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Abstract: This article describes radiolocation devices dedicated to the detection and tracking of
small high-speed ballistic objects and multifunctional radars. This functionality is implemented by
applying space search technology and adaptive algorithms for detection and tracking of air objects
in parallel with classic search and tracking of objects in controlled airspace. This article presents
examples of the construction of both types of devices produced by foreign companies and Polish
industry. The following sections present methods for testing radars with the function of tracking small
high-speed ballistic objects along with examples of results of observations of combat ammunition.
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1. Introduction

We presented the issue of radars capable of detecting and tracking high-speed ballistic objects,
as well as issues related to the specifics of research and testing of such devices at the conference
Metro Aerospace 2019, in Turin. The presented issues were met with great interest from the conference
participants and became a source of information for many people about radar devices manufactured
by the Polish industry.

This article expands the subject of the publication "Radars with the function of detecting and
tracking artillery shells—selected methods of field testing", published in Metro AeroSpace 2018
proceedings [1].

Despite continuous technological development, the role of classic artillery in a contemporary
battlefield is not diminishing. If we observe this in relation to the conflicts conducted in recent years,
it is easy to notice that most activities of infantry units take place under covering fire from lighter
or heavier artillery. Both cases, which aim to destroy a detected enemy and protect our positions,
still require using sufficient fire power to quickly and effectively incapacitate the enemy. The key to
effective use of artillery is to quickly and precisely determine the coordinates of the position of targets
and to verify the accuracy and effectiveness of the conducted firing [2].

In this area, modern technology offers the following two most popular solutions: Unmanned
aerial vehicles (UAV) equipped with optoelectronic observation sensors and specialized radiolocation
devices intended for detecting, tracking, and calculating the trajectory parameters of high-speed
ballistic objects [3]. Both methods have their advantages and disadvantages. This paper only features
the characteristics of radars. The discussion features methods of detecting high-speed ballistic objects
using radiolocation sensors and examples of existing technological solutions used globally and in
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the Republic of Poland. This paper also contains a detailed discussion of the methods of testing
specialized ballistic radars or multifunctional radars with the ability to detect and track high-speed
ballistic objects viewed as one of their operating modes. It also features examples of the results of field
testing conducted using real high-speed ballistic objects [1,4].

We present research methods and example results related to Polish radars developed for the needs
of the Polish Armed Forces. From a scientific point of view, it would be desirable to present many
technical parameters that characterize individual sensors and compare the effects of different sensors
depending on the technical solutions used in them, but this is impossible because the detailed technical
parameters and test results of these devices are secret.

2. Materials and Methods

The latter part of this paper, aside from a short characterization of radiolocation devices intended
for detecting and tracking high-speed ballistic objects, includes a presentation of testing methods
used at the Air Force Institute of Technology (AFIT) for the purpose of field testing to check the most
important parameters of such devices. The most frequently used verifications are as follows: minimum
and maximum distances, minimum and maximum height, maximum elevation angle of detecting for a
given type of detected object, and the accuracies of determining the points of origin (POO) and points
of impact (POI) [2].

2.1. Detection and Tracking of High-Speed Ballistic Objects Using Radiolocation Sensors

The issue of detecting and tracking high-speed ballistic objects has been a significant challenge
for radiolocation. Because these objects achieve high velocities and move at relatively small heights
above the horizon, the device that ensures their effective detection and tracking must quickly scan the
horizon (several times per second) in order to immediately detect the flight object and track its flight
path, i.e., observe space in a broad range of elevation angles with the radar beam [3].

These capabilities have appeared along with the development of antennas with an electronically
controlled pencil beam. Such antennas allow for very fast beam movement both in the azimuth and
elevation planes. This searches the entire observation sector with an information refreshing time of
less than 1 s. The algorithms for searching ballistic objects are usually optimized to search a narrow
elevation sector right above the horizon. This allows for the optimal use of the radar’s time budget.
Application of this method is possible because after detecting the echo, the radar automatically switches
to the detection mode using additional lightings with a pencil beam, which obtains information about
the high-speed ballistic object’s flight trajectory, optimized in terms of the ballistic calculations [5,6].
On the basis of subsequent object detection, the ballistic calculator determines the appropriate ballistic
model to calculate its full flight trajectory. The calculated trajectory is then applied to the terrain’s digital
model, which determines the POO and POI’s coordinates. Antennas with an electronically controlled
beam are made using various technologies, starting with passive antennas with phase-frequency
control and ending with active antennas made in the form of transmit and receive module array with
full digital control of the transmission and reception characteristics [7]. The only disadvantage of
both types of older and modern antennas is that the electronic characteristic control is realized only
in a limited sector of azimuth and elevation angles. The limitation of the azimuth sector, usually to
approximately ±45◦ in relation to the antenna’s normal aperture, is especially troublesome. This type
of antenna is, therefore, usually rotated mechanically in the azimuth plane and such radar’s operational
use imposes the need to determine the sector of responsibility earlier. The POO and POI coordinates
designated by the radar are usually transmitted to an automated command and control system.

One of the most popular examples of a radar intended for tracking high-speed ballistic objects and
detecting launchers positions is ARTHUR (ARTillery HUnting Radar, Ericsson Microwave Sytsem AB,
Mölndal, Sweden) (Figure 1) developed and manufactured by Ericsson Microwave Systems (currently
SAAB Microwave Systems) [2].
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Figure 1. ARTillery HUNting Radar (www.radartutorial.eu) [8].

The radar is a device characterized by high mobility, able to quickly and effectively move in a
combat operations area. It operates in the C band (4 to 8 GHz) and possesses a flat passive antenna
with electronic beam scanning in both planes. In elevation, the antenna beam is controlled by changing
the probing signal’s frequency, whereas in the azimuth the control takes place using phase shifters [8].

The width of the azimuth sector in which the electronic beam scanning is conducted amounts
to 90◦. The radar’s antenna setting towards the selected direction is executed by its mechanical
rotation. The radar detections are analyzed by an advanced software that determines the POO and POI
coordinates with consideration of the terrain’s digital model and computation of commands for the
co-operating military units. In order to execute the aforementioned functions, the radar must precisely
determine its position in the terrain. This is done with the use of an advanced navigation system
consisting of an inertial module and a GPS receiver [2].

Other examples of radars intended for detecting high-speed ballistic objects and launcher positions
include: AN/TPQ-37, AN/TPQ-47, and AN/TPQ-50 developed by Thales Raytheon Systems, COBRA
(COunter Battery Radar) [2] developed and manufactured in co-operation with French, German, and
Turkish companies, as well as the Chinese SLC-2 Fire Finding Radar structure [2].

2.2. Polish Radars with the Function of Detecting and Tracking Small High-Speed Ballistic Objects

Radars produced by Polish companies also detect and track small high-speed ballistic objects
and determine the POO and POI. An example of a device especially dedicated for such tasks is the
Radiolocation Artillery Reconnaissance Unit LIWIEC [9] (Figure 2). It is embedded on a wheeled
chassis and is equipped with a passive flat antenna with a two-plane electronically controlled beam.
The maximum width of the observed azimuth sector amounts to 90◦. The frequency of scanning and
refreshing information about each element in the sector amounts to 0.5 s. The antenna’s mechanical
rotation in the azimuth allows for sector control in a 270◦ width. The maximum observation angle of
objects in elevation amounts to 20◦ [9].

The LIWIEC radar can be used to protect important objects and support artillery operation in the
following scope:

• automatic detection and tracking of high-speed ballistic objects;
• determination of the coordinates of launcher positions (single and grouped);
• automatic classification of flight object type and launcher position and type;
• determination of the POI coordinates;
• transmission of information to automated command and control systems.

The main advantage of this radar is that its operator can adapt space scanning algorithms to
current needs, and, in addition, the automatic tracking system of detected objects can force more
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frequent scanning of new objects, which greatly accelerates the calculation of the ballistic trajectory of
the tracked object. On the basis of the calculated trajectory, the radar identifies the type of detected
object (including its launcher type) and accurately determines the POO and POI before the detected
object reaches its target.

Aside from small high-speed ballistic objects, the LIWIEC radar detects and tracks aircrafts,
helicopters, unmanned aerial vehicles, and land-based mechanical vehicles [9].
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A different perspective on the problem of detecting small high-speed ballistic objects and especially
mortars is applied in the SOŁA and BYSTRA radars. The radars are intended for air defense forces to
control airspace in the area of land troops operations. Both devices search the airspace by mechanically
rotating the antenna in the azimuth plane. The application of relatively high antenna rotation speeds
(30 and 60 rpm) guarantee the ability to detect and track small high-speed ballistic objects with sufficient
accuracy for the ballistic calculation algorithm to estimate the complete object trajectory based on
the sample of over a dozen detections, and therefore determines the POO and POI with satisfactory
accuracies. Especially good results of such a method for detection and tracking are achieved in relation
to mortar [4].

The SOŁA redeployment-capable radiolocation station (Figure 3) is a short-range radar operating
in the S band, intended for the SHORAD (short range air defense) systems. It ensures the detection
of aerial objects, including unmanned air vehicles, helicopters, and small high-speed ballistic objects.
It is a three-dimensional radar with an antenna rotated mechanically along the azimuth and a beam
controlled electronically in the elevation. Depending on the operating mode, the radar’s antenna can
be rotated with a speed of 30 or 60 rpm. The radar is embedded in an armored vehicle with very good
off-road performance. The data on the detected objects is transmitted from the radar to the automated
command system via digital radio link [9].
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The BYSTRA (Figure 4) is a multifunctional and multitask radar with versatile capabilities and
applications, possessing the ability to detect and track typical aerial threats, such as aircrafts and
helicopters (also hovering), unmanned air vehicles, and small high-speed ballistic objects, particularly
mortars. The radar uses state-of-the-art technological solutions, including: active antenna with
semiconducting transmitting modules and electronically controlled transmission beam position, digital
receiving beams formation, digital synthesis, signal encoding and matched filtering, coordinate
estimation supported by the algorithm limiting the multipath effects, and finally tracking system using
the multiple hypothesis algorithm. The applied solutions achieving quick radiolocation information
refreshing of no more than 2 s [9].

Electronic control of the position of the antenna beam in the azimuth plane allows the system
to automatically track air objects and generate re-scanning requests for newly detected objects in the
same antenna rotation. This is a very important property of radar, which very quickly eliminates false
ballistic trajectories based on the detection of passive or active interference.
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The SOŁA and BYSTRA radars are perfectly matched for covering and protecting important
objects and areas because, during normal operation of controlling the airspace around the object, they
additionally ensure the execution of the helicopter detection function, including hovering helicopters,
as well as the detection and tracking of small high-speed ballistic objects including the POO and POI
coordinates’ estimation. This functionality provides the personnel of the protected object early warning
about the threat detected.

2.3. Small High-Speed Ballistic Objects Detection Zone Verifications

The design and production of radars capable of detecting and tracking small high-speed ballistic
objects and calculating their ballistic trajectory parameters requires developing specific research
methods to objectively evaluate their technical parameters. Generally, such radars require conducting
actual observations of shelling from many types of launchers. The planning of such tests requires
simultaneous consideration of many various factors, including the following:

• expected values of the tested radar parameter;
• firing capabilities of the given launcher;
• available military trying area;
• safety zones military trying area;
• possibility of finding a proper place of radar operation in relation to launcher position and

firing targets.

In the case of conducting testing to verify a small high-speed ballistic object detection zone, mortar
shelling is most often used. This means of launcher fires ballistic objects to both small and large heights,

www.pitradwar.com
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in a broad range of distances and does not require too large of a safety zone. The most difficult element
in preparing the tests for the conditions of a specific trying area is most often finding a suitable place of
operation for the tested radar. Usually, the area of firing means that location of launchers and field
of fire on a trying area are imposed by the adopted safety zones, whereas the terrain outside of the
tactical strips is covered by forest. For this reason, the location of equipment in the field can only
approximately correspond to the theoretical assumptions. Prior to the small high-speed ballistic object
detection, each radar undergoes testing with the use of unmanned or classical aircrafts equipped with
GPS receivers that record their flight trajectory. The comparison of radar detections with the recorded
flight trajectory determines the accuracy of estimation of the detected object’s coordinates (azimuth,
distance, elevation angle, and height of flight). The sequence of testing analyzes the small high-speed
ballistic object detection with consideration of the earlier designated estimation errors.

2.3.1. Verification of the Minimum Distance and Minimum Height of Small High-Speed Ballistic
Objects Detection and Tracking

In the case of verification of the minimum distance and minimum height of small high-speed
ballistic objects detection and tracking, the mortar’s position must be located in the radar’s dead
zone. The ballistic objects must be fired into the radar’s characteristic, at a small angle, so that the
radar is capable of observing them continuously along the entire flight trajectory. Such a test requires
realization of several dozen firings in order to evaluate the minimum ballistic objects detection distance
and height in a statistical manner. The test sketch is presented below (Figure 5).
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Figure 5. Sketch of the method of observing the mortar firings for the purpose of verifying the minimum
detection distance and height. Start of the coordinates system in the radar position. Points of origin
(POO), mortar position; radar detection characteristic, blue color; and desired ballistic objects flight
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Figure 6 presents a set of data recorded during the testing of the minimum ballistic object detection
distance. The graph presents the object detection distances from subsequent firings. Then, the minimum
distance values were selected from the entire observation and this set of data was used to estimate
the average value and standard deviation, as well as the bottom and top confidence interval limit.
The calculated parameters allowed for an objective evaluation of the actual value of the minimum
detection distance of the tested device.
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Figure 6. Example of mortars detections recorded during the verification of the minimum detection distances.

Figure 7 presents a set of data recorded during the testing of the minimum ballistic object detection
height. The graph presents detections in the following coordinates: distance and height. Due to the
verification’s specificity, the radar’s position in relation to the mortar’s position and target of fire was
especially important. The radar must be able to observe the ballistics’ entire flight trajectory without
any terrain obstacles. The detections of both ascending and descending flight objects were used for the
evaluation of the parameter minimum detection height. From the complete set of detections, detections
with minimum height values were selected. Such a dataset was used to conduct statistical calculations
analogously to the minimum detection distance parameter.
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Figure 7. Example of mortar detections recorded during the verification of the parameter minimum
detection heights.

2.3.2. Verification of the Maximum Elevation Angle for the Detection and Tracking of Small
High-Speed Ballistic Objects

The sketch of firings conducted for the purpose of this test is presented in Figure 8. In order to
obtain correct results from the observation of firings, it is necessary to carefully select the distance
between the radar and the mortar’s firing position, with consideration of the expected maximum
radar detection angle in elevation and distance, as well as the maximum flight height of the fired
ballistic objects.
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Figure 8. Sketch of the method of observing the mortars for the purpose of verifying the maximum
angle of detection in elevation. Start of the coordinates system in the radar position. POO, mortar
position; radar detection characteristic, blue color; desired flight trajectory, red color.

Figure 9 presents the results of firings conducted for the purpose of verifying the maximum
elevation angle. Then, detections with maximum elevation angle values were selected from the entire
observation and statistical calculations were conducted with reference to the obtained dataset by
designating the estimation of the sought parameter.Sensors 2019, 19, x FOR PEER REVIEW 8 of 16 
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Figure 9. Example of mortar detections recorded during the verification of the maximum angle of
detection in elevation.

2.3.3. Verification of the Maximum Height and Distance of Detection and Tracking of Small
High-Speed Ballistic Objects

The sketch of verification of the maximum height and distance of detection and tracking of mortars
is presented in Figure 10.

The firings conducted for the purpose of verifying the maximum detection height must feature
a large angle of mortar barrel elevation, with simultaneous use of the maximum propelling charge.
This type of firing does not ensure sufficient range. In practical testing, it is, therefore, necessary to
conduct separate firings at the maximum flight altitude and at the maximum detection range. The last
type of test requires setting the mortar’s barrel at an angle near 45◦.
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Figure 10. Sketch of the method of observing the mortars for the purpose of verifying the maximum
detection height and distance. Start of the coordinates system in the radar position. POO, mortar
position; radar detection characteristic, blue color; desired ballistics objects flight trajectory, red color;
impact zone, green color.

Figure 11 presents detections of ballistics objects fired in a manner allowing them to reach the
highest flight altitude. The lack of descending trajectory was caused by the applied operating mode of
the tested radar in which the search and initialization of flight objects tracking were only conducted in
a small value of elevation angles.Sensors 2019, 19, x FOR PEER REVIEW 9 of 16 
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Figure 11. Example of mortar detections recorded during the verification of the parameter maximum
detection height.

Figure 12 presents detections of ballistics objects fired with launcher settings that ensured the
maximum flight range. As shown in the figure, firing in such a manner did not cause the ballistic
objects to exit the radar’s observation zone.
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Figure 12. Example of results of verifying the maximum detection distance of mortars, i.e., height in
the distance function.
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2.4. Verifications of the Accuracy of Determining the Coordinates of POO and POI

Verification of the accuracy of determining the coordinates of launchers positions (POO) and
points of impact (POI) of ballistic objects when the radar observes objects that are moving away.
This method controls the execution of the firing task at much greater distances than by optical
observation instrumentation. A radar deployed on an observation position far from the enemy is also
more difficult to destroy than an observation UAV (unmanned air vehicle), which in order to evaluate
the firing effectiveness must fly near the area of the shelled target, and thus can be easily destroyed by
the enemy. The sketch of the method of executing the test is presented in Figure 13.
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Figure 13. Sketch of the method of observing ballistic objects moving away from the radar for the
purpose of verifying the accuracy of the POO and points of impact (POI). Start of the coordinates
system in the radar position. POO, launcher position; radar detection zone, blue color; desired flight
trajectory, red color; impact zone (POI), green color.

In order to evaluate the radar’s POO estimation accuracy, the launcher position’s coordinates are
measured with the use of a surveying GPS receiver from Spectra Precision, type Epoch 50 (Figure 21).
Measurements are conducted in the differential mode with the use of data derived from the ASG-EUPOS
network’s reference station. Such a measurement allows for achieving positioning accuracy of no less
than 20 to 30 cm, and thereby assumes the measured coordinates as true coordinates. The coordinates
obtained this way are then compared with the results of the POO estimation calculated by the tested
radar. The estimation accuracy analysis is conducted in the UTM (Universal Transverse Mercator)
rectangular coordinates system.

Figure 14 presents the results of POO estimation conducted based on the observation of a 120 mm
mortar firing. The red color is used to mark the mortar positions, whereas the blue markers are
the radar’s POO coordinates estimation conducted based on the observation of subsequently fired
ballistic objects.
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Figure 15 presents results of the radar’s observations of firings of a 122 mm caliber cannon
subdivision. In the figure, red markers represent the positions of particular cannons, measured by the
GPS receiver. Other markers illustrate subsequent POO estimations and are assigned with colors to
particular cannons. In principle, the flight trajectories of ballistic objects fired from the cannon are
flatter than mortar flight trajectories. This impairs the conditions of radar observation of the flying
objects and the conditions of estimating the ballistic trajectory, which due to its flattening, makes it
more difficult to precisely designate the intersections with the digital terrain map. Consequently, the
estimated POO demonstrates a relatively large spread in the axis compliant with the firing direction.Sensors 2019, 19, x FOR PEER REVIEW 11 of 16 
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Figure 15. Example of estimations of the POO of 122 mm caliber cannon. Firing in the direction from
the radar.

The analysis of the POI coordinates estimation accuracy of the tested radar is conducted similarly
to the POO accuracy analysis. However, it features an essential difficulty in the form of the necessity
to find the particular impact points after the firing and to measure their positional coordinates using
the GPS receiver. The measurement itself is conducted similarly as in the case of measuring the firing
mean position with the use of the surveying differential Epoch 50 receiver.

In order to find and identify the point of impact of each of the fired object, the firings must be
executed in a special manner, i.e., subsequent objects must be fired not at the same target, but with
a slight displacement, for example, 20 to 30 m left or right. Additionally, it is necessary to note the
results of localizations conducted by military observers with the use of laser rangefinders. Such tests
are always conducted by the polygon services in order to control compliance with safety conditions.
The practice of field testing also shows that if the tested radar allows for stable tracking of the ballistic
objects, it is necessary to note the estimated coordinates of particular POIs and use them to find
particular points of impact. Such data can be entered into the manual GPS receiver and used in
combination with the GO TO function to find the firing area and particular impact points in a relatively
short time. During the searching of impact points, it is necessary to take special care, comply with the
safety principles in force on the training area, and not take any actions without making arrangements
with persons responsible for safety during the executed firings.

Figure 16 presents the illustration of the position of POIs estimated by the radar, impact points
determined by observers, actual points of impact found in the area and measured with the GPS
receiver, as well as the matching markers of particular POI estimations for GPS measurement purposes.
The matching of particular POIs with actual points of impact requires a detailed analysis of all datasets,
because the actual points of impact can differ substantially from the adopted targeting scheme and the
occurring POI estimation errors can in some cases suggest a better matching of the impact points of
another object than the object actually observed.
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Figure 16. Illustration of the POIs of 120 mm mortars (purple color) estimated by the radar,
GPS coordinates of the found points of impact (red color), and explosion localization by the military
observers (yellow color).

Verification of the accuracy of determining the coordinates of the launcher position (POO) and the
points of impact (POI) of ballistic objects when the radar observes objects that are moving towards it.
The scheme of such verifications is presented in Figure 17.
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Figure 18. Example of estimations of the POO of 98 mm caliber mortar. Firing in the direction of the 

radar. 

Figure 17. Sketch of the method of observing ballistic objects moving towards the radar for the purpose
of verifying the accuracy of the POO and POI localization. Start of the coordinates system in the radar
position. POO, mortar position; radar detection characteristic, blue color; desired flight trajectory, red
color; impact zone (POI), green color.

The observation of firings executed in the direction of the radar requires particularly careful
planning. On one hand, the radar must be placed in a suitable position, free of any terrain obstacles in
the observation sector, at a distance ensuring the ability to detect flying objects. On the other hand,
the test safety conditions must be respected, which means that the radar must be located at a suitable
distance from the impact zone and the point of maximum theoretical range of the tested launcher.
The reconciliation of these conditions is sometimes difficult and requires strict cooperation of the
testing team with the trying area services.

Figure 18 presents the results of POO estimation of a 98 mm mortar, obtained during the
observation of objects flying in the direction of the radar.
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Figure 18. Example of estimations of the POO of 98 mm caliber mortar. Firing in the direction of
the radar.

Figure 19 presents the results of POI estimation of a 98 mm mortar, obtained during the observation
of ballistic object fired to the direction of the radar.
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Figure 19. Illustration of the POIs of 98 mm mortars (purple color) estimated by the radar, GPS
coordinates of the found points of impact (red color), and explosion localization by the observers
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Figure 20 presents the comparison of the results of estimation of POI coordinates obtained during
the observations of firings of a 122 mm caliber cannon. The firing was executed at four different targets
that are also marked in the figure.
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The presented results of field testing are illustrative, and their aim is only to illustrate the specifics
of particular tests. The detailed results of verifications of the tactical and technical parameters of
particular devices are confidential and will not be published.

2.5. Special Equipment

The basic measurement tool used in the polygon testing of radars is the surveying Epoch 50
GNSS receiver from Spectra Precision. The receiver interoperates with the Nomad type field controller,
including the installed Survey Pro field measurement software. The receiver features 220 receiver
channels and can operate with the use of the following signals:

• GPS L1/L2/L2C/L5;
• GLONASS L1/L2.

The Epoch 50 can operate in the following modes: autonomous, code differential, and phase
differential. The differential modes can be realized in real time with the use of differential corrections
from the local reference station (radio modem) or with the use of corrections sent via the Internet,
for example, from the networks of the ASG-EUPOS reference stations. During field testing practice,
the most common solution is the ability to record the measurements with a single receiver and their
latter specification in the Spectra Precision Survey Office software. Such a specification only requires
downloading from the ASG-EUPOS network of the files including the data recorded by the reference
station located nearest to the testing location. The scheme of distribution of the reference stations
available in the ASG-EUPOS network is presented in Figure 21. The receiver is used to obtain precise
coordinates of the field of position of the tested radar, launcher positions, and the points of impact of
the ballistic objects (Figure 22) [10].
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Figure 23 presents an illustrative box in the Spectra Precision Survey Office software with visible
measurement points specified in the post processing mode, in relation to the TORU permanent
reference station.
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3. Results

Research and testing of modern radars are complicated processes, both in technical and
organizational terms. One of the dominant trends in radiolocation is the development of multifunctional
radars. Such radars can detect and identify the following: aircrafts, helicopters, unmanned flying
objects, and small high-speed ballistic objects. They require comprehensive knowledge of various fields
of technology and a constant quest for new research methods from the research teams [12]. In particular,
the specificity of field testing, conducted with the use of various types of launchers requires, apart from
specialist knowledge in the domain of radiolocation, knowledge of artillery operations, the specificity
of military training areas, and experience in using satellite geodesy. Our presented methods made it
possible to check radar parameters with small high-speed ballistic object detection function accurately
and objectively.

Technological progress in the field of radiolocation contributes not only to the improvement of the
basic technical parameters of radars, forcing an increase in the accuracy of existing research and testing
methods, but also leads to the creation of completely new functionalities [13].

In this presentation of parameters, we are aware that this article leaves unsatisfied the
specific properties and test results of individual devices, but this is impossible due to their final
military application.
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