 was used to examine different test cases.
We focus on the effect of the noise in different learning setups. In the first block, iY, was used as the
desired output. The test cases include 3 types of noise. Noise on the sampling time, noise on the
amplitude of input sine waves, and noise on the desired output. In every case, the noise was a random
noise with Gaussian distribution without offset. The maximum noise level was 5% of the amplitude
of the input sine waves. The parameters and the calculated validation loss values are summarized
in Table 1. The training data and the visualization of the predicted output can be seen in Figures 13
and 14, where the training data is marked by blue, the validation data set is marked by yellow and
the test data set is marked by green, and the prediction is marked by red. The training and validation
data sets were used by the algorithm to set the weights and hyperparameters. The test data set was
only used to measure the success of the training of the neural network. If the predicted signal (red)
overlaps with the reference signal (green) the result of the training is successful. The simulated and the
predicted curves are almost identical at the end of the graph and a trend matching can be observed by
the different coloring.

Table 1. Summary of different learning cases.

Output Function Noise on Output Noise on Input Noise on Time Validation Loss (mm) Figure

iY No No No 0.0077 Figure 13a
iY No Yes No 0.0216 Figure 13b
iY No No Yes 0.0031 Figure 13c
iY No Yes Yes 0.0197 Figure 13d
iY Yes No No 0.0549 Figure 14a
iY Yes Yes No 0.0232 Figure 14b
iY Yes No Yes 0.0555 Figure 14c
iY Yes Yes Yes 0.0241 Figure 14d
ciY No No No 68,670 Figure 15a
ciY No Yes No 66,792 Figure 15b
ciY No No Yes 68,391 Figure 15c
ciY No Yes Yes 68,318 Figure 15d
ciY Yes No No 69,465 Figure 16a
ciY Yes Yes No 69,871 Figure 16b
ciY Yes No Yes 69,509 Figure 16c
ciY Yes Yes Yes 70,024 Figure 16d



Sensors 2019, 19, 5364 12 of 23

(a) Without noise. (b) Noise on the input sine waves.

(c) Noise on sampling time. (d) Noise on sampling time and input sine waves.

Figure 13. Successful training results on iY without noise on the output.

(a) Without noise. (b) Noise on the input sine waves.

(c) Noise on the sampling time. (d) Noise on the sampling time and input sine waves.

Figure 14. Successful training results on iY with noise on the output.

In the second block, ciY was used as the desired output. The numerical test result can also be seen
in Table 1. The training data and the visualization of the predicted output can be seen in Figures 15
and 16 where a trend matching failure can be observed. Using the same simple one layer LSTM



Sensors 2019, 19, 5364 13 of 23

network the results are better in the first case. The noise level does not cause a significant difference.
The change in the output signal, however, caused a big difference. To predict a complex output we
need to build a more complex network.

First, the signal iY is predicted by the neural network. After summing the predicted small
differences, the signal ciY can be calculated. The cumulated error is presented but the validation loss is
14.144 mm, which is significantly smaller than in the case of predicting the absolute position directly.
The results can be seen in Figure 17. The performance of the application is improved using a deeper
neural network architecture. Using the extended network the validation loss dropped to 2.46 mm.
The result of the extended network can be seen in Figure 18.

(a) Without noise (b) Noise on the input sine waves

(c) Noise on the sampling time (d) Noise on the sampling time and input sine waves

Figure 15. Failed training results on ciY without noise on the output.

(a) Without noise (b) Noise on the input sine waves
Figure 16. Cont.



Sensors 2019, 19, 5364 14 of 23

(c) Noise on the sampling time (d) Noise on the sampling time and input sine waves

Figure 16. Failed training results on ciY with noise on the output.

(a) Training data and cumulative prediction on iY (b) Cumulative prediction on iY

Figure 17. Result of cumulative addition of LSTM prediction on dz data.

Figure 18. Accurate cumulative prediction by the extended neural network.

4.3. Simulation Analysis

After running the simulations and checking the results a few guiding ideas were gained before
the real-life test. Noise is present in every application. In connection with time serial data based
supervised learning task, the noise is also present in the reference data set. In comparison in a
supervised categorization task, there is no noise on the labeled reference data during the learning



Sensors 2019, 19, 5364 15 of 23

phase. The simulation results show that the maximum 5% noise level on the sampling time, on the
input signal amplitude or on the reference signal did not affect the result significantly. The difference
between the validation loss values was negligible. The architecture of the neural network and the
focus task type caused a significant difference in performance. Because of reduced computational
capacity with a small network, the prediction of the small changes in the motion is more accurate than
predicting the full trajectory of a movement. The integration task needs a more complex network,
however, an acceptable good result can be achieved by a simple network architecture and a numerical
integration after the prediction. The prediction error of the extended network on a simulated test case
was 14.144 mm.

4.4. Measurement Setup

During the real measurements, a Phidget Spatial 3/3/3 sensor [27] was used. This sensor contains
a three-axis accelerometer, a three-axis gyroscope, and a three-axis magnetometer. Sampling times are
different for the three sensors. The sampling time of the magnetometer is 8 ms, while the sampling
time of the accelerometer and gyroscope is 4 ms. The sensor-specific parameters can be seen in Table 2.

Table 2. Sensor specific parameters.

Compass
Compass resolution 400 µG
Offset from North 2◦

Gyroscope
Gyroscope max speed 400◦/s
Gyroscope resolution 0.02◦/s
Gyroscope drift 4◦/min

Accelerometer
Acceleration measurement resolution 228 µg
Acceleration measurement max ±5 g
Axis noise (X, Y) 300 µg
Axis noise (Z) 500 µg

Board
Sampling speed max 4 ms/sample

Considering future applications during the measurements the sampling time was set to 9 ms.
We took some external parameters into consideration like the fact that a 4 ms loop is not enough to
take new measurements and calculate the new position estimation on the future robot application.
Furthermore, in this case, a not ideal case was tested.

The motion capture system update frequency is 120 frames per second (FPS). All of the data
was logged on a Lenovo Y520 laptop with an NVIDIA GeForce GTX 1050 graphic card. The laptop
collected synchronized data from the sensor and the motion capture system. The schematic drawing
of the measurement system can be seen in Figure 19.



Sensors 2019, 19, 5364 16 of 23

Figure 19. Measurement setup.

The previously tested and extended neural network model described in Section 3 and shown
in Figure 6 was used on a real-life application. The use case is to mount the MARG sensor on a
pendulum. The mounted sensor can be seen in Figure 20. The motion capture system can track the
three marker as a solid body and provide the position and orientation data for the sensor. During the
measurement, the synchronised time, the nine sensor values from the sensor, and the three-position
data and four-orientation data in quaternion form from the motion capture system were logged.

4.5. Measurement Result

In the first approximation, the network was tested on the dz position values. The training and
validation data and the test data are two independent measurements. This prevents any data leak,
the algorithm has no information about the test data in the training phase. The reference signals and
the predicted signals can be seen in Figure 21.

The shape of the test signal dz shown in Figure 21a and the predicted signal dz shown in Figure 21b
is similar. The test data contains noise, which is not predictable by the network. The error in the max
value of the position estimation is due to the difference in the training and test data set. The training
data set maximal range of motion was smaller than the maximal range of motion of the test data set.
The shallow network was not able to adjust this difference and ended up with a scaling problem.
The real problem is the shifting signal after calculating the absolute positions. It means noise with a
non-zero offset is appeared in the measurement and integrating the offset the prediction suffered from
the shifting.



Sensors 2019, 19, 5364 17 of 23

Figure 20. Magnetic, angular rate and gravity sensor (MARG) sensor mounted on a pendulum.

Examining the orientation output the result of predicting the Qx component of the quaternion
vector can be seen in Figure 22. In the figure, an offset prediction is shown. It shows that the reference
data from the motion capture system needs additional filtering. This error came from the system itself
and causes an offset in the prediction. Compared to the simulation the noise level was much higher
during the real test case.

(a) Test dz (b) Prediction dz
Figure 21. Cont.



Sensors 2019, 19, 5364 18 of 23

(c) Test z (d) Prediction z
Figure 21. Small LSTM network on real dataset.

Figure 22. Quaternion Qx prediction.

The neural network model can be modified to learn on the absolute values as well, not only on the
position difference data. In this case the shift in the prediction can be eliminated. The result can be seen
in Figure 23. The algorithm achieved an average error of 7 mm. The maximum peek error was 43 mm.
The shape of the predicted function matches the reference signals. The main reason behind the relative
high maximal error is the time delay. The database contained 6324 training samples, 2996 validation
samples and 2996 test samples. The test samples were used from a different measurement setup to
prevent data leaking during the training phase.



Sensors 2019, 19, 5364 19 of 23

Figure 23. Absolute z coordinate prediction.

As a second measurement setup, the sensor was tested in a translational movement case.
The translational measurement test set is shown in Figure 24. In order to test the method in a
nonperiodic case, the sensor was moved by a human. The applied force, in this case, was random.
The sensor holder was forced to move on a linear path approximately 1.6 m long. The neural network
was trained on an additional 30,925 translational measurement points. The iteration time was 0.9 ms.
The result of the neural network prediction can be seen in Figure 25. The average error on the test
data set is 41 mm, the maximal error is 276 mm. The plot also shows a notable behavior. The neural
network output predicted the start of the movement sooner than the reference system detected the
movement. Further investigating this particular case the measurement data shows that at the start
of the movement the static friction is higher than the kinetic friction. This causes two main changes.
Applying the moving force causes a little change in the orientation of the sensor. The magnetometer
data, which is also presented in Figure 25 can indicate this event. Furthermore, the sensor holder
was moved by a string. Applying the moving force made the string more tense. The stiffness of
the string reduced the noise in the accelerometer data providing an extra indicator that a change in
the position may occur. To train the neural network on the different cases an NVidia RTX 2080 Ti
GPU was used and the implementation was made in Python 3.7. The hyperparameters of the neural
network were set up heuristically. In each case, the training phase contained 50 epochs. In the first
five epochs root mean square propagation (RMS Prop) [19,20] was the optimization function, while
in the next 45 epochs stochastic gradient descent (SGD) [19,20] was used. The batch size was 128.
After training the neural network the final neural network architecture was transferred to a system
with lower resources. The prediction was made on a i5 520U CPU with 2.2 GHz. The application used
30% of the system resources which is approximately equal to a computational capacity of a Raspberry
Pi which is frequently used in low-cost robot and automatization applications. The metrics of the
performance and the representative errors can be seen in Table 3.



Sensors 2019, 19, 5364 20 of 23

Figure 24. Translational measurement setup.

Figure 25. Translational prediction.



Sensors 2019, 19, 5364 21 of 23

Table 3. Summary of different learning cases.

Metric Periodic Translational

Samples 6324 30,925
Training time ≈300 s ≈1500 s
Prediction time 4 ms 4 ms
Average error 4 mm 41 mm
Max error 21 mm 276 mm
Range of motion 59 mm 1624 mm
Relative average error 6.7 % 2.64 %

4.6. Discussion

In the simulation the effect of the different noise types was examined in connection with the
training process if position estimation can be interpreted as a supervised learning task. A supervised
learning process requires a labeled data set however in this case the labeled data set is heavily affected
by different noise types. Some relevant cases were investigated in the simulation but not all of them.
According to the simulation, the first methodology in Figure 8 seemed better, however, the real-life
scenarios are more complex and in this complex case, the second methodology is more suitable.

As a final result of the test of this study the proposed neural network-based approach provides
a solution for predicting position from a data of a MARG sensor. Using neural networks on noisy
sensor data can reduce the noise, and also can find the hidden structure in the noise. Extracting the
information from the changes in the noise structure can improve the prediction ability of an algorithm.
The tendency of the prediction shows that the harmful shifting effect of noise integration can be
eliminated. Comparing Figure 21d to Figure 23 there is no shift in the prediction. The cumulated
error can be reduced by the algorithm using the past position data during the learning phase and the
previous prediction data during the test prediction phase.

It was an important criterion to keep computational capacity as low as possible. This implies the
training phase as well. This was the main reason to use a not so complex network during the testing.
Examining the different effects and behaviors the baseline solution provides valuable information to
future development.

This study did not examine the effect of hyperparameter tuning during the development of
the neural network. The number of epochs, time steps, input features, and training examples was
not optimized during the tests. A neural network performance can be improved by tuning these
parameters but this study did not cover these cases. This can be in a focus point of a possible feature
study. Experiences from real-life test cases highlighted that the neural network had learned some of
the specific features of the measurement setup. Thus the algorithm is not independent from the test
case and to make the application more robust this effect can be penalized in a future scenario.

5. Conclusions

Using the simulation environment different noise types were examined in periodic case.
The simulation result shows that a random Gaussian noise with about 5% of noise level does not
affect the learning process fatally. The type of the predicted signal has more effect on the output.
Furthermore, according to the simulation it seemed that it is advised to use a smaller, not so complex
network with scaled data to predict differences in the signal instead of predicting the complex signals.
Finding the optimum point needs more testing and during this study, we did not optimize every
hyperparameter. The number of epochs and the number of time steps were constant during the whole
testing process. The signal preprocessing is important. The real-life measurements show that the
input signals suffer from noise with some offset. Offset noise becomes a shift after an integration.
Sensor calibration can be the answer to this problem or can improve the algorithm result. The used
Phidget Spatial sensor was calibrated before mounting on the exact measurement setup but it was
not enough. In an ideal case, the sensor should be calibrated after the mounting process because the



Sensors 2019, 19, 5364 22 of 23

new environment can distort the characteristics of the previously calibrated sensor and likely to cause
an offset in the signal level. According to the simulation results it is advised to make a prediction on
the differences in the data. In this case, a smaller network can provide relatively good results and the
application becomes more robust. However, it works with zero offset noise. If the offset from the noise
can not be eliminated or the proper sensor calibration is not possible because of the mounting of the
sensor, training on the absolute data is the better choice. The application can handle the offset in the
noise both in periodical and non-periodical cases, but the algorithm possibly learns the specialty of
the learning case. To show that the proposed technique can work not only for periodic movement a
translational movement was measured. The measurement proved that it is a promising approach.

Supplementary Materials: All the source code of the simulation and different neural networks, and raw
measurement data sets used in this paper are available online at https://github.com/Fortuz/MARG-based-
supervised-learning. The structure of the project can be found in the README file.

Author Contributions: Conceptualization, B.N., J.B. and P.K.; methodology, B.N.; software, B.N.; validation,
B.N.; formal analysis, B.N.; investigation, B.N.; resources, B.N.; data curation, B.N.; writing—original draft
preparation, B.N.; writing—review and editing, J.B. and P.K.; visualization, B.N.; supervision, J.B. and P.K.; project
administration, P.K.; funding acquisition, P.K.

Funding: This work was supported by the BME-Artificial Intelligence FIKP grant of EMMI (BME FIKP-MI/FM)
and the National Research, Development and Innovation Office grant (K120501). Balázs Nagy was supported
by Suzuki Fellowship Program. János Botzheim was supported by the János Bolyai Research Scholarship of the
Hungarian Academy of Sciences.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Deng, Y.; Shan, Y.; Gong, Z.; Chen, L. Large-Scale Navigation Method for Autonomous Mobile Robot Based
on Fusion of GPS and Lidar SLAM. In Proceedings of the IEEE 2018 Chinese Automation Congress (CAC),
Xi’an, China, 30 November–2 December 2018.

2. Kim, Y.; An, J.; Lee, J. Robust Navigational System for a Transporter Using GPS/INS Fusion. IEEE Trans. Ind.
Electron. 2018, 65, 3346–3354. [CrossRef]

3. Padhy, R.P.; Xia, F.; Choudhury, S.K.; Sa, P.K.; Bakshi, S. Monocular Vision Aided Autonomous UAV
Navigation in Indoor Corridor Environments. IEEE Trans. Sustain. Comput. 2018, 4, 96–108. [CrossRef]

4. Yun, C.H.; Moon, Y.S.; Ko, N.Y. Vision Based Navigation for Golf Ball Collecting Mobile Robot. In Proceedings
of the IEEE 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013), Gwangju,
Korea, 20–23 October 2013.

5. Cheng, Y.; Wang, G.Y. Mobile robot navigation based on lidar. In Proceedings of the IEEE 2018 Chinese
Control and Decision Conference (CCDC), Shenyang, China, 9–11 June 2018.

6. Gatesichapakorn, S.; Takamatsu, J.; Ruchanurucks, M. ROS based Autonomous Mobile Robot Navigation
using 2D LiDAR and RGB-D Camera. In Proceedings of the IEEE 2019 First International Symposium
on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok, Thailand,
16–18 January 2019.

7. Pimenta, L.; Fonseca, A.; Pereira, G.; Mesquita, R.; Silva, E.; Caminhas, W.; Campos, M. Robot navigation
based on electrostatic field computation. IEEE Trans. Magn. 2006, 42, 1459–1462. [CrossRef]

8. Park, J.H.; Baeg, S.H.; Baeg, M.H. An intelligent navigation method for service robots in the smart
environment. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Seoul,
Korea, 17–20 October 2007.

9. Nagy, B.; Štefan, G. Intelligent Space environment for ethorobotics. Recent Innov. Mechatron. 2018, 5, 1–5.
[CrossRef]

10. Rodríguez-Araújo, J.; Rodríguez-Andina, J.J.; Fariña, J.; Chow, M.Y. Field-Programmable System-on-Chip
for Localization of UGVs in an Indoor iSpace. IEEE Trans. Ind. Inform. 2014, 10, 96–108. [CrossRef]

11. Yousif, K.; Bab-Hadiashar, A.; Hoseinnezhad, R. An Overview to Visual Odometry and Visual SLAM:
Applications to Mobile Robotics. Intell. Ind. Syst. 2015, 1, 289–311. [CrossRef]

12. X-IO Technologies. Available online: https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/ (accessed
on 11 October 2019).

https://github.com/Fortuz/MARG-based-supervised-learning
https://github.com/Fortuz/MARG-based-supervised-learning
http://dx.doi.org/10.1109/TIE.2017.2752137
http://dx.doi.org/10.1109/TSUSC.2018.2810952
http://dx.doi.org/10.1109/TMAG.2006.870931
http://dx.doi.org/10.17667/riim.2018.1/14
http://dx.doi.org/10.1109/TII.2013.2294112
http://dx.doi.org/10.1007/s40903-015-0032-7
https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/


Sensors 2019, 19, 5364 23 of 23

13. Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a
gradient descent algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation
Robotics, Zurich, Switzerland, 29 June–1 July 2011.

14. Zizzo, G.; Ren, L. Position Tracking During Human Walking Using an Integrated Wearable Sensing System.
Sensors 2017, 17, 2866. [CrossRef] [PubMed]

15. Alfonso, M.R.; Frizera, A.; Coco, K.F. Magnetic, Angular Rate and Gravity Sensor System Fusion
for Orientation Estimation. In Studies in Health Technology and Informatics; IOS Press: Amsterdam,
The Netherlands, 2015; pp. 261–266. [CrossRef]

16. Wu, J.; Zhou, Z.; Chen, J.; Fourati, H.; Li, R. Fast Complementary Filter for Attitude Estimation Using
Low-Cost MARG Sensors. IEEE Sens. J. 2016, 16, 6997–7007. [CrossRef]

17. Chen, W.H.; Yang, J.; Guo, L.; Li, S. Disturbance-Observer-Based Control and Related Methods—An
Overview. IEEE Trans. Ind. Electron. 2016, 63, 1083–1095. [CrossRef]

18. Hecht-Nielsen, R. Neurocomputing; Addison-Wesley: Boston, MA, USA, 1990.
19. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin, Germany, 2006.
20. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available

online: http://www.deeplearningbook.org (accessed on 3 December 2019).
21. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

[PubMed]
22. Chen, Y.; Xue, Y. A Deep Learning Approach to Human Activity Recognition Based on Single Accelerometer.

In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Kowloon,
China, 9–12 October 2015.

23. Alemayoh, T.T.; Lee, J.H.; Okamoto, S. Deep Learning Based Real-time Daily Human Activity Recognition
and Its Implementation in a Smartphone. In Proceedings of the 2019 16th International Conference on
Ubiquitous Robots (UR), Jeju, Korea, 24–27 June 2019.

24. Kim, M.; Jeong, C.Y.; Shin, H.C. Activity Recognition using Fully Convolutional Network from Smartphone
Accelerometer. In Proceedings of the 2018 International Conference on Information and Communication
Technology Convergence (ICTC), Jeju Island, Korea, 17–19 October 2018.

25. Shrestha, A.; Won, M. DeepWalking: Enabling Smartphone-Based Walking Speed Estimation Using Deep
Learning. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi,
UAE, 9–13 December 2018.

26. Nikbakht, S.; Mazlom, M.; Khayatian, A. Evaluation of solid-state accelerometer for positioning of vehicle.
In Proceedings of the 2005 IEEE International Conference on Industrial Technology, Hong Kong, China,
14–17 December 2005.

27. Phidgets. Available online: https://www.phidgets.com/?&prodid=30 (accessed on 5 Ocotober 2019).
28. Zainuddin, Z.; Fard, S.P. Approximation of multivariate 2π-periodic functions by multiple 2π-periodic

approximate identity neural networks based on the universal approximation theorems. In Proceedings of the
2015 11th International Conference on Natural Computation (ICNC), Zhangjiajie, China, 15–17 August 2015.

29. Brownlee, J. Machine Learning Mastery. Available online: https://machinelearningmastery.com/how-to-
develop-lstm-models-for-time-series-forecasting/ (accessed on 19 October 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s17122866
http://www.ncbi.nlm.nih.gov/pubmed/29232869
http://dx.doi.org/10.3233/978-1-61499-566-1-261
http://dx.doi.org/10.1109/JSEN.2016.2589660
http://dx.doi.org/10.1109/TIE.2015.2478397
http://www.deeplearningbook.org
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://www.phidgets.com/?&prodid=30
https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/
https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement
	Proposed Methodology
	Experimental Results
	Simulation Setup
	Simulation Results
	Simulation Analysis
	Measurement Setup
	Measurement Result
	Discussion

	Conclusions
	References

