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Abstract: A modified signal processing and target fusion detection method based on the dual 
platform cooperative detection model is proposed in this paper. In this model, a single transmitter 
and dual receiver radar system is adopted, which can form a single radar and bistatic radar system, 
respectively. Clutter suppression is achieved by an adaptive moving target indicator (AMTI). By 
combining the AMTI technology and the traditional radar signal processing technology (i.e., pulse 
compression and coherent accumulation processing), the SNR is improved, and false targets 
generated by direct wave are suppressed. The decision matrix is obtained by cell averaging constant 
false alarm (CA-CFAR) and order statistics constant false alarm (OS-CFAR) processing. Then, the 
echo signals processed in the two receivers are fused by the AND-like fusion rule and OR-like fusion 
rule, and the detection probability after fusion detection in different cases is analyzed. Finally, the 
performance of the proposed method is quantitatively analyzed. Experimental results based on 
simulated data demonstrate that: (1) The bistatic radar system with a split transceiver has a larger 
detection distance than the single radar system, but the influence of clutter is greater; (2) the direct 
wave can be eliminated effectively, and no false target can be formed after suppression; (3) the 
detection probability of the bistatic radar system with split transceivers is higher than that of the 
single radar system; and (4) the detection probability of signal fusion detection based on two 
receivers is higher than that of the bistatic radar system and single radar system. 

Keywords: cooperative illumination; cooperative detection; signal processing; target  
fusion detection 

 

1. Introduction 

With the increasing complexity of the battlefield electromagnetic environment, the single airborne 
early warning (AEW) radar is facing increasingly more challenges [1–3]. On the one hand, limited by 
the detection range, the single AEW is easy to be detected by the enemy; on the other hand, the 
maneuverability of AEW is limited, and the battlefield survivability is weak. An idea to solve this 
problem is to cooperate with a multi-platform radar system. Specifically, the cooperative detection 
mode of the AEW and unmanned aerial vehicle (UAV) has attracted extensive research [4–6]. In general, 
the UAV is in front and receives signals passively while the AEW is located in the safe rear and receives 
signals actively. In this model, the detection range can be expanded, and the problems of a huge radar 
blind area and radar detection efficiency caused by a large time-bandwidth signal can be improved to 
a certain extent [7–10]. Moreover, the separation of receiving and transmitting of the system is helpful 
to improve the detection ability of the stealth target and the anti-jamming ability [11–14]. In a summary, 
the cooperative detection mode of AEW and UAV is of great research significance. 
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Clutter and direct-wave interference are the main challenges for multi-platform cooperative 
detection. Recently, many researchers have carried out relevant research on airborne cooperative 
detection, and lots of cooperative detection methods have been proposed [15–20]. In [15], Wu studied 
the clutter modeling of an airborne bistatic radar based on a geometric model. Wei [16] studied the 
range-dependent compensation method for airborne bistatic radar clutter, in which the projection point 
of the receiver on the horizontal plane was represented as the origin and the projection of the baseline 
on the horizontal plane as the Y or X axis. Based on models of [15,16], Yang [17] analyzed the non-
stationary characteristics of the clutter spectrum with range space variation and the serious aliasing 
characteristics of the clutter caused by range and Doppler ambiguity. A knowledge-assisted space-time 
adaptive processing method was proposed, which greatly improves the performance of clutter 
suppression of the high-speed airborne radar. In the aspect of suppressing the direct wave, Chen [18] 
proposed a method of direct wave suppression based on subspace projection, where an orthogonal 
projection matrix of a direct wave subspace was constructed using the equivalent signal of the receiving 
end, and the received signal was projected to suppress direct wave interference. The authors of [19] 
investigated a bistatic sonar for underwater target detection, and provided a deep zero trap to suppress 
direct wave signals in the direct wave direction through the beam zero suppression algorithm. In [20], 
for the two-channel passive radar system, the least square method of vector space was used to suppress 
the direct wave signals in the target channel, although it could not completely suppress the direct wave 
signals, and some of them were left. The authors of [21–23] mainly described the algorithm of time-
reversal imaging, which was used to analyze the process of active detection. The authors of [24] focused 
on the classic problem of testing samples drawn from independent Bernoulli probability mass functions, 
when the success probability under the alternative hypothesis was unknown. Most of the above 
literature conducted studies on clutter suppression or direct wave suppression or fusion detection 
separately, mainly considering the problem of improving SNR. Moreover, the overall research 
background was inconsistent and there were many constraints. However, there were few joint studies 
on direct wave suppression under the clutter condition, and few studies on the influence of direct wave 
suppression on target fusion detection or positioning. 

In this paper, we studied the signal processing and target fusion detection of an airborne cooperative 
detection system under the clutter condition. First, we constructed a dual platform cooperative detection 
system geometric model of the application scene, which uses AMTI to suppress clutter. Then, the AMTI, 
pulse compression, and phase-coherent accumulation were used to suppress the direct wave to suppress 
the influence of the false target generated by the direct wave during target detection. Finally, the echo 
received by the two receivers was used for fusion detection to improve the detection performance of the 
target. The dual platform cooperative detection system constructed in this paper has the advantages of a 
bistatic radar system and single radar system [25–27]. The detection range was extended and the 
detection performance improved, which lays a foundation for future research of the airborne radar 
cooperative detection system. 

The rest of this paper is organized as follows. In Section 2, the system configuration model of 
cooperative illumination is established, and the echo model of the system is derived by taking linear 
frequency modulation (LFM) signal as an example. The signal processing and fusion detection flow 
of the cooperative detection system is designed, and the theoretical derivation and numerical 
simulation are carried out in Section 3. Section 4 verifies the feasibility and effectiveness of the signal 
processing and fusion detection algorithm by the simulation experiment of the designed cooperative 
detection system. Conclusions are presented in Section 5. 

The notations used in this paper are shown in Table 1. 
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Table 1. The notation of the symbols. 

Notation Notes 
x  Scalar 
x  Vector 
X  Matrix 

( )-1⋅  Inverse of matrix 
  ⋅  Absolute value 
( )rect ⋅  Rectangle function 

2. Modeling 

The scene relationship between the airborne cooperative detection system and target is shown 
in Figure 1, in which the AEW and the UAV constitute a dual platform cooperative detection system, 
and the AEW is used as a transmitter and receiver ( T / R ), and the UAV is used as a receiver ( R ). 
The working process of the cooperative system can be expressed as follows: Firstly, the AEW 
transmits signal to irradiate target Tg . Then, target Tg  reflects the signal. Finally, AEW and UAV 
will receive the target echo, respectively. The AEW ( T / R ) is a single radar system, and then the AEW 
( T ) and the UAV form a bistatic radar system. In fact, the side lobe signal of AEW will also be directly 
received by UAV ( R ), which means that the echo signal received by the UAV includes both the target 
reflection signal and the side lobe direct wave signal. In Figure 1, the target echo power received by 
T / R  is denoted as 0P , the power of the target echo signal reaching the R  is denoted as rP , the 
power of the AEW side lobe signal reaching the R  directly is denoted as zP , 1r  is the distance 
from T / R  to Tg , 2r  is the distance from Tg  to R , and 3r  is the distance from T / R  to R . 

0P

rP

zP

1r

2r

3r

 
Figure 1. Scene schematic diagram of cooperative irradiation. 

Further, the Cartesian coordinate system is established by taking the position of the transmitter 
as the origin and taking the transmitter-to-receiver connection as the X-axis. The Y-axis and the Z-
axis are perpendicular to the X-axis, satisfying the right-hand criterion. The geometric relationship 
between the transmitter, receiver, and target is shown in Figure 2. The coordinates of the transmitter 
are ( )t t t t, ,r x y z , that of the receiver are ( )r r r r, ,r x y z , and that of the target are ( )tg , ,r x y z . The 

azimuth angle of the target relative to the transmitter is denoted as 1ϕ , where the pitch angle is 
denoted as 1ε  and the azimuth angle of the target relative to the receiver is denoted as 2ϕ , where 
the pitch angle is denoted as 2ε . 
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Figure 2. Geometric diagram of the cooperative illumination scene. 

According to the cooperative detection system geometric model, the expression of the signal 
model is derived. 

The method in this paper is suitable for LFM waveforms and coded signal. In this paper, the 
LFM signal is selected for echo signal derivation and simulation.  

Assuming that the radar transmits LFM signal, the signal can be expressed as: 

( ) 2f
c f

p

1rect exp j2π
2

    = +         

ts t f t Kt
T

, (1) 

where ( )rect   is the rectangle function; cf  is the carrier frequency; pT  is the pulse width; K  is 

the frequency modulation slope, 
p

= BK
T

; B  is the signal bandwidth; and ft  is the fast-time. Then, 

the corresponding echo signal can be expressed as: 

( ) ( ) ( )( )2f
r f c f

p

, rect exp j2π exp jπττ τ τ
 −

= ⋅ ⋅ −  
 

ts t f K t
T

, (2) 

where τ  is the delay. 
For a single radar system with an integrated transceiver and receiver, the delay is expressed as: 

( )1 1 n
a

2
τ

+
=

r v t
c

, (3) 

where nt  is the slow-time and 1v  is the radial velocity between the transmitter and the target, which 
is given by: 

( ) tg t
1 tg t

tg t

 −
 = − ⋅
 − 

r r
v v

r r

 
 

 v , (4) 

where tv
  is the transmitter velocity vector and tgv

  is the target velocity vector. 
The target echo signal of a single radar system is: 
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( ) ( ) ( )( )
( ) ( )

( )

2f a
ra f n c a f a

p

1 1 n 1 1 n
f c

p

2
1 1 n

f

, rect exp j2π exp jπ

2 21rect exp j2π

2
exp jπ

τ τ τ
 −

= ⋅ ⋅ −  
 
   + +   

= − ⋅      
       

 + 
 ⋅ − 
   

ts t t f K t
T

r v t r v t
t f

T c c

r v t
K t

c

. (5) 

Then, the final echo of a single radar receiver can be expressed as: 

( )r0 ra f n n n, σ= + ⋅S s t t s , (6) 

where nσ  is the noise amplitude and n 10

1
10

σ =
SNR

, SNR  is the signal-to-noise ratio, and ns  is 

the white noise. 
For bistatic radar systems, the time delay is: 

1 1 n 2 2 n
bτ + + +

=
r v t r v t

c
, (7) 

where 2v  is the radial velocity between the target and the receiver, expressed as: 

1 1 n 2 2 n
bτ + + +

=
r v t r v t

c
, (8) 

where rv
  is the receiver velocity vector. 

Then, the target echo signal of a bistatic radar system is: 

( ) ( ) ( )( )2f b
rb f n c b f b

p

1 1 n 2 2 n 1 1 n 2 2 n
f c

p

2
1 1 n 2 2 n

f

, rect exp j2π exp jπ

1rect exp j2π

exp jπ

τ τ τ
 −

= ⋅ ⋅ −  
 
 + + +  + + +    = − ⋅      

       
 + + + ⋅ −  

   

t
s t t f K t

T

r v t r v t r v t r v tt f
T c c

r v t r v tK t
c

. (9) 

The time delay of the direct wave signal is: 

3 3 n
dτ +

=
r v t
c

, (10) 

where 3v  is the radial velocity between the transmitter and receiver, expressed as: 

( ) r t
3 r t

r t

 −
= − ⋅  − 

r rv v
r r

 
 

 v . (11) 

Then, the direct wave signal received by the receiver can be expressed as: 
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( ) ( ) ( )( )2f d
rd f n c d f d

p

3 3 n 3 3 n
f c

p

2
3 3 n

f

, rect exp j2π exp jπ

1rect exp j2π

exp jπ

τ τ τ
 −

= ⋅ ⋅ −  
 
 +  +    = − ⋅      

       
 + ⋅ −  

   

ts t t f K t
T

r v t r v tt f
T c c

r v t
K t

c

. (12) 

The final echo of the receiver can be expressed as: 

( ) ( )r1 rb f n z rd f n n n, ,σ σ= + ⋅ + ⋅S s t t s t t s , (13) 

where zσ  is the amplitude of the direct wave and z 10

1
10

σ =
SJR

, and SJR  is the signal-to-jamming 

ratio. 

3. Target Cooperative Detection for the Cooperative Detection System. 

According to the cooperative detection system model mentioned above, in this section, the echo 
simulation of single radar system and bistatic radar system was carried out. Then, the signal was 
processed. The constant false alarm (CFAR) processor was carried out to obtain the detection results. 
Finally, the target was located according to the detection results. Meanwhile, in order to improve the 
detection performance, the echo results of the two receivers were fused to obtain the detection results. 
The block diagram of the processing process is shown in Figure 3. 

 
Figure 3. Block diagram of the radar echo processing for the cooperative detection system. 

Without loss of generality, the following assumptions were made before introducing the 
cooperative detection method:  

(1) The receiving platform and the transmitting platform have their own navigation system, which 
can get their own position information in real time and communicate with each other. 

(2) The target is not at the base line of the transceiver and receiver platform, which means there is a 
time delay between the direct wave and the echo arriving at the receiver. 

(3) The main lobe direction of the radar antenna is known, which is a three-dimensional radar. 
(4) The arrival time of the echo can be measured. 

3.1. Detection Range Comparison 

According to the preset scene, the power expression of the target echo signal arriving at the radar 
receiver of the AEW is deduced as: 
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( )
2 2

t t
0 t t 1 13 4

1 1 e

2 2 33 4
4π

σλ σ λ= = + + + − − − − e
PG

P P G r L L
r L L

, (14) 

where tP  is the radar transmitting peak power, tG  is the gain of the radar transmitting antenna in 
the target direction, σ  is the radar sectional area of the target in the direction of the AEW, λ  is the 
working wavelength of the radar, 1L  is the radar receiver loss of the AEW, and eL  is other losses 
(transmission loss, atmospheric loss, pulse pressure loss, etc.). 

The AEW radar transmits signals. Then, the signals reach the receiver radar after the target 
reflection. The power received by the receiver radar is expressed as: 

( )
2

t t r
r t t r 1 2 23 2 2

1 2 2 e

2 33 2 2
4π

σ λ σ λ
′

′ ′= = + + + + − − − − −
′ e

PG G
P P G G r r L L

r r L L
, (15) 

where rG  is the main lobe gain of the passive receiver antenna, σ ′  is the radar cross-sectional area 
of the target in the direction of the receiver (bistatic radar cross-sectional area), 2L  is the passive 
receiver loss, and ′eL  is other losses. 

The power expression of the radar side lobe signal received by the receiver radar from the AEW 
is as follows: 

( )
2

t t r t t r
z t t r 3 22 2

3 2 e 3 2 e

2 22 2
4π 4π

λ λ
′ ′ ′

′ ′ ′′= = = + + + − − − −
′′ ′′ e

PG A PG G
P P G G r L L

r L L r L L
, (16) 

where rA  is the effective receiving area of the receiver, t′G  is the sidelobe gain of the AEW radar 
transmitting antenna, r′G  is the sidelobe gain of the receiver antenna, and ′′eL  is other losses. 

According to the above expression, the ratio of the target echo power of the receiver to the target 
echo power of the radar receiver of the AEW can be expressed as: 

( ) ( )
22 2 2

r 1 1 er t t r t t
1 3 3 22 2 4

0 t 2 2 e1 2 2 e 1 1 e4π 4π
σσ λ σλ
σ

    ′′
   = = =
    ′′   

G r L LP PGG PGK
P G r L Lr r L L r L L

. (17) 

In order to analyze the main factors affecting the ratio, 1K , assuming 1 e

2 e

1≅
′

L L
L L

, there is: 

2
r r 1

1 2
0 t 2

σ
σ

′
= ≈
P G rK
P G r

. (18) 

If the main lobe gain of the radar antenna of the receiver, rG , is equal to that of the radar antenna 
of the AEW, tG , the cross-section area of the bistatic radar is larger than that of the single radar, and 
the distance between the receiver and the target is smaller than that between the AEW and the target, 
i.e., 1 1≥K . According to the formula, when ( )1 11 0 dB≥ ≥  K K , the receiving echo power of the 
receiver is greater than or equal to the receiving echo power of the AEW. If the processing gain of the 
approximate matched filtering can be obtained in the process of signal detection, the detection ability 
of the bistatic system is equal to that of the active detection ability of the AEW radar, and the target 
can be detected at this time. 

In this paper, FEKO was used to simulate the cross-sectional area of the single radar and bistatic 
radar. The target model is shown in Figure 4, and the simulation results of the cross-sectional area of 
the single radar and bistatic radar are shown in Figure 5. 
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Figure 4. Target model and mesh generation. 

 
(a)  (b)  

Figure 5. Simulation of the radar cross-section: (a) Cross-section of the single radar; (b) Cross-section 
of the bistatic radar. 

According to the above formula derivation and radar sectional area, numerical simulation 
analysis was conducted, and the results are shown in Figure 6.  

 

(a)  (b)  

Figure 6. The value of the distribution of 1K : (a) Three-dimensional distribution of 1K ; (b) The 
isogram of the distribution of 1K . 
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Figure 6 is the value distribution diagram of the ratio, 1K , Figure 6a is the three-dimensional 
diagram of the value distribution of 1K , and Figure 6b is the isogram of the value distribution of 1K . 
It can be seen from the figures that in the range of 500 km, except for some positions near the launch 
platform, the receiving power of the bistatic radar is less than that of the AEW radar, and other 
positions are larger than that of the AEW radar. That is to say, the distance of bistatic detectable 
targets is farther than that of AEW, namely the detection performance of the bistatic radar is better 
than that of AEW. At the same time, it can be seen from the figure that the location distribution of 

1 0 dB  <K  is close to the launching platform. For the cooperative detection of AEW and UAV, the 
AEW is located in the rear of the security, the receiver goes forward and receives the signal silently, 
and the detection performance of the target in the detection area is slightly affected. The detection 
range of the two-platform cooperative detection system is extended, and the detection range is 
complementary to each other, so it has more advantages in target detection. 

3.2. Direct Wave Suppression 

The ratio of receiver target echo to direct wave power can be expressed as: 

( ) ( )
22 2

t r 3 er t t r t t r
2 3 2 2 22 2

z t r 1 2 e1 2 2 e 3 2 e 4π4π 4π
σσ λ λ    ′ ′′′ ′ ′

   = = =
    ′ ′ ′′ ′′   

G G r LP PG G PG GK
P G G r r Lr r L L r L L

. (19) 

The power ratio of target echo to direct wave can be estimated under different conditions. 

In order to analyze the main factors affecting the ratio, 2K , assuming e

e

1≅
′
L
L

, there is: 

2 2
r t 3 3r

2 2 22 2
z 1 2r t 1 2

1
4π 4π

σ σ′ ′
= ≈ =

′ ′
G G r rPK M

P r rG G r r
, (20) 

where r t

r t

=
′ ′
G GM
G G

. 

It was assumed that the other losses of the AEW and the receiver are similar, and the processing 
gain of the approximate matched filter can be obtained in the process of signal detection for the 
received target echo signal. Any 44 dB  M =  was selected, and 2K  was simulated at different target 
positions according to the cross-sectional area of the bistatic radar. The results are shown in Figure 7, 
where Figure 7a is the three-dimensional diagram of the value distribution of the ratio, and Figure 
7b is the isogram of the value distribution of the ratio. As can be seen from the figure, in the simulation 
area, the ratio is the highest at the location of the transceiver platform, which is −11 dB, while the 
other locations are basically below −30 dB, namely 2 1K . The power of the direct wave is far greater 
than that of the bistatic radar receiver. If the direct wave is not processed, the direct wave signal will 
enter the target echo channel from the antenna side lobe of the receiver to form false target 
interference, and at the same time, the detection threshold will be raised, and the target signal cannot 
be detected. 
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(a)  (b)  

Figure 7. The value of distribution of 2K : (a) Three-dimensional distribution of 2K ; (b) The isogram 
of the distribution of 2K . 

3.3. CFAR Detection 

The number of reference units detected by CFAR is N. The distribution of reference units 
detected by CFAR is shown in Figure 8. In the figure, X is the unit to be tested. The left and right units 
of X are set as protection units, with N/2 reference units on the left and right. 

TZ

1x /2Nx X /2 1Nx + Nx 
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Figure 8. CFAR processor architecture. 

According to N reference units, the CFAR processor can get a relative estimation of the 
background intensity, Z, which is related to the CFAR detection method. In the multiplier, the 
decision threshold, TZ, can be obtained by multiplying the estimated value, Z, by a threshold 
weighting coefficient, T, where 1/ 1− −= N

fT Np  and fp  is the false alarm probability. In the 
comparator, the detected unit is compared with the decision threshold, TZ. If X is larger than TZ, the 
output is 1; otherwise, the output is 0.  

In the CFAR detector, there are two methods to calculate the signal evaluation, Z, of N reference 
units: The CA-CFAR detection method and the OS-CFAR detection method. CA-CFAR has good 
detection performance in a uniform environment, and OS-CFAR has obvious advantages in a clutter 
edge and multi-target environment.  

In the CA-CFAR detector, Z is the average value of all reference unit signals, , 1, ,= ix i N : 

1

1
=

= 
N

i
i

Z x
N

. (21) 

In the OS-CFAR detector, by sorting the signals, , 1, ,= ix i N , of N reference units according to 
amplitude from large to small, one of the order values is taken as the background noise to estimate 
Z, then: 
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( ) ( ) ( ) ( )

( )

1 2≥ ≥ ≥ ≥ ≥

=

 k N

k

x x x x

Z x
. (22) 

3.4. Fusion Detection Probability 

The cooperative detection system mentioned in this paper can form a single radar system and 
bistatic radar system. The fusion detection can be carried out in different processing units, which can 
be divided into measurement fusion and decision fusion. Figure 9 shows the topology structure of 
fusion detection. In Figure 9a, measurement fusion is that each receiver can observe independently 
to get the observation matrix, and then a fusion center receives the observation information of 
receivers for judgment. In Figure 9b, decision fusion is that each receiver observes and judges 
independently, and then a fusion center receives the decision information of receivers, and a global 
decision is obtained. 

nR2R1R

0u


1s 2s ns

 

1s 2s ns

nR2R1R

0u



1u 2u nu

 

(a)  (b)  

Figure 9. Topology structure diagram of fusion detection: (a) Measurement fusion; (b) Decision fusion. 

For measurement fusion, after CFAR detection in the signal processing flow, the measurement 
matrices of the systems can be obtained respectively, namely, 1 2, , , nR R R . The matrices can be 
superposed and fused. Then, the existence of the target can be determined, and the detection 
probability can be calculated through multiple tests of the Monte-Carlo method. 

For decision fusion, the two systems separately detect and decide whether there is a target or 
not. The detection probability is calculated by the Monte-Carlo method, and the detection probability 
after the decision is fused.  

The cooperative detection system is composed of n  receivers ( )iR 1, 2, ,= i n , and the 

detection probability of a target is ( )iP R .  
The OR-like fusion rule can be expressed as: 

0 0
0

1 0 0

1 1
,

0 1=

= ≥
=  = <

n

i
i

u u
u u

u u
. (23) 

The total probability of simultaneous detection of the target by each receiver is: 

( ) ( ) ( ) ( )1 2 1 21= = −  sor n nP P R R R P R P R P R . (24) 

Therefore, the AND-like fusion rule can be expressed as: 
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0 0
0

1 0 0

1 1
,

0 1=

= ≥
=  = <
∏
n

i
i

u u
u u

u u
. (25) 

The total probability of simultaneous detection of the target by each receiver is: 

( ) ( ) ( ) ( )1 2 1 2= =  sand n nP P R R R P R P R P R . (26) 

The cooperative detection system in this paper is composed of a single base system and double 
base system. The detection probability of two receivers is ( )1P R  and ( )2P R , respectively. Then, for 
OR-like fusion rule, the fusion detection probability can be expressed as 

( ) ( )1 21= −sorP P R P R  (27) 

For the AND-like fusion rule, the fusion detection probability can be expressed as: 

( ) ( )and 1 2=sP P R P R  (28) 

Now, we analyzed the complexity of the two algorithms. Without loss of generality, one-time 
multiplication or one-time addition is regarded as a basic calculation amount, and the sum of all 
addition and multiplication times in an algorithm is regarded as the basic operation amount of the 
algorithm [28]. The process of the measurement-fusion algorithm and decision-fusion algorithm is 
the same before getting the measurement vector, so the complexity analysis of this paper starts from 
the measurement vector. Assuming that the length of measurement vector is M, the number of fusion 
sensors is two, the number of CFAR detection reference units is N, and the number of Monte-Carlo 
experiments is ln . For measurement fusion, firstly, the measurement vector is fused. The complexity 
of the OR-like rule is the same as the AND-like rule, which is recorded as ( )O M . Then, the fusion 
vector is judged. First, the reference threshold is calculated. The mean value of reference cells is 
calculated by the CA-CFAR algorithm, with the complexity of ( )O MN . The reference cells are sorted 

by the OS-CFAR algorithm, with the complexity of ( )2O MN . Then, whether there is a target is 

judged, with the complexity of ( )O M . For decision fusion, the measurement vectors are judged 
respectively. First, the reference threshold is calculated, and the average value of the reference units 
is calculated by the CA-CFAR algorithm, with the complexity of ( )O 2MN . The reference units are 

ordered by the OS-CFAR algorithm, with the complexity of ( )2O 2MN . Then, whether there is a 

target is judged, and the complexity of the decision is ( )O 2M . Then, the decision vectors are fused, 

or the complexity of the criteria is the same as that of the criteria, which is recorded as ( )O M . Finally, 
the Monte-Carlo experiment is carried out, and the complexity coefficient is ln . The total 
computational complexity of different fusion methods combined with different CFAR algorithms is 
shown in Table 2. It can be seen that the computation of the measurement fusion is slightly less than 
that of the decision fusion, and the computation of OS-CFAR is slightly more than that of CA-CFAR. 

Table 2. Total computational complexity. 

Fusion CFAR CA-CFAR OS-CFAR 

Measurement fusion ( )( )O 2 +ln M MN  ( )( )2O 2 +ln M MN  

Decision fusion ( )( )O 3 2+ln M MN  ( )( )2O 3 2+ln M MN  

3.5. Estimation of Target Position Parameters 

In the scenario assumed in this paper, the position of ( )1 t t tT/R , ,x y z  and ( )2 r r rR , ,x y z  is 
known, and the baseline length, 3r , is known, expressed as: 
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( ) ( ) ( )2 2 2
3 t r t r t r= − + − + −r x x y y z z . (29) 

The delay time of the direct wave echo, 1t , can be estimated: 

3
1
rt
c

= , (30) 

where 83 10 m / s= ×c  is the propagation velocity of the electromagnetic wave. 
Converted to the corresponding distance unit, then: 

1
g1 2

=
ctR , (31) 

( )g1 min
z

s

2 −
=

R R
N

cT
, (32) 

where sT  is the sampling time period, minR  is the minimum detection distance and g1R  is the false 
target range parameter. 

According to the geometric relationship in Figure 2, the following equation can be obtained: 

( ) ( ) ( )

( ) ( ) ( )

2 2 2
1 t t t

2 2 2
2 r r r

t
1

t

t
1

1

tan

sin

ϕ

ε

 = − + − + −


= − + − + −
 − = −


− =


r x x y y z z

r x x y y z z

y y
x x
z z
r

, (33) 

where 1ϕ  and 1ε  are the azimuth angle and pitch angle corresponding to the center line of tthte 
transmitter antenna main lobe, respectively. 

The direct wave time is expressed as 1t  and the echo time is expressed as 2t , then: 

( )2 1 1 2 3− = + −c t t r r r . (34) 

By solving Equations (33)–(34), the location information of the target can be obtained, and the 
target location can be carried out according to the estimated parameters. 

4. Simulation Analysis of Target Cooperative Detection 

According to the commonly used data range of the existing equipment working mode, 
simulation parameters were set. The parameters are shown in Table 3. 
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Table 3. Settings of simulation parameters. 

Parameter Description Parameters Value 
Transmitter coordinates ( )t t t, ,x y z  (0,0,8) km 

Receiver coordinates ( )r r r, ,x y z  (80,20,8) km 

Target coordinates ( ), ,x y z  (110,40,2) km 
Transmitter velocity vector tV  (100,10,0) m/s 

Receiver velocity vector rV  (100,10,0) m/s 
Target velocity vector tgV  (−100,−50,0) m/s 

Transmitting signal carrier frequency cf  1 GHz 
Transmission time width pT  30 us 

Transmitted signal bandwidth B  1 MHz 
Pulse repetition frequency rf  3000 Hz 

Pulse number M  64 
Sampling frequency sf  2 MHz 
Signal-to-noise ratio SNR  15 dB 

Signal-to-clutter ratio SCR  −35 dB 
Signal/direct wave power ratio 2K  −15 dB 

Four-pulse cancellation coefficient of MTI h [1 −3 3 −1] 
Number of reference units N 48 
Order values of OS-CFAR k  18 

False alarm probability fp  10−6 

4.1. Analysis of Simulation Results of Single-Base Echo 

According to the settings and simulation parameters, the simulation results of echo and signal 
processing of single-base radar system are shown in Figure 10. Figure 10a is the three-dimensional 
information of the received echo, in which the target signal is completely submerged. Figure 10b is 
the spectrum of the echo signal. It can be seen that the echo Doppler frequencies are mainly 
concentrated in two places, one of which exists from 50 to 200 km, and the power is high, which is 
the clutter Doppler frequency generated by the platform motion. The other is 120 km, with a small 
range of distance and Doppler frequency generated by the relative motion of the platform and the 
target. Figure 10c is the echo signal processed by AMTI. It can be seen that the clutter is well 
suppressed and the target echo signal appears. Figure 10d is the spectrum of the echo signal 
processed by AMTI, and the clutter Doppler is basically suppressed. Theoretically, the SNR gain after 
pulse compression is 14.77 dB, and the two-dimensional and three-dimensional images of the echo 
signal processed by pulse compression are shown in Figure 10e and Figure 10f. After pulse 
compression, the target signal is prominent, and the output SNR is increased. In order to further 
improve the SNR, the theoretical SNR gain after phase-coherent processing is 18.06 dB. Figure 10g and 
Figure 10h are the two-dimensional and three-dimensional images of the echo signal after phase-
coherent accumulation processing, and it can be seen that the target signal is more prominent. Figure 
10i is the result of the CA-CFAR test, and Figure 10j is the result of the OS-CFAR test. The target signal 
is detected when it is above the threshold, and Figure 10k is the decision result. The position parameters 
of the target can be obtained through the geometric relation and radar beam angle. Figure 10l indicates 
the position of the target coordinate obtained by simulation. 

The final positioning error can be obtained by comparing the target position parameters obtained 
by system detection with the actual positioning parameters. The simulation assumes that the 
coordinates of the target position are Tgd = [110 40 2] km, and estimates that the target position are 
Tg1d = [110.1207 40.0439 1.9934] km according to the simulation results; then, the position errors are 
expressed as Δd = [120.7 43.9 −6.6] m, i.e., 0.11%. 
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Figure 10. Cont. 
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(i)  (j) 

 
(k) (l) 

Figure 10. Simulation results of single base radar target echo: (a) Three-dimensional information of 
the echo signal; (b) Spectrum of the echo signal; (c) Echo signal processed by AMTI; (d) Spectrum of 
the echo signal processed by AMTI; (e) Three-dimensional of the echo signal processed by pulse 
compression; (f) Two-dimensional of the echo signal processed by pulse compression; (g) Three-
dimensional of the echo signal after phase-coherent accumulation processing; (h) Two-dimensional 
of the echo signal after phase-coherent accumulation processing; (i) Result of CA-CFAR test; (j) Result 
of OS-CFAR test; (k) Decision result; (l) The position of target coordinate. 
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4.2. Analysis of Simulation Results of Double-Base Echo 

According to the set scene and simulation parameters, the simulation results of the echo and signal 
processing of the bistatic radar system are shown in Figure 11. Figure 11a is the three-dimensional 
information of the received echo, in which the target signal is completely submerged. Figure 11b is the 
spectrum of the echo signal. It can be seen that the echo Doppler frequencies are mainly concentrated 
in four places, two of which exist from 50 to 200 km, and the power is high, which is the clutter Doppler 
frequency generated by the platform motion. The other two exist in a small range, with the Doppler 
frequency generated by the relative motion of the platform and the target and the Doppler frequency 
generated by the direct wave, and the one with higher power is generated by the direct wave. Figure 
11c shows the echo signal processed by AMTI. It can be seen that the clutter is well suppressed while 
the target echo signal appears. Figure 11d is the spectrum of the echo signal processed by AMTI, and 
the clutter Doppler spectrum is basically suppressed. Figure 11e is an echo signal processed by MTI. It 
can be seen that the clutter near the target signal is well suppressed and the target echo signal appears. 
Figure 11f is the spectrum of the echo signal processed by MTI, and the clutter spectrum near zero 
Doppler is basically suppressed and the direct Doppler spectrum is suppressed. Figure 11g and Figure 
11h are respectively two-dimensional and three-dimensional echo signals processed by pulse 
compression. After pulse compression, the target signal is prominent, the output SNR is increased, and 
the direct wave signal is further suppressed. Figure 11i and Figure 11j are two-dimensional and three-
dimensional images of echo signal processed by phase-coherent accumulation. It can be seen that the 
target signal is more prominent, and the influence of the clutter and direct wave is reduced. Figure 11k 
is the result of CA-CFAR detection, and Figure 11l is the result of OS-CFAR detection. The target signal 
is detected when it is above the threshold, and Figure 11m is the decision result. Figure 11n shows the 
target coordinate position obtained by simulation. 

The final positioning error can be obtained by comparing the target position parameters obtained 
by system detection with the actual positioning parameters. The simulation assumes that the 
coordinates of the target position are Tgs = [110 40 2] km, and estimates that the target position is 
Tg1s = [110.099 40.032 1.995] km according to the simulation results; then, the position errors are 
expressed as Δs = [99 32 −4.9] m, i.e., 0.09%. 

(a) (b) 

Figure 11. Cont. 
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(i) (j) 

 
(k) (l) 

 
(m) (n) 

Figure 11. Simulation results of target echo of bistatic radar: (a) Three-dimensional information of the 
echo signal; (b) Spectrum of the echo signal; (c) Echo signal processed by MTI; (d) Spectrum of the 
echo signal processed by MTI; (e) Echo signal processed by AMTI; (f) Spectrum of the echo signal 
processed by AMTI; (g) Three-dimensional echo signal processed by pulse compression; (h) Two-
dimensional echo signal processed by pulse compression; (i) Three-dimensional echo signal after 
phase-coherent accumulation processing; (j) Two-dimensional of the echo signal after phase-coherent 
accumulation processing; (k) Result of CA-CFAR test; (l) Result of OS-CFAR test; (m) Decision result; 
(n) The position of the target coordinate. 
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4.3. Simulation Analysis of CFAR Detection 

For the description of CA-CFAR algorithm and OS-CFAR algorithm in Section 3.3, the 
simulation was performed according to the parameters set previously. The number of reference units 
in CFAR algorithm was set to 48, and the ordinal value of OS-CFAR was set to 18. Assuming that the 
echo power of the single radar and bistatic radar at the target position is equal, the Monte-Carlo 
method was used to calculate the target detection probability under the two algorithms. The 
simulation results are shown in Figure 12. It can be seen from the figure that when the SNR is −8 dB, 
the detection probability of the single radar using the CA-CFAR algorithm is 52.6%, and that of the 
bistatic radar is 72.3%. When using the OS-CFAR algorithm, the detection probability of the single 
radar is 69.5%, and that of the bistatic radar is 77.5%. That is, under the same SNR, the detection 
probability of the OS-CFAR algorithm is higher, and it has more advantages in a clutter background. 
In the design of the distributed architecture in this paper, thte OS-CFAR algorithm is preferred.  

 
Figure 12. Detection performance curve of the CFAR algorithm. 

4.4. Simulation Analysis of Fusion Detection 

According to the simulation results in the previous three sections, it can be found that the 
detection probability of the bistatic radar system is higher when the SNR is lower than −5 dB. In the 
background of clutter, the OS-CFAR algorithm has more advantages. In this paper, the local detection 
adopts the OS-CFAR algorithm. In order to improve the detection probability of the system, the 
received echo of the single radar and the received echo of the bistatic radar after signal processing 
were fused for detection.  

From the simulation results of the ratio of the echo power of single-base radar to the target echo 
power of bistatic radar in Figure 5, it can be known that the value of power is different in different 
scenarios. According to the simulation parameters set in Section 3.1, the single radar detection results 
and bistatic radar detection results were fused and simulated by the Monte-Carlo method to analyze 
the detection probability of the fusion treatment in the following different scenarios. 

4.4.1. 1 1>K  

When the power of the bistatic radar echo at the target position is greater than the power of the 
single radar echo, the detection performance curve obtained by simulation is shown in Figure 13. It 
can be seen from the figure that the detection probability of the three systems is different when the 
SNR is between −15 and −5 dB. When the SNR is −8 dB, the detection probability of the single radar 
echo is 74%, the detection probability of the bistatic radar echo is 92.5%, the fusion detection 
probability of the OR-like fusion rule is 97.9%, and the fusion detection probability of the AND-like 
fusion rule is 68.6%. That is, the detection performance of the double base radar echo is better than 
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that of the single base radar echo at the same SNR, and the detection probability is higher. The 
detection performance curve of the cooperative detection system after fusion detection of the OR-like 
fusion rule is much better than that of the single radar system, but it is only slightly better than that 
of the bistatic radar system. Moreover, the detection performance curve of the cooperative detection 
system after fusion detection of the AND-like fusion rule is much worse than that of the bistatic radar 
system, but it is only slightly worse than that of the single radar system. That is to say, when the 
power of the bistatic radar echo is high, the contribution of the single radar echo signal to fusion 
detection is limited. 

 
(a)  

(b)  (c)  

Figure 13. Bistatic radar echo power is greater than single radar echo power: (a) Detection 
performance curve; (b) Difference value of the detection performance curve with the bistatic radar; (c) 
Difference value of the fusion detection performance curve. 

4.4.2. 1 1=K  

When the dual-base echo power is the same as the single-base echo power at the target location, 
the simulation results of the detection performance curve are shown in Figure 14. It can be seen from 
the figure that the detection probability of the three systems is different when the SNR is between −13 
and −5 dB. When the SNR is −8 dB, the detection probability of the single radar echo is 69.5%, the 
detection probability of the double base echo is 77.5%, the fusion detection probability of the OR-like 
fusion rule is 93.7%, and the fusion detection probability of the AND-like fusion rule is 53.3%. That 
is, under the same SNR, the detection performance of the bistatic radar echo is better than that of the 
single radar echo, and the detection probability is higher. After fusion detection of the OR-like fusion 
rule, the detection performance curve is better than that of the bistatic radar system and single radar 

-15 -10 -5 0
SNR

0

0.2

0.4

0.6

0.8

1

Single radar
Bistatic radar
Measurement-fusion(OR)
Decision-fusion(OR)
Measurement-fusion(AND)
Decision-fusion(AND)

-15 -10 -5 0
SNR

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Measurement-fusion(OR)
Decision-fusion(OR)
Measurement-fusion(AND)
Decision-fusion(AND)

-15 -10 -5 0
SNR

-0.01

-0.005

0

0.005

0.01
OR-like fusion rule
AND-like fusionrule



Sensors 2019, 19, 5341 22 of 25 

 

system. Additionally, for the AND-like fusion rule, the detection performance curve is worse than 
that of the bistatic radar system and single radar system. 

 
(a)  

(b)  (c)  

Figure 14. Single and double base target echo signal power is the same: (a) Detection performance 
curve; (b) Difference value of the detection performance curve with a bistatic radar; (c) Difference 
value of the fusion detection performance curve. 

4.4.3. 1 1<K  

When the bistatic radar echo power at the target position is greater than the single radar echo 
power, the detection performance curve obtained by simulation for this is shown in Figure 15. It can 
be seen from the figure that the detection probability of the three systems is different when the SNR 
is between −13 and −5 dB. When the SNR is −8 dB, the detection probability of the single radar echo 
is 70.2%, the detection probability of the double base echo is 53.1%, the fusion detection probability 
of the OR-like fusion rule is 86.1%, and the fusion detection probability of the AND-like fusion rule 
is 37.2%. That is, under the same SNR, the detection performance of the single radar echo is better 
than that of the bistatic radar echo, and the detection probability is higher. After fusion detection 
of the OR-like fusion rule, the detection performance curve is better than that of the bistatic radar 
system and single radar system. Additionally, for the AND-like fusion rule, the detection 
performance curve is worse than that of the bistatic radar system and single radar system. 
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(a)  

  

(b)  (c)  

Figure 15. Single radar echo power is greater than bistatic radar echo power: (a) Detection 
performance curve; (b) Difference value of the detection performance curve with a single radar; (c) 
Difference value of the fusion detection performance curve. 

According to the simulation analysis of the above three different situations, the results are as 
follows. For the fusion rules, there is a OR-like fusion rule and AND-like fusion rule, where the 
detection probability under the OR-like fusion rule is high, and the performance of dual sensors is 
improved comprehensively. The detection probability is low under the AND-like fusion rule, and the 
dual sensor system becomes a single sensor detection, that is, the “degradation” of the AND-like 
fusion under the non-uniform SNR. Compared with AND-like fusion, OR-like fusion basically has 
no degradation problem. The detection condition of one sensor in the dual sensor is very poor, and 
the detection performance of the dual sensor is better than that of the single sensor.  

In the distributed cooperative detection system, OR-like fusion can make full use of the detection 
ability of each sensor, reflecting the performance advantage of cooperative detection. In this paper, 
the cooperative detection system of two platforms was mainly designed. The main consideration is 
to improve the detection probability of enemy targets as much as possible, making full use of the 
detection ability of each sensor as much as possible, and the complementary performance of a single 
radar and bistatic radar in the detection area. Therefore, the detection performance under the OR-like 
fusion rule was mainly considered in the design. 

5. Conclusions 

In this paper, the dual platform cooperative detection system was taken as the research object. 
We studied the signal processing and target fusion detection of an airborne cooperative detection 
system under the clutter condition. First, we constructed a dual platform cooperative detection 
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system geometric model, which can form a single radar and bistatic radar system, respectively, and 
then signal processing. Clutter suppression was achieved by AMTI. Then, the AMTI, pulse 
compression, and phase-coherent accumulation were used to suppress the direct wave to suppress 
the influence of the false target generated by the direct wave during target detection. Finally, the echo 
received by the two receivers was used for fusion detection to improve the detection performance of 
the target. The experimental results based on the simulated data demonstrated that: 1) The bistatic 
radar system with a split transceiver had a larger detection distance than the single radar system, but 
the influence of the clutter was greater; 2) the direct wave could be eliminated effectively, and no 
false target could be formed after suppression; 3) the detection probability of the bistatic radar system 
with split transceivers was higher than that of the single radar system; and 4) the detection probability 
of signal fusion detection based on two receivers was higher than that of the bistatic radar system 
and single radar system. The dual platform cooperative detection system constructed in this paper 
has the advantages of a bistatic radar system and single radar system. The detection range was 
extended and the detection performance improved. 

As for further research approaches, a comparative analysis of different fusion detection methods 
will be conducted to identify a better fusion detection method. In addition, we will contact the 
relevant departments to design the actual flight test and verify the effectiveness of the structure and 
method designed in this manuscript. 
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