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Abstract: Due to a lack of transparency in both algorithm and validation methodology, it is difficult for
researchers and clinicians to select the appropriate tracker for their application. The aim of this work
is to transparently present an adjustable physical activity classification algorithm that discriminates
between dynamic, standing, and sedentary behavior. By means of easily adjustable parameters,
the algorithm performance can be optimized for applications using different target populations and
locations for tracker wear. Concerning an elderly target population with a tracker worn on the upper
leg, the algorithm is optimized and validated under simulated free-living conditions. The fixed
activity protocol (FAP) is performed by 20 participants; the simulated free-living protocol (SFP)
involves another 20. Data segmentation window size and amount of physical activity threshold
are optimized. The sensor orientation threshold does not vary. The validation of the algorithm
is performed on 10 participants who perform the FAP and on 10 participants who perform the
SFP. Percentage error (PE) and absolute percentage error (APE) are used to assess the algorithm
performance. Standing and sedentary behavior are classified within acceptable limits (±10% error)
both under fixed and simulated free-living conditions. Dynamic behavior is within acceptable limits
under fixed conditions but has some limitations under simulated free-living conditions. We propose
that this approach should be adopted by developers of activity trackers to facilitate the activity tracker
selection process for researchers and clinicians. Furthermore, we are convinced that the adjustable
algorithm potentially could contribute to the fast realization of new applications.
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1. Introduction

Digital innovations can promote and support an increase in physical activity and a reduction
of sedentary time and thereby improve the health, well-being and participation of all individuals,
according to the WHO [1]. Physical activity trackers are such digital innovations and have been
successfully used in different applications to classify physical activity in terms of three key outcome
measures: dynamic, standing and sedentary behavior [2–4]. Actually, the number of possible
applications is enormous, taking in to account the various target populations, tracker wear locations
and outcome measures [5–8].
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To select or improve a physical activity tracker for these new applications, it is important to
understand their strengths and limitations. Activity trackers do not measure physical activity directly.
Using sensor technology, e.g., accelerometers, they measure the movement of the body (segment). Then,
they estimate physical activity by applying application-specific algorithms to this raw data [9]. Ideally,
both sensor and algorithm specifications are well described by the manufacturer or are available in
literature. However, due to the abundance of methods, protocols and measures of validity, combined
with a lack of transparency on the algorithm methodology, it is difficult for researchers and clinicians to
compare different physical activity trackers [9,10]. To overcome this, the validation procedure should
be described transparently, include at least a simulated free-living protocol (which corresponds to the
main daily activities), and also should be performed by the target population [9,11]. Furthermore,
the underlying physical activity algorithms should be presented with sufficient detail, including
methodological choices and their implications. Unfortunately many classification algorithms remain a
black box.

Technically, when activity trackers are not transparently described, every new physical activity
classification application would require validation of the activity tracker’s algorithm performance
and, when not accurate enough, development of a new algorithm [12–15]. This is a time- and
resource-consuming process. Nevertheless, most available algorithms are built with the same conceptual
building blocks, i.e., (1) a preprocessing phase to remove artifacts from the raw data, (2) data
segmentation, (3) extraction of data features, and (4) a classifier which are used to translate the raw data
into interpretable outcome measures [16–21]. Additionally, according to Bersch et al., the sampling
rate, data segmentation method, window size and classifier method are aspects that affect algorithm
accuracy the most [17]. Using these building blocks, Annegarn et al. presented and validated an
activity classification algorithm for chronic organ failure patients [22]. We are convinced that through
the easily adjustable algorithm parameters (i.e., data segmentation window size and data feature
threshold values used by the classifier), it is possible to optimize the performance of this algorithm for
different target populations and the locations where the tracker is worn on the body.

Our aim is to transparently present an adjustable physical activity classification algorithm which
discriminates between dynamic, standing, and sedentary behavior. We demonstrate how the parameter
settings are optimized for a healthy elderly target population and tracker worn on an upper leg
location. Finally, we validate the algorithm in a simulated free-living environment and compare it
to the algorithm settings used by Annegarn et al. This method could contribute to a well-founded
physical activity tracker selection process as well as to a fast realization of other new applications.

2. Materials and Methods

2.1. Study Design

A cross validation study was performed on forty healthy elderly. Twenty participants performed a
fixed activity protocol (FAP), the other twenty participants performed a simulated free-living protocol
(SFP). The optimization of the parameter settings of the adjustable algorithm was performed on a
random selection of twenty participants (ten performing the FAP and ten performing the SFP protocol).
The validation of the optimized algorithm was performed in the remaining twenty participants.
The study design is presented in Figure 1.

This study was approved by the local ethics board Atrium–Orbis–Zuyd Medical Ethical Committee
(METCZ20180012). All participants provided written informed consent.
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Figure 1. Two groups of twenty participants were random assigned to the optimization or validation 
group. 

This study was approved by the local ethics board Atrium–Orbis–Zuyd Medical Ethical 
Committee (METCZ20180012). All participants provided written informed consent. 

2.2. Participants 

Healthy elderly participants were recruited from several local elderly associations. Participants 
were eligible for inclusion if they were community dwelling, at least 65 years old, and did not meet 
the Dutch physical activity guidelines [23]. Insufficient understanding of the Dutch language, use of 
a walking aid, and an asymmetrical gait were the exclusion criteria. 

2.3. Device Description 

The MOX Activity Logger (MOX; Maastricht Instruments, Maastricht, The Netherlands) is the 
successor of the DAAFB [5,24] and CAM [7,22,25] activity loggers. The device contains a tri-axial 
accelerometer sensor (ADXL362; Analog Devices, Norwood, MA, USA) in a small waterproof 
housing (35 × 35 × 10 mm, 11 g) [26]. The MOX uses a custom-made, double-sided, waterproof patch 
for body attachment. Raw acceleration data (±8 g) is measured in three orthogonal sensor axes (X, Y 
and Z) at a 25 Hz sampling rate and stored directly on the internal memory. The MOX is capable of 
measuring and storing data continuously up to seven days. Data analysis is performed offline. The 
MOX has been successfully used for physical activity monitoring in colorectal cancer survivors and 
COPD patients [3,27] worn on an upper leg location. 

2.4. Data Collection 

The data was collected in the Human Performance Laboratory of Maastricht University 
(Maastricht, The Netherlands) or at Zuyd University of Applied Science (Heerlen, The Netherlands). 
After providing informed consent, demographic data were collected (gender, age, body weight, body 
length). Next, the MOX was attached on the upper part of the non-dominant leg about 15 cm above 
the knee, as shown in Appendix A. Participants were video recorded during the execution of the 
protocol. These recordings served as the gold standard for the classification of physical activities 
(dynamic, standing or sedentary behavior) [11]. After the execution of the protocol, the data was 
downloaded from the MOX and stored on a secured internal data server, together with the video 
recordings. A 10 m walk test was included in both protocols as a standardized test to determine the 
average comfortable walking speed [28]. 

2.5. Activity Protocol 

Two different protocols were developed: a fixed activity protocol (FAP) and a simulated free-
living protocol (SFP). The FAP consisted of a predefined sequence (order and duration) of different 
types of activities as shown in Figure 2a. 

Figure 1. Two groups of twenty participants were random assigned to the optimization or
validation group.

2.2. Participants

Healthy elderly participants were recruited from several local elderly associations. Participants
were eligible for inclusion if they were community dwelling, at least 65 years old, and did not meet the
Dutch physical activity guidelines [23]. Insufficient understanding of the Dutch language, use of a
walking aid, and an asymmetrical gait were the exclusion criteria.

2.3. Device Description

The MOX Activity Logger (MOX; Maastricht Instruments, Maastricht, The Netherlands) is the
successor of the DAAFB [5,24] and CAM [7,22,25] activity loggers. The device contains a tri-axial
accelerometer sensor (ADXL362; Analog Devices, Norwood, MA, USA) in a small waterproof housing
(35 × 35 × 10 mm, 11 g) [26]. The MOX uses a custom-made, double-sided, waterproof patch for body
attachment. Raw acceleration data (±8 g) is measured in three orthogonal sensor axes (X, Y and Z) at a
25 Hz sampling rate and stored directly on the internal memory. The MOX is capable of measuring
and storing data continuously up to seven days. Data analysis is performed offline. The MOX has
been successfully used for physical activity monitoring in colorectal cancer survivors and COPD
patients [3,27] worn on an upper leg location.

2.4. Data Collection

The data was collected in the Human Performance Laboratory of Maastricht University (Maastricht,
The Netherlands) or at Zuyd University of Applied Science (Heerlen, The Netherlands). After providing
informed consent, demographic data were collected (gender, age, body weight, body length). Next,
the MOX was attached on the upper part of the non-dominant leg about 15 cm above the knee, as
shown in Figure A1 (Appendix A). Participants were video recorded during the execution of the
protocol. These recordings served as the gold standard for the classification of physical activities
(dynamic, standing or sedentary behavior) [11]. After the execution of the protocol, the data was
downloaded from the MOX and stored on a secured internal data server, together with the video
recordings. A 10 m walk test was included in both protocols as a standardized test to determine the
average comfortable walking speed [28].

2.5. Activity Protocol

Two different protocols were developed: a fixed activity protocol (FAP) and a simulated free-living
protocol (SFP). The FAP consisted of a predefined sequence (order and duration) of different types of
activities as shown in Figure 2a.

The SFP protocol consisted of a set of different target population specific activities of daily living
(ADL). Participants were free to choose the order and duration for each type of activity. Figure 2b shows
the activities and an example of their order and duration. The location of the activities was spread
throughout a 120 m2 laboratory, resulting in different durations of the transfers between different
activities. This protocol was used to simulate a real free-living situation. Both at the beginning and the
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end of each protocol, a squat movement was performed for post-hoc synchronization between the
video recording and the acceleration data.
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The physical activity classification algorithm originates from the algorithm developed by 
Annegarn et al., used for chronic organ failure patients and worn on an upper leg location [22]. The 
adjustable physical activity classification algorithm, starting from the raw tri-axial acceleration data, 
uses the same decision tree classifier. Additionally, three parameters have been made to be easily 
adjustable to optimize the algorithm for specific applications in terms of target population and wear 
location. These parameters are data segmentation window size, amount of physical activity 
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an upper leg location. The adjustable parameters are highlighted in blue. 

Figure 2. Graphical representation of (a) FAP with a predefined order and duration of the listed
activities and (b) SFP where participants are free to choose the order and duration of the listed activities.

2.6. Algorithm Description

The physical activity classification algorithm originates from the algorithm developed by Annegarn
et al., used for chronic organ failure patients and worn on an upper leg location [22]. The adjustable
physical activity classification algorithm, starting from the raw tri-axial acceleration data, uses the
same decision tree classifier. Additionally, three parameters have been made to be easily adjustable to
optimize the algorithm for specific applications in terms of target population and wear location. These
parameters are data segmentation window size, amount of physical activity threshold, and sensor
orientation threshold. The algorithm for the tracker worn on an upper leg location discriminates
between (1) dynamic, (2) standing, and (3) sedentary (lying/sitting) behavior. A schematic overview of
the algorithm is shown in Figure 3.
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Figure 3. Schematic overview of the physical activity classification algorithm for the tracker worn on
an upper leg location. The adjustable parameters are highlighted in blue.

The algorithm’s decision tree starts with the raw tri-axial acceleration data that, for each sensor
axis (X, Y and Z), contains three components: (1) noise acceleration (NA), (2) body acceleration (BA),
and (3) gravitational acceleration (GA). As NA originates from sensor noise and not from physical
activity it is eliminated in the preprocessing filtering step by applying a moving average filter with a
filtering window size of 0.12 s to the raw acceleration data. Next, the acceleration data is segmented
into windows with a fixed non-overlapping sliding window method [17]. The data segmentation
window size (WS) is the first adjustable parameter.
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Next, the amount of physical activity is determined for each window. This is defined as the signal
magnitude area (SMA) of the BA and expressed in counts per second (cps) [18–21]. Regarding this,
the GA is eliminated from the acceleration data by applying a fourth order Butterworth High Pass
Filter with a cut-off frequency of 1 Hz. Then, the absolute value of the remaining BA is summed over
all three axes and over all data samples that make up a complete window. This calculation is shown in
Formula (1):

SMA j =

j∗N∑
i=(( j−1)∗N+1)

|BA|i (1)

where N is the data segmentation window size times the sampling rate, j is the index for each window,
and i is the index for each data sample. Based on the threshold value for this amount of physical
activity (PA Th), which is the second adjustable parameter, each window is classified as dynamic
or static.

Concerning the static windows, the sensor orientation is determined. This is defined by the mean
GA for the three axes individually. Considering this, the BA is eliminated from the acceleration data by
applying a fourth order Butterworth Low Pass Filter with a cut off frequency of 1.25 Hz. Then, for each
axis the remaining GA is averaged over all data samples that make up a complete window. Regarding
the X-axis, this calculation is shown in Formula (2):

GAx j = 1/N
j∗N∑

i=(( j−1)∗N+1)

GAxi (2)

where N, i and j have the same definition as in Formula (1). Given a certain wear location of the sensor,
based on a threshold value for the sensor orientation (SO Th), which is the third adjustable parameter,
the body posture can be classified for each static window. Concerning the tracker worn on an upper
leg location described in the current work, the threshold value for sensor orientation in the X-axis
discriminates between the body postures: standing and sedentary (sitting/lying) [29]. The remainder
of this article has the sensor orientation in the X-axis referred to as sensor orientation.

2.7. Data Analysis

Data analysis of participant characteristics was performed using Prism (GraphPad Prism 8.2.1(441);
GraphPad Software, San Diego, CA, USA). Descriptive statistics of the participant characteristics were
presented as the number (percentage) for the categorical variable gender and as a median (95% CI) for
the continuous variables age, body length, weight, and average walking speed. Due to the limited
amount of participants in each sub-group (n = 10, see Figure 1) non-parametric Mann–Whitney U tests
were applied to assess differences between the four sub-groups of the study design.

All video recordings of the simulated free-living protocol (SFP) were classified as dynamic,
standing or sedentary behavior by two independent observers using the Dartfish EasyTag-Note,
creating an event-based spreadsheet where each second was classified [30]. The definition used to
classify each activity is shown in Figure 2. Both observers were blinded to the classifications made by
the other observer and by the algorithm. The inter-observer reliability was assessed with the intraclass
correlation coefficient (two-way random, absolute agreement) and Bland–Altman plots.

The raw acceleration data was analyzed using MATLAB (R2018b; The MathWorks Inc., Natick,
MA, USA). To obtain a fixed protocol (FAP) measurement, the acceleration data was cut into pieces
based on the video recording, resulting in only one type of activity per data part. To obtain a simulated
free-living protocol (SFL) measurement, all acceleration data was analyzed as one complete data
part. Regarding these data parts, the adjustable physical activity classification algorithm was used to
calculate dynamic, standing and sedentary time.
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2.7.1. Parameter Setting Optimization

The data of the optimization group was used to calculate dynamic, standing and sedentary time
for a variety of settings of the adjustable parameters. This was done to assess the performance of the
algorithm in terms of its optimal classification error. Optimization started with the fixed parameter
settings (WS = 1 s, PA Th = 5 cps, SO Th = 0.8 g) incorporated in the algorithm developed by Annegarn
et al. Concerning the described wear location (upper leg), a sensor orientation threshold of 0.8 g
discriminated standing from sedentary behavior. This corresponded to an angle of 36◦ between the
gravity vector and the longitudinal direction of the upper leg. Since there was no reason to assume
that there was a better setting for the healthy, elderly population that wore the tracker in the same
location, this parameter was retained in the current work.

Regarding the data segmentation window size, parameter settings varying from 0.25 s up to 6.7 s
and even 74 s have been described [17,21]. Window sizes from 1 s up to 10 s were evaluated, using a
PA Th of 5 cps. These settings were chosen based on the type and duration of activities carried out
by the target population. Actually, the healthy elderly tended to be sedentary with short periods of
physical activity. Then, for the optimal data segmentation window size setting, the threshold for the
amount of physical activity was evaluated from 3 cps up to 12 cps to determine the optimal amount of
physical activity threshold and complete the set of optimal parameter settings.

Classification error of the algorithm was assessed using percentage error (PE) and absolute
percentage error (APE):

PE =
Tot Time Activity ClassVideo − Tot Time Activity ClassMOX

Tot Time Activity ClassVideo
∗ 100 (3)

APE =

∣∣∣Tot Time Activity ClassVideo − Tot Time Activity ClassMox
∣∣∣

Tot Time Activity ClassVideo
∗ 100 (4)

where, Tot Time Activity ClassVideo is assessed by Observer 1. PE reflects the error between the video
recordings and the MOX classification algorithm on a group level. Since APE does not cancel out errors
from over- and underestimation, it reflects errors on an individual level. As PE and APE are relative
measures, it is possible to compare them across different studies [9]. PE and APE values are expressed
as median and 95% confidence interval (CI).

2.7.2. Algorithm Validation

After the parameter settings were optimized, the data of the remaining twenty participants was
used for validation. The performance of the algorithm was assessed for the fixed and simulated
free-living protocol separately and, subsequently, classified with the algorithm settings used by
Annegarn et al [22].

Agreement values between 90–110% were considered acceptable [31]. Additionally, Bland–Altman
plots with limits agreement were used to assess potential bias between the video recordings and the
algorithm classification.

3. Results

3.1. Participant Characteristics

Forty healthy elderly were recruited for this study. A random selection of twenty participants
was selected for the optimization of the algorithm. The remaining twenty participants were used for
the validation of the algorithm. The participant characteristics are shown in Table 1.

According to the Mann–Whitney U test, participant characteristics did not significantly differ.
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Table 1. Participant characteristics for the optimization and the validation group.

Fixed Activity Protocol

Optimization Group (n = 10) Validation Group (n = 10)

Gender (male) 5 (50%) 3 (30%)
Age (years) 69 (67–77) 68 (66–73)

Body weight (kg) 81.0 (63.0–90.0) 69.4 (59–86.5)
Body length (cm) 170 (159–175) 160 (157–169)

Average Walking Speed (m/s) 1.22 (0.88–1.60) 1.37 (1.06–1.48)

Simulated Free-Living Protocol

Optimization Group (n = 10) Validation Group (n = 10)

Gender (male) 6 (60%) 4 (40%)
Age (years) 73 (70–77) 75 (69–88)

Body weight (kg) 88.1 (75.1–114.0) 70.0 (48.8–101.6)
Body length (cm) 174 (165–184) 169 (158–182)

Average Walking Speed (m/s) 1.16 (0.79–1.29) 1.15 (0.85–1.38)

3.2. Inter-Observer Reliability Simulated Free-Living Protocol

The inter-observer reliability of the video recording used to assess dynamic, standing, and sedentary
behavior was high: 0.96, 0.99 and, 1.0 respectively (ICC Agreement).

The limits of agreement for dynamic behavior (−48.9 s to 40.5 s), standing (−48.9 s to 39.8
s), and sedentary behavior (−26.4 s to 28.1 s) were narrow and showed no systematic differences.
The Bland–Altman plots are shown in Figure A2.

3.3. Parameter Setting Optimization

3.3.1. Data Segmentation Window Size

To find the optimal data segmentation window size, ten different windows ranging from 1 s up to
10 s were tested using an amount of physical activity threshold of 5 cps. The results for all data parts of
the optimization data set are shown in Figure 4a,b. The median and 95% CI of the PE and APE values
for the three best performing window sizes, 1–3 s, can be found in Table 2.

Table 2. PE and APE results for the optimal window size and amount of physical activity threshold.

Optimal Window Size Optimal Amount of Physical Activity Threshold

Percentage Error (%) Percentage Error (%)

WS (s) Dynamic Standing Sedentary PA Th
(cps) Dynamic Standing Sedentary

1 1.5 (0.7–2.5) −3 (−15.1–1.7) 1.3 (0.7–1.4) 6 0.7 (0.4–0.9) 3.5 (2.0–6.5) 2.4 (1.8–3.4)
2 0.6 (0.4–0.7) 6.8 (4.4–13.4) 2.9 (1.8–4.2) 7 0.7 (0.6–0.9) 1.9 (−2.3–4.0) 2.0 (0.5–2.5)
3 0.7 (0.4–0.9) 16.9 (8.2–31.8) 4.6 (2.9–5.8) 8 0.9 (0.6–1.0) 1.2 (−7.7–2.7) 1.4 (0.4–1.8)

Absolute Percentage Error (%) Absolute Percentage Error (%)

WS (s) Dynamic Standing Sedentary PA Th
(cps) Dynamic Standing Sedentary

1 1.6 (0.9–2.6) 4.7 (1.9–15.1) 1.4 (0.8–1.6) 6 0.9 (0.7–1.0) 4.0 (2.4–7.2) 2.4 (1.8–3.4)
2 0.9 (0.6–1.0) 6.8 (5.1–13.4) 2.9 (1.8–4.2) 7 0.9 (0.7–1.0) 3.9 (2.2–6.2) 2.0 (1.4–2.5)
3 1.0 (0.7–1.3) 16.9 (8.2–31.8) 4.6 (2.9–5.8) 8 0.9 (0.7–1.0) 3.6 (2.0–7.7) 1.7 (0.6–2.0)

A window size of 2 s showed the smallest classification error for classifying dynamic (PE: 0.6%
(0.4–0.7), APE: 0.9% (0.6–1.0)), standing (PE: 6.8% (4.4–13.4), APE: 6.8% (5.1–13.4)), and sedentary
(PE: 2.9% (1.8–4.2), APE: 2.9% (1.8–4.2)) behavior. For more detailed information see supplementary
material Spreadsheet S1.
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3.3.2. Amount of Physical Activity Threshold

To optimize the amount of physical activity threshold, values from 3 cps to 12 cps were tested
using a window size of 2 s. The results for each threshold are shown in Figure 4c,d. PE and APE values
(median and 95% CI) for the three best performing thresholds can be found in Table 2.

A threshold of 7 cps further improved the APE classification error for standing and sedentary
behavior (3.9% (2.2–6.4) and 2.0% (1.4–2.5), respectively). Concerning dynamic behavior, the error did
not change (0.9% (0.7–1.0)). For more detailed information see supplementary material Spreadsheet S2.

3.4. Algorithm Validation

To validate the algorithm, the parameter settings of the optimized algorithm were: (1) data
segmentation window size of 2 s, (2) amount of physical activity threshold of 7 cps and (3) sensor
orientation threshold of 0.8 g.

The PE and APE results for all data parts of the validation data set are shown in Figure 5 for
the fixed activity (FAP) and the simulated free-living (SFP) protocols separately. The upper part of
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Table 3 shows that the median of all PE and APE values for all classifications are within the proposed
limits, except for the dynamic classification for the SFP protocol—this is slightly higher than acceptable.
Regarding the SFP, the confidence intervals are wider compared to the FAP.
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Table 3. Validation results for FAP and SFP reported as PE and APE for the optimized algorithm
settings and the algorithm settings used by Annegarn et al. [22].

Optimized Algorithm Settings (WS = 2 s, PA Th = 7 cps, SO Th = 0.8 g)

Dynamic Standing Sedentary

FAP SFP FAP SFP FAP SFP

PE (%) 0.6 (0.4–0.8) 1.0 (−14.6–18.6) 2.9 (1.5–4.9) 0.8 (−11.2–4.8) 2.6 (2.0–3.0) 0.8 (0.2–1.1)
APE (%) 0.6 (0.4–0.8) 11.3 (6.7–20.0) 2.9 (1.5–4.9) 5.2 (1.5–11.2) 2.6 (2.0–3.1) 0.8 (0.2–1.1)

Algorithm Settings Used by Annegarn et al. (WS = 1 s, PA Th = 5 cps, SO Th = 0.8 g)

Dynamic Standing Sedentary

FAP SFP FAP SFP FAP SFP

PE (%) 1.1 (0.6–2.9) 27.9 (11.6–40.0) 1.6 (1.5–2.4) −12.6 (− 27.2–7.9) 1.7 (1.2–2.0) 0.3 (−0.1–1.0)
APE (%) 1.1 (0.6–2.9) 27.9 (11.7–40.0) 1.6 (1.5–2.4) 12.6 (7.9–27.2) 1.7 (1.2–2.0) 0.4 (0.1–1.0)

Within the FAP, the four dynamic activities were separately classified with acceptable errors:
2 km/h walking (0.6% (0.4–0.9)), 4 km/h (0.6% (0.1–0.8)), overground walking (0.6% (0.3–1.1)), and biking
(0.7% (0.3–1.0)). The same holds for the two sedentary activities: sitting (2.9% (1.2–5.9)) and lying (2.2%
(0.9–3.1)). The Bland–Altman plots with limits of agreement can be found in Figure A3. For more
detailed information see supplementary material Spreadsheet S3.

The PE and APE values for the classification with the algorithm settings used by Annegarn
et al. (WS = 1 s, PA Th = 5 cps, SO Th = 0.8 g) are shown in the lower part of Table 3 [22]. The
classification error is higher than the preset limit for the SFP of both dynamic and standing behavior.
Also, the 2 km/h walking (12.9% (1.0–34.1)) from the FAP was classified with a higher error than
accepted. All other activities included in FAP showed acceptable errors (4 km/h walking (0.5%
(0.1–1.2)), overground walking (2.6% (1.1–6.0)), biking (0.5% (0.2–2.0)), sitting (1.9% (1.1–3.4)), lying
(1.5% (0.8–2.0)), and standing (1.6% (1.5–2.4))).

4. Discussion

The aim of the current work was to transparently present an adjustable physical activity
classification algorithm which discriminates between dynamic, standing, and sedentary behavior.
The algorithm provides easily adjustable parameters (data segmentation window size, amount of
physical activity threshold, and sensor orientation threshold) to optimize the classification performance
for applications using different target populations and wear locations. It was found that, for a healthy
elderly population and a tracker worn on an upper leg location, validation of the optimized parameter
settings showed good results for the fixed activity protocol (FAP) and the simulated free-living protocol
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(SFP). Furthermore, it was shown that parameter settings that were validated for patients with chronic
organ failure by Annegarn et al. did not yield an optimal parameter set for healthy community
dwelling elderly [22].

Banos et al. showed that optimizing the data segmentation window size will minimize the chances
of combining different activities of daily living (ADLs) within one window or split into different
windows [16]. Regarding the application under investigation, a data segmentation window size of
10 s leads to classification errors of up to 80%. Compared to previous studies, a data segmentation
window size of 2 s showed the smallest error with a narrow 95% CI [16,21,32]. The smallest tested
data segmentation window size (1 s, used by Annegarn et al. [22]) showed a wider 95% CI compared
to the optimal window size. An adjustable amount of physical activity threshold is needed since
different target populations will perform the same kind of activity with different intensities and, thus,
accumulate different amounts of physical activity. Considering the overground walking, for example,
the speed and cadence differed significantly between 30- and 90-year-olds [33]. The current work
showed that for healthy elderly, a PA Th of 7 cps provides better results than a PA Th of 5 cps, which is
validated by Annegarn et al. for chronic organ failure patients [22]. The sensor orientation threshold is
mostly affected by the wear location. Like in the application presented by Annegarn et al., the sensor
in the current application was attached to the upper leg with a plaster [22]. Therefore, the sensor
orientation threshold did not have to be optimized for the application.

Agreeing with Bersch at al., we expect other algorithm parameters to play a far less significant role
in the classification process compared to the adjustable parameters described above [17]. Literature
already established the effect of the sampling rate on the classification performance and concluded
that a sampling rate of 25 Hz is sufficient to successfully classify ADLs [17]. To eliminate noise
acceleration, a moving average with a window size of 0.12 s is used. This parameter is sensor and
sample rate specific, making an optimization not relevant at this point. The settings of the frequency
filters, although important, are beyond the scope of the current work.

The use of a simple decision tree classifier that has been successfully used in the past to discriminate
between broad categories of physical activity e.g., dynamic, standing and sedentary behavior, is the
first strength of the current work. According to Preece et al. the direct relation between the processing
steps and thresholds in the decision tree on the one hand and the outcome measures on the other
hand is one of the benefits of this classifier method [21]. Allahbakhshi et al. state that this makes it
easier to understand and interpret compared to other classifier methods [34], a prerequisite for an
adjustable algorithm. To discriminate more specific categories of physical activity e.g., cycling or
stair walking, a machine learning approach might be more suitable [35,36]. The results of the current
work confirm the need for SFP, including target population specific ADLs, in validation procedures in
accordance with the recommendation of Lindemann et al. [11]. Looking at the classification error for
FAP, one could conclude that there is no difference between the algorithm settings used by Annegarn
et al. and the optimized algorithm settings in the current application [22]. However, for SFP the
classification error for the algorithm settings used by Annegarn et al. for dynamic and standing
behavior is too high and shows that, for the current application, these settings are inaccurate in a
real-life situation [22]. Previously it has been shown that the target group accumulates the amount of
physical activity primarily by household activities (50 minutes per day) [37]. The second strength of
this paper is that the validation of SFP was carried out with the target population’s specific ADLs and,
therefore, was representative of real life. Furthermore, the use of a gold standard to complement the
good inter-observer reliability assures the quality of the suggested methodology.

There are some limitations in the current work that could be addressed in future research. First and
most important, for SFP the error for measuring dynamic behavior was slightly higher than acceptable.
This higher error partly originates from a poor rater behavior definition of the included ADLs. Setting
the table, for example, is defined as a dynamic behavior, while in practice this is a sequence of dynamic
and standing behaviors. Rather than defining an ADL as one type of behavior, the observers should
classify the actual activity of the participant to possibly improve the classification accuracy [38]. Given
this limitation, the classification error for dynamic behavior, therefore, presents the worst case scenario.
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Second, the amount of participants in each sub-group was limited. Ideally, validation studies should
include sufficient participants with a range of physical activity behaviors. However, the overall sample
size of forty participants in the current work is comparable to other validation studies [22,39–41].
Third, the three adjustable parameters were treated independently during the optimization procedure:
the data segmentation window size was optimized for a fixed amount of physical activity threshold
and, next, the amount of physical activity threshold was optimized for the optimal window size. This
approach is suited for finding an optimal performance that meets the criteria of errors below 10%.
However, to find the absolute optimal performance, all different window sizes could be tested for all
amounts of physical activity thresholds, or other optimization operations could be applied. This could
be interesting for future studies but does not add valuable insights for the aim of the current work.

Presently, parameter settings of the adjustable algorithm have been optimized and validated for
one specific target population and one location for tracker wear. To prove the adjustable algorithm’s
contribution to the fast realization of new applications, future work should focus on optimizing these
parameters for other target populations and wear locations. New challenges are the validation for
healthy young subjects and/or a chest wear location.

5. Conclusions

An adjustable physical activity classification algorithm that can discriminate between dynamic,
standing, and sedentary behavior was transparently described.

The adjustable algorithm was successfully applied for a healthy elderly population and a tracker
worn on an upper leg location under simulated free-living conditions.

By means of easily adjustable parameters, the algorithm performance can be optimized for
different target populations and wear locations.

We propose that this method should be adopted by developers of activity trackers to facilitate the
activity tracker selection process for researchers and clinicians. Furthermore, we are convinced that the
adjustable algorithm could potentially contribute to the fast realization of new applications in terms
target populations and/or wear locations.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/24/5344/s1.
Spreadsheet S1: S1_Optimization Window Size.xlsx, contains the PE and APE for FAP and SFP for the ten tested
window sizes. Spreadsheet S2: S2_Optimization Amount of PA.xlsx, contains the PE and APE for FAP and
SFP for the ten tested PA thresholds. Spreadsheet S3: S3_Validation Results.xlsx, contains the classifications for
FAP and SFP for the validation group. Other data that support the findings of this work are available from the
corresponding author, upon reasonable request.
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