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Abstract: The rapid development of sensor technology gives rise to the emergence of huge amounts
of tensor (i.e., multi-dimensional array) data. For various reasons such as sensor failures and
communication loss, the tensor data may be corrupted by not only small noises but also gross
corruptions. This paper studies the Stable Tensor Principal Component Pursuit (STPCP) which
aims to recover a tensor from its corrupted observations. Specifically, we propose a STPCP model
based on the recently proposed tubal nuclear norm (TNN) which has shown superior performance
in comparison with other tensor nuclear norms. Theoretically, we rigorously prove that under
tensor incoherence conditions, the underlying tensor and the sparse corruption tensor can be stably
recovered. Algorithmically, we first develop an ADMM algorithm and then accelerate it by designing
a new algorithm based on orthogonal tensor factorization. The superiority and efficiency of the
proposed algorithms is demonstrated through experiments on both synthetic and real data sets.

Keywords: tensor principal component pursuit; stable recovery; tensor SVD; ADMM

1. Introduction

In recent years, different types of tensor data have emerged with the significant progress of
modern sensor technology, such as color images [1], videos [2], functional MRI data [3], hyper-spectral
images [4], point could data [5], traffic stream data [6], etc. Thanks to its multi-way nature, tensor-based
methods have natural superiority over vector and matrix-based methods in analyzing and processing
ubiquitous modern multi-way data, and have found extensive applications in computer vision [1,7],
data mining [5], machine learning [2], signal processing [8], to name a few. In real applications,
the acquired tensor data may often suffer from noises and gross corruptions owing to many different
reasons such as sensor failure, lens pollution, communication interference, occlusion in videos,
or abnormalities in a sensor network [9], etc. At the same time, many real-world tensor data, such
as face images or videos, have been shown to have some low-dimensional structure and can be well
approximated by a smaller number of “principal components” [8]. Then, a question naturally arises:
how to pursue the principal components of an observed tensor data in the presence of both noises and
gross corruptions? We will answer this question in this paper and refer to the proposed methodology
as Stable Tensor Principal Component Pursuit (STPCP).

The tensor low-rankness is an ideal model of the property that a tensor data can be well
approximated by a small number of principal components [8]. In the last decade, low-rank tensor
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models have attracted much attention in many fields [10]. There are multiple low-rank tensor
models since there exist different definitions of tensor rank. Among these models, the low CP rank
model [11] and the low Tucker rank model [1] should be the most famous two. The low CP rank
model approximates the underlying tensor by the sum of a small number of rank-1 tensors, whereas
the low Tucker rank model assumes the unfolding matrix along each mode are low rank. To estimate
an unknown low-rank tensor from corrupted observations, it is a natural option to consider the rank
minimization problem which chooses the tensor of lowest rank as the solution from a certain feasible
set. However, tensor rank minimization, even in its 2-way (matrix) case, is generally NP-hard [12] and
even harder in higher-way cases [13]. For tractable solutions, researchers turn to a variety of convex
surrogates for tensor rank [1,14–18] to replace the tensor rank in rank minimization problem. Methods
based on surrogates for the tensor CP rank and Tucker rank have been extensively explored in both
the theoretical side and the application side [14,17,19–24].

Recently, the low-tubal-rank model [16,25] has shown better performance than traditional
tensor low-rank models in many tensor recover tasks such as image/video inpainting/denoising/
sensing [2,25,26], moving object detection [27], multi-view learning [28], seismic data completion [29],
WiFi fingerprint [30], MRI imaging [16], point cloud data inpainting [31], and so on. The tubal rank
is a new complexity measure of tensor defined through the framework of tensor singular value
decomposition (t-SVD) [32,33]. At the core of existing low-tubal-rank models is the tubal nuclear norm
(TNN) which is a convex surrogate for the tubal rank. In contrast to CP-based tensor nuclear norms or
Tucker-based tensor nuclear norms which models low-rankness in the original domain, TNN models
low-rankness in the Fourier domain. It is pointed out in [25,34,35] that TNN has superiority over
traditional tensor nuclear norms in exploiting the ubiquitous “spatial-shifting” property in real-world
tensor data.

Inspired by the superior performance of TNN, this paper adopts TNN as a low-rank regularizer in
the proposed STPCP model. Specifically, the proposed STPCP aims to estimate the underlying tensor
data L0 ∈ Rn1×n2×n3 from an observation tensor M polluted by both small dense noises and sparse
gross corruptions as follows

M = L0 + S0 + E0, (1)

where S0 is a tensor denoting the sparse corruptions and E0 is a tensor representing small dense noises.
Model (1) is also known as robust tensor decomposition in [36,37].

Our STPCP model is first formulated as a TNN-based convex problem. Then, our theoretical
analysis gives upper bound on the estimation error of L0 and S0. In contrast to the analysis in [37],
the proposed STPCP can exactly recovery the underlying tensor L0 and the sparse corruption tensor S0
when the noise term E0 vanishes. For efficient solution of the proposed STPCP model, we develop
two algorithms with extensions to a more challenging scenario where missing observations are also
considered. The first algorithm is an ADMM algorithm and the second algorithm accelerates it using
tensor factorization. Experiments show the effectiveness and the efficiency of the designed algorithms.

We organize the rest of this paper as follows. In Section 2, we briefly introduce basic preliminaries
for t-SVD and some related works. The proposed STPCP model is formulated and analyzed
theoretically in Section 3. We design two algorithms in Section 4 and report experimental results in
Section 5. This work is concluded in Section 6. The proofs of theorems, propositions, and lemmas are
given in the appendix.

2. Preliminaries and Related Works

In this section, some preliminaries of t-SVD are first introduced. Then, the related works
are presented.

Notations. We denote vectors by bold lower-case letters, e.g., a ∈ Rn, matrices by bold upper-case
letters, e.g., A ∈ Rn1×n2 , and tensors by underlined upper-case letters, e.g., A ∈ Rn1×n2×n3 . For a
given 3-way tensor, we define its fiber as a vector given through fixing all indices but one, and its
slice as a matrix obtained by fixing all indices but two. For a given 3-way tensor A, we use Aijk to



Sensors 2019, 19, 5335 3 of 33

denote its (i, j, k)-th element; A(k) := A(:, :, k) is used to denote its k-th frontal slice. Ã is used to
denote the tensor after performing 1D Discrete Fourier Transformation (DFT) on all tube fibers A(i, j, :)
of T, ∀i = 1, 2, · · · , n1, j = 1, 2, · · · , n2, which can be efficiently computed by the Matlab command
Ã = fft(A, [], 3). We use dft3(·) and idft3(·) to represent the 1D DFT and inverse DFT along the tube
fibers of 3-way tensors, i.e., dft3(A) := fft(A, [], 3), idft3(A) := ifft(A, [], 3).

For a given matrix M ∈ Rn1×n2 , define the nuclear norm and spectral norm of M respectively as

‖M‖∗ :=
p

∑
i=1

σi(M), and ‖M‖sp := max{σi(M)},

where p = min{n1, n2}, and σ1(M) ≥ · · · ≥ σp(M) are the singular values of M in a non-ascending
order. The l0-norm, l1-norm, Frobenius norm, l∞-norm of a tensor A ∈ Rn1×n2×n3 is defined as

‖A‖0 := ∑
ijk

1(Aijk 6= 0), ‖A‖1 := ∑
ijk
|Aijk|, ‖A‖F :=

√
∑
ijk

A2
ijk, ‖A‖∞ := max

ijk
|Aijk|,

where 1(C) is an indicator function whose value is 1 if the condition C is true, and 0 otherwise.
Given two matrices A = (aij) ∈ Cn1×n2 , B = (bij) ∈ Cn1×n2 , we define their inner product

as follows
〈A, B〉 = tr(AHB) = ∑

ij
āijbij,

where AH denotes conjugate transpose of matrix A and āij denotes the conjugation of complex number
aij. Given two 3-way tensors A, B ∈ Rn1×n2×n3 , we define their inner product as follows

〈A, B〉 := ∑
ijk

AijkBijk.

2.1. Tensor Singular Value Decomposition

We first define 3 operators based on block matrices which are introduced in [33]. For a given
3-way tensor A ∈ Rn1×n2×n3 , we define its block vectorization bvec(·) and the inverse operation
bvfold(·) in the following equation:

bvec(A) :=


A(1)

A(2)

...
A(n3)

∈ Rn1n3×n2 , bvfold(bvec(A)) = A.

We further define the block circulant matrix bcirc(·) of any 3-way tensor A ∈ Rn1×n2×n3 as follows:

bcirc(A) :=


A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
. . . . . .

...
A(n3) A(n3−1) · · · A(1)

 ∈ Cn1n3×n2n3

Equipped with above defined operators, we are now in a position to define the t-product of
3-way tensors.

Definition 1 (t-product [33]). Given two tensors A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 , the t-product of A
and B is a new 3-way tensor C with size n1 × n4 × n3:

C = A ∗ B =: bvfold (bcirc(A)bvec(B)) . (2)
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A more intuitive interpretation of t-SVD is as follows [33]. If we treat a 3-way tensor
A ∈ Rn1×n2×n3 as a matrix of size n1 × n2 whose entries are the tube fibers, then the tensor t-product
can be analogously understood as the “matrix multiplication” where the standard scalar product is
replaced with the vector circular convolution between the tubes (i.e., vectors):

C = A ∗ B⇔ C(i, j, :) =
n2

∑
k=1

A(i, k, :) ? B(k, j, :), ∀i = 1, 2, · · · , n1, j = 1, 2, · · · , n4, (3)

where ? represent the operation of circular convolution [33] of two vectors a, b ∈ Rn3 defined as
(a ? b)j = ∑n3

k=1 akb1+(j−k)modn3
.

We also define the block diagonal matrix bdiag(·) of any 3-way tensor A ∈ Rn1×n2×n3 and its
inverse bdfold(·) as follows

bdiag(A) :=


A(1)

. . .
A(n3)

∈ Rn1n3×n2n3 , bdfold(bdiag(A)) = A.

We also use A (or A) to denote the block diagonal matrix of tensor Ã = dft3(A) (i.e., the Fourier
version of A) i.e.,

A = bdiag(Ã) :=


Ã
(1)

. . .

Ã
(n3)

∈ Cn1n3×n2n3 .

Then the relationship between DFT and circular convolution further indicates that the conducting
t-product in the original domain is equivalent to performing standard matrix product on the Fourier
block diagonal matrices [33]. Since matrix product on the Fourier block diagonal matrices can
be parallel written as matrix product of all the frontal slices in the Fourier domain, we have the
following relationships

C = A ∗ B⇔ C = AB⇔ C̃
(k)

= Ã
(k)

B̃
(k)

, k = 1, 2, · · · , n3. (4)

The relationship between the t-product and FFT also indicates that the inner product of two 3-way
tensors A, B ∈ Rn1×n2×n3 and the inner product of their corresponding Fourier block diagonal matrices
A, B ∈ Cn1n3×n2n3 satisfy the following relationship

〈A, B〉 = 1
n3

〈
Ã, B̃

〉
=

1
n3

〈
A, B

〉
.

When A = B = X, one has

‖X‖F =
1√
n3
‖X‖F.

We further define the concepts of tensor transpose, identity tensor, f-diagonal tensor and
orthogonal tensor as follows.

Definition 2 (tensor transpose [33]). Given a tensor A ∈ Rn1×n2×n3 , then define its transpose tensor A> of
size n2 × n1 × n3 which can be formed through first transposing all the frontal slices of A and then exchanging
each k-th transposed frontal slice with the (n3 + 2− k)-th transposed frontal slice for all k = 2, 3, · · · , n3.
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For example, consider 3-way tensor A = [A(1)|A(2)|A(3)|A(4)] ∈ Rn1×n2×4 with 4 frontal slices,
the tensor transpose A> of A is

A> = [(A(1))>|(A(4))>|(A(3))>|(A(2))>] ∈ Rn2×n1×4.

Definition 3 (identity tensor [33]). The identity tensor I ∈ Rn×n×n3 is a tensor whose first frontal slice is the
n-by-n identity matrix with all other frontal slices are zero matrices.

Definition 4 (f-diagonal tensor [33]). We call a 3-way tensor f-diagonal if all the frontal slices of it are
diagonal matrices.

Definition 5 (orthogonal tensor [33]). We call a tensor Q ∈ Rn×n×n3 an orthogonal tensor if the following
equations hold:

Q> ∗Q = Q ∗Q> = I.

Then, the tensor singular value decomposition (t-SVD) can be given as follows.

Definition 6 (Tensor singular value decomposition, and Tensor tubal rank [38]). Given any 3-way tensor
X ∈ Rn1×n2×n3 , then it has the following factorization called tensor singular value decomposition (t-SVD)

X = U ∗ Σ ∗V>, (5)

where the left and right factor tensors U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal, and the middle
tensor Σ ∈ Rn1×n2×n3 is a rectangular f -diagonal tensor.

A visual illustration for the t-SVD is shown in Figure 1. It can be computed efficiently by FFT and
IFFT in the Fourier domain according to Equation (4). For more details, see [2].

Figure 1. A visual illustration of t-SVD.

Definition 7 (Tensor tubal rank [38]). The tensor tubal rank of any 3-way tensor X ∈ Rn1×n2×n3 is defined
as the number of non-zero tubes of Σ in its t-SVD shown in Equation (5), i.e.,

rtubal(A) := ∑
i
1(Σ(i, i, :) 6= 0). (6)

Definition 8 (Tubal average rank [38]). The tubal average rank ra(A) of any 3-way tensor A ∈ Rn1×n2×n3

is defined as the averaged rank of all frontal slices of Ã as follows,

ra(A) :=
1
n3

n3

∑
k=1

rank
(

Ã
(k)
)

. (7)
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Definition 9 (Tensor operator norm [2,38]). The tensor operator norm ‖F‖op of any 3-way tensor
F ∈ Rn1×n2×n3 is defined as follows

‖F‖op := sup
‖A‖F≤1

‖F ∗A‖F. (8)

The relationship between t-product and FFT indicates that

‖F‖op := sup
‖A‖F≤1

‖F ∗A‖F = sup
‖A‖F≤

√
n3

‖F ·A‖F = ‖A‖sp. (9)

Definition 10 (Tensor spectral norm [38]). The tensor spectral norm ‖A‖sp of any 3-way tensor
F ∈ Rn1×n2×n3 is defined as the matrix spectral norm of A, i.e.,

‖A‖sp := ‖A‖sp. (10)

We further define the tubal nuclear norm.

Definition 11 (Tubal nuclear norm [2]). For any tensor A ∈ Rn1×n2×n3 with t-SVD A = U ∗ Σ ∗ V>,
the tubal nuclear norm (TNN) of A is defined as

‖A‖TNN := 〈Σ, I〉 =
r

∑
i=1

Σ(i, i, 1), (11)

where r = rtubal(A).

To understand the tubal nuclear norm, first note that

rtubal(A) = ∑i 1(Σ(i, i, :) 6= 0)
(i)
= ∑i 1(Σ̃(i, i, :) 6= 0)

(ii)
= ∑i 1(‖Σ̃(i, i, :)‖1 6= 0)

(iii)
= ∑i 1(Σ(i, i, 1) 6= 0), (12)

where (i) holds because of the definition of DFT [2], (ii) holds by the property of l1-norm, and (iii)
is a result of DFT [2]. Thus, the tubal rank of A is also the number of non-zero diagonal elements
of Σ(i, i, 1), i.e., the first frontal slice of tensor Σ in the t-SVD of A. Similar to the matrix singular
values, the values Σ(i, i, 1), i = 1, 2, · · · , n3 are also called the singular values of tensor A. As the matrix
nuclear norm is the sum of matrix singular values, the tubal nuclear norm can be similarly understood
as the sum of tensor singular values.

One can also verify by the property of DFT [2] that

‖A‖TNN =
r

∑
i=1

Σ(i, i, 1) =
n3

∑
k=1

r

∑
i=1

Σ̃(i, i, k) =
1
n3

n3

∑
k=1
‖Ã(k)‖∗ =

1
n3
‖A‖∗, (13)

which indicates that the TNN of A ∈ Rn1×n2×n3 is also the averaged nuclear norm all frontal slices of
Ã. Thus, TNN indeed models the low-rankness of Fourier domain.

Now, we will show that the low-tubal-rank model is ideal to some real-world tensor data, such as
color images and videos.

First, we consider a natural image of size 256× 256× 3, shown in Figure 2a. In Figure 2b, we plot
the distribution of its singular values, i.e., the values of Σ(i, i, 1) along with the index i. As can be seen
from Figure 2b, there are only a small number of singular values with large magnitude, and most of
the singular values are close to 0. Then, we can say that some natural color images are approximately
low tubal rank.
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(a) (b)

Figure 2. The distribution of tensor singular values Σ(i, i, 1) in a natural color image. (a) the sample
image, (b) the distribution of Σ(i, i, 1).

Then, consider a commonly used YUV sequence Mother-daughter_qcif (These data can be download
from the following link https://sites.google.com/site/subudhibadri/fewhelpfuldownloads.) whose
first frame is shown in Figure 3a. We use the Y components of the first 30 frames, and get a tensor
of size 144× 176× 30 and show the distribution of tensor singular values in Figure 3b. We can see
from Figure 3b that similar to Figure 2b, there are only a small number of singular values with large
magnitude, and most of the singular values are close to 0. Then, we can say that some videos can be
well approximately low tubal rank.

(a) (b)

Figure 3. The distribution of tensor singular values Σ(i, i, 1) in a video sequence. (a) the first frame of
the video, (b) the distribution of Σ(i, i, 1).

For TNN and tensor spectral norm, we highlight the following two lemmas.

Lemma 1. [2] TNN is the convex envelop of the tensor average rank in the unit ball of tensor spectral norm
{T ∈ Rn1×n2×n3 |‖T‖sp ≤ 1}.

Lemma 2. [2] The TNN and the tensor spectral norm are dual norms to each other.

2.2. Related Works

In this subsection, we briefly introduce some related works. The proposed STPCP is tightly related
to the Tensor Robust Principal Component Analysis (TRPCA) which aims to recover a low-rank tensor
L0 and a sparse tensor S0 from their sum M = L0 + S0. This is a special case of our measurement
Model (1) where the noise tensor E0 is a zero tensor.

https://sites.google.com/site/subudhibadri/fewhelpfuldownloads
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In [39], the SNN-based TRPCA model is proposed by modeling the underlying tensor as a low
Tucker rank one

min
L,S
‖L‖SNN + ‖S‖1 s.t. L + S = M, (14)

where SNN (Sum of Nuclear Norms) is defined as ‖L‖SNN :=
K
∑

i=1
αk‖L(k)‖∗, where αk > 0 and L(k) is

the mode-k matricization of L [40].
Model (14) indeed assumes the underlying tensor to be low Tucker rank, which can be too strong

for some real tensor data. The TNN-based TRPCA model uses TNN to impose low-rankness in the
final solution L as follows

min
L,S
‖L‖TNN + λ‖S‖1 s.t. L + S = M. (15)

As shown in [2], when the underlying tensor L0 satisfy the tensor incoherent conditions, by solving
Problem (15), one can exactly recover the underlying tensor L0 and S0 with high probability with
parameter λ = 1/

√
max{n1, n2}n3.

When the noise tensor E0 is not zero, the robust tensor decomposition based on SNN is proposed
in [36] as follows

min
L,S

1
2
‖M− L− S‖F + λ1‖L‖SNN + λ2‖S‖1, (16)

where λ1 and λ2 are positive regularization parameters. The estimation error on L and S is analyzed
with an upper bound in [36].

In [37], the TNN-based RTD model is proposed as follows

min
L,S

1
2
‖M− L− S‖F + λ1‖L‖TNN + λ2‖S‖1, s.t.‖L‖∞ ≤ α, (17)

where α is an upper estimate of l∞-norm of the underlying tensor L0. An upper bound on the estimation
error is also established. However, in the analysis of Model (17), the error does not vanish as the noise
tensor E0 vanishes which means the analysis cannot guarantee exact recovery in the noiseless setting
(which can be provided by the analysis of TNN-based TRPCA (15) by Lu et al. [2]).

The Bayesian approach is also used for robust tensor recovery. The CP decomposition under
sparse corruption and small dense noise is considered [41], and tensor rank estimation is achieved
using Bayesian approach. In [42], CP decomposition under missing value and small dense noise is
considered with rank estimation similar to [41]. A sparse Bayesian CP model is proposed in [43] to
recover a tensor with missing value, outliers and noises. In [44], a fully Bayesian treatment is proposed
to recover a low-tubal-rank tensor corrupted by both noises and outliers.

3. Theoretical Guarantee for Stable Tensor Principal Component Pursuit

In this section, we formulate the proposed STPCP model and give the main theoretical result
which upper bounds the estimation error and guarantees exact recovery in the noiseless setting.

3.1. The Proposed STPCP

As for the measurement Model (1), we further assume that the noise tensor E0 has bounded
energy measured in F-norm, i.e., ‖E0‖F ≤ δ. Please note that the limited energy assumption is very
mild, since most signals are of limited energy.

To recover the low-rank tensor L0 and the sparse tensor S0, we first produce the following
optimization problem:

(L̂, Ŝ) = argmin
L,S

‖L‖TNN + λ‖S‖1, s.t. ‖M− L− S‖F ≤ δ, (18)
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where λ is a positive parameter balancing the two regularizers. The motivation is to use TNN as a
low-rank regularization term to exploit the low-dimensional structure in the signal tensor, whereas
tensor l1-norm is used to impose sparsity in the corruption tensor (since we assumes it to be sparse).

The relationship between Model (18) and existing models are discussed in Remark 1 and Remark 2.

Remark 1. The following models can be seen as special cases as the proposed STPCP Model (18);

(I). When δ = 0, i.e., in the noiseless case, the proposed model degenerates to the TRPCA Model (15) [2].
(II). When n3 = 1, then the stable tensor PCP Model (18) degenerates to the Stable Principal Component

Pursuit (SPCP) [45] which aims to pursuit the principal components modeled by low-rank matrix L0
from it observation M corrupted by both noises E0 and sparse corruptions S0. The SPCP is formulated as
follows

min
L,S
‖L‖∗ + λ‖S‖1, s.t. ‖M− L− S‖F ≤ δ. (19)

(III). When n3 = 1 and δ = 0, the proposed STPCP further degenerates to Robust Principal Component
Analysis (RPCA) [46] given as follows

min
L,S
‖L‖∗ + λ‖S‖1, s.t. L + S = M. (20)

Remark 2. The differences from the proposed Model (18) and TNN-based RTD Model (17 [37]) is as follows.
First, our model does not need to upper estimate the l∞-norm of the underlying tensor. Second, our model is a
constrained optimization problem, whereas Model (17) is an unconstrained optimization problem.

3.2. A Theorem for Stable Recovery

To analyze the statistical performance of Model (18), we should assume on the underlying
low-rank tensor L0 that it is not sparse. Only by this assumption, L0 can be identified from its mixture
with sparse S0. Such an assumption can be described by the tensor incoherence condition [2,47], which
is used to provide an identifiablility for low-rank L0.

Definition 12 (Tensor incoherence condition [2,47]). Given a 3-way tensor T ∈ Rn1×n2×n3 with tubal rank
r, suppose it has the skinny t-SVD T = U ∗ Λ ∗ V>, where U ∈ Rn1×r×n3 , V ∈ Rr×n2×n3 are orthogonal
tensors, and Λ ∈ Rr×r×n3 is an f -diagonal tensor. Then, T is said to satisfy the tensor incoherent condition
(TIC) with parameter µ(T) if the following inequalities hold

max
i∈[n1]

‖U> ∗ e̊i‖F ≤
√

rµ(T)
n1n3

, (21)

max
j∈[n2]

‖V> ∗ e̊j‖F ≤
√

rµ(T)
n2n3

, (22)

‖U ∗V>‖∞ ≤
√

rµ(T)
n1n2n3

. (23)

where e̊i ∈ Rn1×1×n3 is a tensor column basis with only the (i, 1, 1)-th element being 1 and all the others being
0, and e̊j ∈ Rn2×1×n3 is also a tensor column basis with only the (j, 1, 1)-th element being 1 and all the others
being 0.

Assumption 1. Suppose the true tensor L0 in the measurement model (1) satisfies tensor incoherence condition
with parameter µ.

Assumption 1 intrinsically ensures that the row bases and column bases of L0 do not align well
with the canonical row and column bases. Thus, the low-rank L0 is not sparse, which avoids the
ambiguity that low-rank component can also be sparse in the measurement Model (1).

We should also force the sparse component in Model (1) is not low rank.
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Assumption 2. Assume the support Ω of S0 is drawn uniformly at random.

Now we can establish an upper bound on the estimation error of L̂ and Ŝ in Problem (18).

Theorem 1 (An Upper Bound on the Estimation Error). Suppose L0 and S0 satisfy Assumption 1 and
Assumption 2, respectively. If the tubal rank r of L0 and the sparsity (i.e., the l0-norm) s of S0 are respectively
upper bounded as follows

r ≤ cr min{n1, n2}
µ log2(n3 max{n1, n2})

, and s ≤ csn1n2n3 (24)

where cl and cs are two sufficiently small numerical constants independent on the dimensions n1, n2 and n3.
Then the estimator defined in Model (18) satisfy the following inequalities

‖L̂− L0‖F ≤
(√

1 +
1

max{n1, n2}
+ 8(1 + 2

√
2)
√

min{n1, n2}n3

)
δ

‖Ŝ− S0‖F ≤
(√

1 + max{n1, n2}+ 8(1 + 2
√

2)
√

n1n2n3

)
δ,

(25)

with probability at least 1− c1(n3 max{n1, n2})−c2 (over the choice of support of S0), where c1 and c2 are
positive constants independent on the dimensions n1, n2 and n3.

The proof of Theorem 1 are given in the appendix. In Theorem 1, estimation errors on L0 and S0
are separately established. It indicates that the estimation error scales linearly with the noise level δ,
which is in consistence with the result in [37].

Remark 3. A significant progress over [37] is that in the noiseless setting where E0 vanishes, our analysis
can provide exact recovery guarantee of L0 and S0. This is because the tensor incoherence condition adopted in
our analysis intrinsically ensures that the low-rank tensor L0 is not sparse and thus can be separated from the
sparse corruption tensor, whereas the non-spiky condition adopted in [37] fails to provide identifiability in the
measurement Model (1).

For Theorem 1, we also give the following remark.

Remark 4. The error bounds established in Theorem 1 are consistent with the theoretical analysis for the special
cases shown in Remark 1.

(I). When δ = 0, i.e., in the noiseless case, the error bounds in Theorem 1 will vanish, which means exact
recovery of L0 and S0 can be guaranteed. This result is consistent with the analysis in [2] for TNN-based
TRPCA Model (15).

(II). When n3 = 1, the error bound on the sparse component in Theorem 1 is consistent with the error bound
shown in Equation (8) of [45]. The upper bound on error of the low-rank component in Theorem 1 is
sharper than that given in Equation (8) of [45].

(III). When n3 = 1 and δ = 0, the proposed STPCP has consistent theoretical guarantee with the analysis of
RPCA [46].

4. Algorithms

In this section, we design two algorithms. The first algorithm is based on the framework of
ADMM [48] which has been extensively used in convex optimization with good convergence behavior.
However, ADMM requires full SVDs on large matrices in each iteration which is high computational
burden in high-dimensional settings. Thus, the second algorithm is proposed to solve this issue by
using a factorization trick which can instead conducting SVDs on much smaller matrices.
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4.1. An ADMM Algorithm

The proposed estimator (18) is equivalent to the following unconstrained problem:

min
L,S

1
2
‖L + S−M‖2

F + γ(‖L‖TNN + λ‖S‖1), (26)

where γ is a positive parameter balancing the data fidelity term and the regularization term.
Besides being corrupted by noises and outliers, the observed tensor M may also suffer from

missing entries which can be taken as outliers with known positions in many applications. Thus, it is
more practical to consider the recovery of L0 against outliers S0, noises E0 and missing entries shown
in the following measurement model

M = B� (L0 + S0 + E0), (27)

where tensor B ∈ Rn1×n2×n3 denote the missing mask where Bijk = 1, if the (i, j, k)-th entry of L is
observed and Bijk = 0 otherwise, and� denotes element-wise multiplication. Taking into consideration
of missing entries, Model (26) can be further modified as:

min
L,S

1
2
‖B� (L + S−M)‖2

F + γ(‖L‖TNN + λ‖S‖1). (28)

By adding auxiliary variables to Problem (28), we obtain

min
K,L,R,S

1
2
‖B� (L + S−M)‖2

F + γ‖K‖TNN + γλ‖R‖1

s.t. K = L, R = S.
(29)

The Augmented Lagrangian (AL) of Problem (29) is given as follows

Lρ(L, S, K, R, Y1, Y2) =
1
2
‖B� (L + S−M)‖2

F + γ‖K‖TNN + γλ‖R‖1

+ 〈Y1, K− L〉+ ρ

2
‖K− L‖2

F + 〈Y2, R− S〉+ ρ

2
‖R− S‖2

F,
(30)

where Y1, Y2 ∈ Rn1×n2×n3 are Lagrangian multipliers and ρ is a penalty parameter.
According the strategy of ADMM, we update prime variables (L, S) and (K, R) by alternative

minimization of AL in Problem (29) as follows

• Update (L, S). We update (L, S) by minimizing Lρ with other variables fixed as follows

(Lt+1, St+1)

= argmin(L,S) Lρ(L, S, Kt, Rt, Yt
1, Yt

2)

= argmin(L,S)
1
2‖B� (L + S−M)‖2

F +
〈
Yt

1, Kt − L
〉
+ ρ

2‖K
t − L‖2

F +
〈
Yt

2, Rt − S
〉
+ ρ

2‖R
t − S‖2

F.

(31)

Taking derivatives of the right-hand side of Equation (31) with respect to L and S respectively,
and setting the results zero, we obtain

B� (Lt+1 + St+1)− B�M− Yt
1 + ρ(Lt+1 −Kt) = 0

B� (Lt+1 + St+1)− B�M− Yt
2 + ρ(St+1 − Rt) = 0.

(32)
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Resolving the above equation group yields

Lt+1 =
(
ρ(B + ρ1)�Kt + ρB�M + (B + ρ1)� Yt

1 − B� Yt
2 − ρB� Rt)� (ρ(2B + ρ1)) ,

St+1 =
(
ρ(B + ρ1)� Rt + ρB�M + (B + ρ1)� Yt

2 − B� Yt
1 − ρB�Kt)� (ρ(2B + ρ1)) ,

(33)

where � denotes entry-wise division and 1 denotes the tensor all whose entries are 1.
• Update (K, R). We update (K, R) by minimizing Lρ with other variables fixed as follows

(Kt+1, Rt+1)

= argmin(K,R) Lρ(Lt+1, St+1, K, R, Yt
1, Yt

2)

= argmin(K,R) γ‖K‖TNN + γλ‖R‖1 +
〈

Yt
1, K− Lt+1

〉
+ ρ

2‖K− Lt+1‖2
F +

〈
Yt

2, R− St+1
〉
+ ρ

2‖R− St+1‖2
F.

(34)

Please note that Problem (34) can further be solved separately as follows

Kt+1 = argmin
K

γ‖K‖TNN +
〈

Yt
1, K− Lt+1

〉
+

ρ

2
‖K− Lt+1‖2

F

= S
‖·‖TNN
γρ−1

(
Lt+1 − ρ−1Yt

1

)
.

(35)

and
Rt+1 = argmin

R
γλ‖R‖1 +

〈
Yt

1, R− St+1
〉
+

ρ

2
‖R− St+1‖2

F

= S
‖·‖1
γλρ−1

(
St+1 − ρ−1Yt

2

)
,

(36)

where S
‖·‖TNN
τ (·) is the proximity operator of TNN [5]. and S

‖·‖1
τ (·) is the proximity operator of

tensor l1-norm given as follows [49]:

S
‖·‖1
τ (A) := argmin

X
τ‖X‖1 +

1
2
‖X−A‖2

F = sign(A)�max{(|A| − τ, 0},

In [5], a closed-form expression of Sτ(·) is given as follows:

Lemma 3 (Proximity operator of TNN [5]). For any 3D tensor A ∈ Rn1×n2×n3 with reduced t-SVD
A = U ∗Λ ∗V>, where U ∈ Rn1×r×n3 and V ∈ Rn2×r×n3 are orthogonal tensors and Λ ∈ Rr×r×n3 is
the f-diagonal tensor of singular tubes, the proximity operator S‖·‖TNN

τ (A) at A can be computed by:

S
‖·‖TNN
τ (A) := argmin

X
τ‖X‖TNN +

1
2
‖X−A‖2

F = U ∗ ifft3(max(fft3(Λ)− τ, 0)) ∗V>,

• Update (Y1, Y2). The Lagrangian multipliers are updated by gradient ascent as follows

Yt+1
1 = Yt

1 + ρ(Kt+1 − Lt+1),

Yt+1
2 = Yt

2 + ρ(Rt+1 − St+1).
(37)

The algorithm is summarized in Algorithm 1. The convergence analysis of Algorithm 1 is
established in Theorem 2.
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Algorithm 1 Solving Problem (29) using ADMM.

Input: The observed tensor M, the parameters γ, λ, ρ, δ.
1: Initialize t = 0, L0 = S0 = K0 = R0 = Y0

1 = Y0
2 = 0 ∈ Rn1×n2×n3

2: for t = 0, · · · , Tmax do

3: Update (Lt+1, St+1) by Equation (33);
4: Update (Kt+1, Rt+1) by Equations (35)–(36);
5: Update (Yt+1

1 , Yt+1
2 ) by Equation (37);

6: Check the convergence criteria:

(i) convergence of variables: ‖At+1 −At‖∞ ≤ δ, ∀A ∈ {L, S, K, R},

(ii) convergence of constraints: max{‖Kt+1 − Lt‖∞, ‖Rt+1 − St+1‖∞} ≤ δ.
7: end for

Output: (L̂, Ŝ) = (Lt+1, St+1).

Theorem 2 (Convergence of Algorithm 1). For any ρ > 0, if the unaugmented Lagrangian
L(L, S, K, R, Y1, Y2) has a saddle point, then the iterations L(Lt, St, Kt, Rt, Yt

1, Yt
2) in Algorithm 1 satisfy

the residual convergence, objective convergence and dual variable convergence of Problem (29) as t→ ∞.

The proof of Theorem 2 is given in the Appendix A.
In a single iteration of Algorithm 1, the main cost comes from updating Lt which involves

computing FFT, IFFT and n3 SVDs of n1 × n2 matrices [47]. Hence Algorithm 1 has per-iteration
complexity of order O

(
n1n2n3(n1 ∧ n2 + log n3)

)
. Thus, if the total iteration number is T, then the total

computational complexity is

O
(

Tn1n2n3(min{n1, n2}+ log n3)
)

. (38)

4.2. A Faster Algorithm

To reduce the cost of computing TNN which is a main cost of Algorithm 1, we propose the
following lemma which indicates that TNN is orthogonal invariant.

Lemma 4. Given a tensor X ∈ Rr×r×n3 , let Q ∈ Rn1×r×n3 a two semi-orthogonal tensors, i.e., Q> ∗Q = I ∈
Rr×r×n3 and r ≤ min{n1, n2}. Then, we have the following relationship:

‖Q ∗ X‖TNN = ‖X‖TNN.

The proof of Lemma 4 can be found in the appendix. Equipped with Lemma 4, we decompose
the low-rank component in Problem (28) as follows:

L = Q ∗ X, s.t. Q> ∗Q = Ir,

where Ir ∈ Rr×r×n3 is an identity tensor. The similar strategy has been used in low-rank matrix recovery
from gross corruptions by [50]. Furthermore, we propose the following model for Problem (28)

min
Q,X,S

1
2
‖B� (Q ∗ X + S−M)‖2

F + γ(‖X‖TNN + λ‖S‖1)

s.t. Q> ∗Q = Ir,
(39)

where r is an upper estimation of tubal rank of the underlying tensor r∗ = rtubal(L0).
In contrast to Model (28), the proposed Model (39) is a non-convex optimization problem. That

means Model (39) may have many local minima. We establish a connection between the proposed
Model (39) with Model (28) in the following theorem.
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Theorem 3 (Connection between Model (39) and Model (28)). Let (Q∗, X∗, S∗) be a global optimal solution
to Problem (39). Furthermore, let (L?, S?) be the solution to Problem (28), and rtubal(L?) ≤ r, where r is the
initialized tubal rank. Then (Q∗ ∗ X∗, S∗) is also the optimal solution to Problem (28).

The proof of Theorem 3 can be found in the appendix. Theorem 3 states that the global optimal
point of the (non-convex) Model (39) coincides with solution of the (convex) Model (28). It further
indicates that the accuracy of Model (39) cannot exceed Model (28), which can be validated numerically
in the experiment section.

To solve Model (39), we also use the ADMM framework.
First, by adding auxiliary variables, we have the following problem

min
L,S,R,Q,X

1
2
‖B� (L + S−M)‖2

F + γ(‖X‖TNN + λ‖R‖1)

s.t. Q ∗ X = L; R = S; Q> ∗Q = Ir.
(40)

The augmented Lagrangian of Problem (40) is

L′2(L, S, R, Q, X) =
1
2
‖B� (L + S−M)‖2

F + γ(‖X‖TNN + λ‖R‖1)

+
〈
Y1, Q ∗ X− L

〉
+

ρ

2
‖Q ∗ X− L‖2

F + 〈Y2, R− S〉+ ρ

2
‖R− S‖2

F

s.t. Q> ∗Q = Ir.

(41)

According the strategy of ADMM, we update prime variables (L, S) and (Q, X, R) by alternative
minimization of AL in Problem (41) as follows

• Update (L, S): We update (L, S) by minimizing L′ρ with other variables fixed as follows

(Lt+1, St+1)

= argmin(L,S) L′ρ(L, S, Qt, Xt, Rt, Yt
1, Yt

2)

= argmin(L,S)
1
2‖B� (L + S−M)‖2

F +
〈
Yt

1, Qt ∗ Xt − L
〉
+ ρ

2‖Q
t ∗ Xt − L‖2

F +
〈
Yt

2, Rt − S
〉
+ ρ

2‖R
t − S‖2

F.

(42)

Taking derivatives of the right-hand side with respect to L and S respectively, and setting the
results zero, we obtain

B� (Lt+1 + St+1)− B�M− Yt
1 + ρ(Lt+1 −Qt ∗ Xt) = 0

B� (Lt+1 + St+1)− B�M− Yt
2 + ρ(St+1 − Rt) = 0,

(43)

Resolving the above equation group yields

Lt+1 =
(
(1 + ρ)Qt ∗ Xt + B�M + Yt

1 − Rt)� (2B + ρ1),

St+1 =
(
(1 + ρ)Rt + B�M + Yt

2 −Qt ∗ Xt)� (2B + ρ1).
(44)

• Update Q. We update Q by minimizing L′ρ with other variables fixed as follows
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min
Q>∗Q=Ir

Lρ(Lt+1, St+1, Q, Xt, Rt, Yt
1, Yt

2)

= min
Q>∗Q=Ir

〈
Yt

1, Q ∗ Xt − Lt+1
〉
+

ρ

2
‖Q ∗ Xt − Lt+1‖2

F.

= min
Q>∗Q=Ir

ρ

2
‖Q ∗ Xt − (Lt+1 − ρ−1Yt

1)‖2
F

= P
(
(Lt+1 − ρ−1Yt

1) ∗ (Xt)>
)

,

(45)

where operator P(·) is defined in Lemma 5 as follows.

Lemma 5 ([51]). Given any tensors A ∈ Rr×n2×n3 , B ∈ Rn1×n2×n3 , suppose tensor B ∗A> has t-SVD
B ∗A> = U ∗Λ ∗V>, where U ∈ Rn1×r×n3 and V ∈ Rr×r×n3 . Then, the problem

min
Q>∗Q=Ir

‖P ∗A− B‖2
F (46)

has a closed-form solution as
Q = P(B ∗A>) := U ∗V>. (47)

• Update (X, R):We update (X, S) by minimizing L′ρ with other variables fixed as follows

min
(X,R)

Lρ(Lt+1, St+1, Qt+1, X, R, Yt
1, Yt

2)

= min
(X,R)

γ‖X‖TNN + γλ‖R‖1 +
〈

Yt
1, Qt+1 ∗ X− Lt+1

〉
+

ρ

2
‖Qt+1 ∗ X− Lt+1‖2

F

+
〈

Yt
2, R− St+1

〉
+

ρ

2
‖R− St+1‖2

F.

(48)

Please note that Problem (48) can further be solved separately as follows

Kt+1 = argmin
X

γ‖X‖TNN +
〈

Yt
1, Qt+1 ∗ X− Lt+1

〉
+

ρ

2
‖Q> ∗ X− Lt+1‖2

F

= argmin
X

γ‖X‖TNN +
ρ

2
‖Qt+1 ∗ X− (Lt+1 − ρ−1Yt

1)‖2
F

(i)
= argmin

X
γ‖X‖TNN +

ρ

2
‖X− (Qt+1)> ∗ (Lt+1 − ρ−1Yt

1)‖2
F

= S
‖·‖TNN
γρ−1

(
(Qt+1)> ∗ (Lt+1 − ρ−1Yt

1).
)

(49)

and
Rt+1 = argmin

R
γλ‖R‖1 +

〈
Yt

1, R− St+1
〉
+

ρ

2
‖R− St+1‖2

F

= S
‖·‖1
γλρ−1

(
Kt+1 − ρ−1Yt

2

)
.

(50)

The equality (i) in Equation (49) holds because according to Q> ∗Q = I, we have
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min
X
‖Q ∗ X− Y‖2

F = min
X

1
n3
‖Q · X− Y‖2

F

= min
X

1
n3
‖Y‖2

F −
2
n3

〈
Q · X, Y

〉
+

1
n3
‖Q · X‖2

F

= min
X

1
n3
‖Y‖2

F −
2
n3

〈
X, QHY

〉
+

1
n3
‖X‖2

F

= min
X

1
n3
‖X−QHY‖2

F

= min
X

ρ

2
‖X−Q> ∗ Y‖2

F.

(51)

• Update (Y1, Y2). The Lagrangian multipliers are updated by gradient ascent as follows

Yt+1
1 = Yt

1 + ρ(Qt+1 ∗ Xt+1 − Lt+1),

Yt+1
2 = Yt

2 + ρ(Rt+1 − St+1).
(52)

Algorithm 2 Solving Problem (40) using ADMM.

Input: The observed tensor M, an upper estimation r of rtubal(L0), the parameters γ, λ, ρ, δ.
1: Initialize t = 0, L0 = S0 = R0 = Y0

1 = Y0
2 = 0 ∈ Rn1×n2×n3 , Q0 = 0 ∈ Rn1×r×n3 , X0 = 0 ∈

Rr×n2×n3 .
2: for t = 0, · · · , Tmax do

3: Update (Lt+1, St+1) by Equation (42);
4: Update Qt+1 by Equation (45);
5: Update (Xt+1, Rt+1) by Equations (49)–(50);
6: Update (Yt+1

1 , Yt+1
2 ) by Equation (52);

7: Check the convergence criteria:

(i) convergence of variables: ‖At+1 −At‖∞ ≤ δ, ∀A ∈ {L, S, R, Q, X}

(ii) convergence of constraints: max{‖Qt+1 ∗ Xt+1 − Lt‖∞, ‖Rt+1 − St+1‖∞} ≤ δ.
8: end for

Output: (L̂, Ŝ) = (Lt+1, St+1).

The algorithmic steps are summarized in Algorithm 2. The complexity analysis is given as follows.
In each iteration of Algorithm 2, the update of L requires FFT/IFFT, and n3 multiplications

of n1-by-r and r-by-n2 matrices, which costs O
(
(n1n2 + rn1 + rn2)n3 log n3 + rn1n2n3

)
; updating

S costs O
(
n1n2n3

)
; updating of Q involves FFT/IFFT and n3 SVDs of n1-by-r matrices, which

costs O
(
rn1n3 log n3 + r2n1n3

)
; updating X involves FFT/IFFT and n3 SVDs of r-by-n2, which costs

O
(
rn2n3 log n3 + r2n2n3)

)
. Then, the per-iteration computational complexity of Algorithm 2 is

dominated by
O
(

max
{

n1n2n3 log n3, r2(n1 + n2)n3

})
.

Since the low-tubal-rank assumption r � min{n1, n2} is adopted in this paper, the per-iteration
of Algorithm 2 is much lower than Algorithm 1.

5. Experiments

5.1. Synthetic Data

We first verify the correctness of Theorem 1. Specifically, we check whether the following two
statements indicated in Theorem 1 hold in experiments on synthetic data sets:
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(I). (Exact recovery in the noiseless setting.) Our analysis guarantees that the underlying low-rank
tensor L0 and sparse tensor S0 can be exactly recovered in the noiseless setting. This statement
will be checked in Section 5.1.1.

(II). (Linear scaling of errors with the noise level.) In Theorem 1, the estimation errors on L0 and S0
scales linearly with the noise level δ. This statement will be checked in Section 5.1.2.

Signal Generation. With a given tubal rank r0, we first generate the underlying tensor L0 ∈
Rn1×n2×n3 by L0 = A ∗ B/n3, where tensors A ∈ Rn1×r0×n3 and B ∈ Rr0×n2×n3 are generated with
i.i.d. standard Gaussian elements. Then, the sparse corruption tensor S0 is generated by choosing
its support uniformly at random. The non-zero elements of S0 will be i.i.d. sampled from a certain
distribution that will be specified afterwards. Furthermore, the noise tensor E0 is generated with
entries sampled i.i.d. from N (0, σ2) with σ = c‖L0‖F/

√
n1n2n3, where we set constant c is to control

the signal noise ratio. Finally, the observed tensor M is formed by M = L0 + S0 + E0.

5.1.1. Exact Recovery in the Noiseless Setting

We first check Statement (I), i.e., exact recovery in the noiseless setting. Specifically, we will
show that Algorithm 1 and Algorithm 2 can exactly recover the underlying tensor L0 and the sparse
corruption S0. We first test the recovery performance of different tensor sizes by setting n = n1 = n2 ∈
{100, 160, 200} and n3 = 20, with (rtubal(L0), ‖S0‖0) = (0.05n, 0.05n2n3). The non-zero elements of
tensor S0 is sampled from i.i.d. symmetric Bernoulli distribution, i.e., the possibility of being 1 or -1
are 1/2. The results are shown in Table 1. It can be seen that both Algorithm 1 and Algorithm 2 can
obtain relative standard error (RSE) smaller than 1e− 5 by which we can say that L0 and S0 are exact
recovered. We can also see that Algorithm 2 runs much faster than Algorithm 1.

Table 1. Performance of Algorithm 1 and Algorithm 2 in both accuracy and speed for different tensor
sizes when the gross corruption. Outliers from symmetric Bernoulli, observation tensor M ∈ Rn×n×n3 ,
n3 = 30, rtubal(L0) = 0.05n, ‖S0‖1 = 0.05n2n3, noise level c = 0, r = max

{
b2rtubal(L0)c, 15

}
.

n rtubal(L0) ‖S0‖0 Method rtubal(L̂) ‖L̂−L0‖F
‖L0‖F

‖Ŝ−S0‖F
‖S0‖F

time/s

100 5 1× 104 Algorithm 1 5 5.13× 10−6 5.27× 10−6 3.63
Algorithm 2 5 4.92× 10−6 5.12× 10−6 1.76

160 8 2.56× 104 Algorithm 1 8 3.86× 10−6 3.52× 10−6 9.52
Algorithm 2 8 4.48× 10−6 4.08× 10−6 4.42

200 10 4× 104 Algorithm 1 10 3.46× 10−6 3.59× 10−6 14.16
Algorithm 2 10 4.12× 10−6 4.63× 10−6 7.44

We then test whether the recovery performance can be affected by the distribution of the
corruptions. This is done by choosing the non-zeros elements of S0 from i.i.d. standard Gaussian
distribution. The experimental results are reported in Table 2. We can find that both Algorithm 1 and
Algorithm 2 can exactly recover the true L0 and S0 and Algorithm 2 runs much faster than Algorithm 1.

We also conduct STPCP by Algorithm 1 and Algorithm 2 with missing entries. After generating
L0, S0 and E0, we get the observation by Model (27). We choose the support of B uniformly at random
with possibility 0.8 and then set elements in the chosen support to be 1. Thus, %20 of the entries
are missing. The corrupted observation M is then formed by M = B� (L0 + S0 + E0). We show the
recover results in Table 3. We can see that the underlying low-rank tensor L0 can be exactly recovered
and the observed part of the corruption tensor B� S0 can also be exactly recovered (Please note that it
is impossible to recover the unobserved entries of a sparse tensor S0 [52]).
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Table 2. Performance of Algorithm 1 and Algorithm 2 in both accuracy and speed for different tensor
sizes when the gross corruption. Outliers from standard Gaussian distribution, observation tensor M ∈
Rn×n×n3 , n3 = 30, rtubal(L0) = 0.05n, ‖S0‖1 = 0.05n2n3, noise level c = 0, r = max

{
b2rtubal(L0)c, 15

}
.

n rtubal(L0) ‖S0‖0 Method rtubal(L̂) ‖L̂−L0‖F
‖L0‖F

‖Ŝ−S0‖F
‖S0‖F

time/s

100 5 1× 104 Algorithm 1 5 2.7× 10−6 2.6× 10−6 4.43
Algorithm 2 5 2.9× 10−6 3.2× 10−6 1.82

160 8 2.56× 104 Algorithm 1 8 4.76× 10−6 4.08× 10−6 10.45
Algorithm 2 8 4.24× 10−6 4.05× 10−6 5.15

200 10 4× 104 Algorithm 1 10 3.78× 10−6 3.64× 10−6 18.97
Algorithm 2 10 3.78× 10−6 3.63× 10−6 8.04

Table 3. Performance of Algorithm 1 and Algorithm 2 in both accuracy and speed for different tensor
sizes when the gross corruption. Outliers from symmetric Bernoulli, observation tensor M ∈ Rn×n×n3 ,
n3 = 30, rtubal(L0) = 0.05n, ‖S0‖1 = 0.05n2n3, noise level c = 0, r = max

{
b2rtubal(L0)c, 15

}
, with %20

random missing entries.

n rtubal(L0) ‖B� S0‖0 Method rtubal(L̂) ‖L̂−L0‖F
‖L0‖F

‖Ŝ−B�S0‖F
‖B�S0‖F

time/s

100 5 8× 103 Algorithm 1 5 7.52× 10−6 5.97× 10−6 3.87
Algorithm 2 5 7.50× 10−6 5.96× 10−6 1.69

160 8 2.048× 104 Algorithm 1 8 4.46× 10−6 5.17× 10−6 9.64
Algorithm 2 8 5.60× 10−6 4.71× 10−6 4.46

200 10 3.2× 104 Algorithm 1 10 4.78× 10−6 4.04× 10−6 14.78
Algorithm 2 10 5.13× 10−6 4.20× 10−6 7.77

5.1.2. Linear Scaling of Errors with the Noise Level

We then verify Statement (II) that the estimation errors have linear scale behavior with respect to
the noise level. The estimation errors are measured using the mean-squared-error (MSE)

MSE(L̂) =
‖L̂− L0‖2

F
n1n2n3

, MSE(Ŝ) =
‖Ŝ− S0‖2

F
n1n2n3

,

for the low rank component L0 and the sparse component S0, respectively. We test tensors of 3 different
size by choosing n ∈ {60, 80, 100} and n3 = 20. The tubal rank rtubal(L0) of L0 and sparsity s of S0
are set as (rtubal(L0), s) = (5, 0.1n2n3). We vary the signal noise ratio c = 0.03 : 0.03 : 0.6 which is
in proportional of the noise level δ. We run the proposed Algorithm 1, test 50 trials, and report the
averaged MSEs. The MSEs of L̂ and S0 versus c2 are shown in sub-figures (a) and (b) in Figure 4.
We can see that the estimation error has linear scaling behavior along with the noise level as Theorem 1
indicates. Since the results for n = 80 and n = 100 are quite similar to the case of n = 60, they are
simply omitted.



Sensors 2019, 19, 5335 19 of 33

(a)

(b)

Figure 4. The MSEs of L̂ and S0 versus c2 for tensors of size 60× 60× 20 where the tubal rank rtubal(L0)

of L0 and sparsity s of S0 are set as (rtubal(L0), s) = (5, 0.1n2n3). (a): MSE of L̂ vs c2. (b): MSE of Ŝ vs c2.

5.2. Real Data Sets

In this section, experiments on real data sets (color images and videos) are carried out to evaluate
the effectiveness and efficiency of the proposed Algorithms 1 and 2. Besides noises and sparse
corruptions, we also consider missing values which is more challenging. The proposed algorithms are
compared with the following typical models:

(I). NN-I: tensor recovery based on matrix nuclear norms of frontal slices formulated as follows

min
L,S

1
2
‖B� (M− L− E)‖F + γ

n3

∑
k=1

(‖L(k)‖∗ + λ‖S(k)‖1). (53)

This model will be used for image restoration in Section 5.2.1. Please note that Model (53) is
equivalent to parallel matrix recovery on each frontal slice.

(II). NN-II: tensor recovery based on matrix nuclear norm formulated as follows

min
L,S

1
2
‖B� (M− L− E)‖F + γ‖L‖∗ + γλ‖S‖1, (54)
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where L = [l1, l2, · · · , ln3 ] ∈ Rn1n2×n3 with lk := vec(L(k)) ∈ Rn1n2 defined as the
vectorization [40] of frontal slices L(k), for all k = 1, 2, · · · , n3. This model will be used for
video restoration in Section 5.2.2.

(III). SNN: tensor recovery based on SNN formulated as follows

min
L,S

1
2
‖B� (M− L− E)‖F + γ

3

∑
i=1

αm‖L(i)‖∗ + γ‖S‖1, (55)

where L(i) ∈ Rni×∏j 6=i nj is the mode-i matriculation of tensor L ∈ Rn1×n2×n3 , for all i = 1, 2, 3.

We solve the above Model (53)–(55) using ADMM implemented by ourselves in Matlab. The
effectiveness of the algorithms is measured by Peaks Signal Noise Ratio (PSNR)

PSNR := 10 log10

(
n1n2n3‖L0‖2

∞

‖L̂− L0‖2
F

)
.,

Please note that a larger PSNR value indicates higher quality of L̂.

5.2.1. Color Images

Color images are the most commonly used 3-way tensors. We test the twenty 256-by-256-by-3
color images which have been used in [37], and carry out robust tensor recovery with missing entries
(see Figure 5). Following [37], for a color image L0 ∈ Rn×n×3, we choose its support uniformly at
random with ratio ρs and fill in the values with i.i.d. symmetric Bernoulli variables to generate S0.
The noise tensor E0 is generated with i.i.d. zero-mean Gaussian entries whose standard deviation is
given by σ = 0.05‖L0‖F/

√
3n2. Then, we form the binary observation mask B by choosing its support

uniformly at random with ratio ρobs. Finally, the partially observed corruption M = B� (L0 + S0 + E0)

are formed.

Figure 5. The 20 color images used.

We consider two scenarios by setting (ρobs, ρs) ∈ {(0.9, 0.1), (0.8, 0.2)}. For NN (Model (53)),
we set the regularization parameters λ = 1/

√
nρobs (suggested by [46]), and set parameter γ = ‖E0‖sp

where ‖E0‖sp is estimated as 6.5σ
√

3ρobsn log(6n) (suggested by [5]). For SNN, the parameters are
chosen to satisfy γ = 0.05, α1 = α2 =

√
3nρobs, α3 = 0.01

√
3nρobs. For Algorithm 1 and Algorithm 2,

we set γ = 0.3‖E0‖sp, and λ = 1/
√

3nρobs. The initialized rank r in Algorithm 2 is set as 60.
In each setting, we test each color image for 10 times and report the averaged PSNR and time.
For quantitative comparison, we show the PSNR values and running times in Figures 6 and 7 for
settings of (ρobs, ρs) = (0.9, 0.1) and (ρobs, ρs) = (0.8, 0.2), respectively. Several visual examples are
shown in Figure 8 for qualitative comparison for the setting of (ρobs, ρs) = (0.8, 0.2). We can see
from Figures 6–8 that the proposed Algorithm 1 has the highest recovery quality and the proposed
Algorithm 2 has the second highest quality but the fastest running time.
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(a)

(b)

Figure 6. The quantitative comparison in PSNR and time on color images. First, 10% entries of each
image is corrupted by i.i.d. symmetric Bernoulli variable, then polluted by Gaussian noise of noise
level c = 0.05, and finally 10% of the corrupted entries are missing uniformly at random. (a): the PSNR
values of each algorithm; (b): the running time of each algorithm.



Sensors 2019, 19, 5335 22 of 33

(a)

(b)

Figure 7. The quantitative comparison in PSNR and time on color images. First, 20% entries of each
image is corrupted by i.i.d. symmetric Bernoulli variable, then polluted by Gaussian noise of noise
level c = 0.05, and finally 20% of the corrupted entries are missing uniformly at random. (a): the PSNR
values of each algorithm; (b): the running time of each algorithm.
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Figure 8. The visual results for image recovery of different algorithms. First, 20% entries of each
image is corrupted by i.i.d. symmetric Bernoulli variable, then polluted by Gaussian noise of noise
level c = 0.05, and finally 20% of the corrupted entries are missing uniformly at random. (a): the
original image; (b): the corrupted image; (c) image recovered by Algorithm 1; (d) image recovered
by Algorithm 2; (e) image recovered by the matrix nuclear norm (NN)-based Model (53); (f) image
recovered by the SNN-based Model (55).

5.2.2. Videos

In this subsection, video restoration experiments are conducted on four broadly used YUV videos
(They can be downloaded from https://sites.google.com/site/subudhibadri/fewhelpfuldownloads:
Akiyo_qcif, Scilent_qcif, Carphone_qcif, and Claire_qcif.) Owing to computational limitation,
we simply use the first 32 frames of the Y components of all the videos which results in four
144-by-176-by-30 tensors. For a 3-way data tensor L0 ∈ Rn1×n2×n3 , To generate corruption S0,
the support is chosen uniformly at random with ratio ρs and then elements in the support are filled in
with i.i.d. symmetric Bernoulli variables. The noise tensor E0 is also generated with i.i.d. zero-mean
Gaussian entries whose standard deviation is given by σ = 0.05‖L0‖F/

√
n1n2n3. Then, the binary

observation mask B is formed thorough choosing its support uniformly at random with ratio ρobs.
Finally, the partially observed corruption M = B� (L0 + S0 + E0) are formed.

We also consider two scenarios by setting (ρobs, ρs) ∈ {(0.9, 0.1), (0.8, 0.2)}. NN-II Model (54) is
used in video restoration. For NN-II, we set the regularization parameters λ = 1/

√
n1n2ρobs (suggested

by [46]), and set parameter γ = ‖E0‖sp where ‖E0‖sp is estimated as 6.5σ
√

ρobsn1n3 log((n1 + n2)n3)

(suggested by [5]). For SNN, the parameters are chosen to satisfy γ = 0.05, α1 = α2 =
√

n1n3ρobs, α3 =

5
√

n1n3ρobs. For Algorithm 1 and Algorithm 2, we set γ = 0.3‖E0‖sp, and λ = 1/
√

max{n1, n2}n3ρobs
after careful parameter tuning. The initialized rank r in Algorithm 2 is set as 60. In each setting, we test

https://sites.google.com/site/subudhibadri/fewhelpfuldownloads
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each video for 10 times and report the averaged PSNR and time. For quantitative comparison, we show
the PSNR values and running times in Table 4. It can be seen that Algorithm 1 has the highest recovery
quality and the proposed Algorithm 2 has the second highest quality but the fastest running time.

Table 4. PSNR values and running time (in seconds) of different algorithms on video data. First,
ρsn1n2n3 entries of each image is corrupted by i.i.d. symmetric Bernoulli variable, then polluted by
Gaussian noise of noise level c = 0.05, and finally (1− ρobs)n1n2n3 of the corrupted entries are missing
uniformly at random. The items with highest PSNR values are highlighted with bold face, and the
items with shortest running time are highlighted with underline.

Data Set (ρobs, ρs) Index NN, Model (54) SNN, Model (55) Algorithm 1 Algorithm 2

Akiyo
(0.9,0.1) PSNR 31.74 32.09 33.94 33.36

time/s 29.48 51.13 20.10 12.39

(0.8,0.2) PSNR 30.59 30.70 32.44 32.07
time/s 30.65 51.17 19.53 14.92

Silent
(0.9,0.1) PSNR 28.26 30.39 31.74 31.23

time/s 28.91 49.79 21.21 14.76

(0.8,0.2) PSNR 26.95 27.60 30.42 30.07
time/s 36.51 60.81 22.43 15.62

Carphone
(0.9,0.1) PSNR 26.87 28.79 29.15 28.94

time/s 28.55 47.17 22.12 14.41

(0.8,0.2)) PSNR 26.12 26.43 28.17 27.99
time/s 26.72 49.21 20.55 14.74

Claire
(0.9,0.1) PSNR 30.56 32.20 34.27 34.02

time/s 29.75 47.32 21.43 13.52

(0.8,0.2) PSNR 29.94 30.43 32.96 32.78
time/s 29.43 50.46 19.47 13.04

6. Conclusions

This paper studied the problem of stable tensor principal component pursuit which aims to recover
a tensor from noises and sparse corruptions. We proposed a constrained tubal nuclear norm-based
model and established upper bounds on the estimation error. In contrast to prior work [37], our
theory can guarantee exact recovery in the noiseless setting. We also designed two algorithms, the first
ADMM algorithm can be accelerated by the second Algorithm which adopts a factorization strategy.
We validated the correctness of our theory by simulations on synthetic data, and evaluated the
effectiveness and efficiency of the proposed algorithms via experiments on color images and videos.

For future directions, it is a natural and interesting extension to consider recovery of 4-way
tensors [35] with arbitrary linear transformation [53,54]. It is also interesting to use tensor
factorization-based methods [55,56] for STPCP. Another challenging future direction is developing tools
to verify whether the unknown tensor satisfies the tensor incoherence condition from its incomplete or
corrupted observations.

For extensions of the proposed approach to higher-way tensors, we produce the following
two ideas:

1. By recursively applying DFT over successive modes higher than 3 and then unfolding the
obtained tensor into 3-way [57], the proposed algorithms and theoretical analysis can be extended
to higher-way tensors.

2. By using the overlapped orientation invariant tubal nuclear norm [58], we can extend the
proposed algorithm to higher-order cases and obtain orientation invariance.
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Appendix A. Proofs of Lemmas and Theorems

Appendix A.1. The Proof of Theorem 1

Appendix A.1.1. Key Lemmas for the Proof of Theorem 1

Before Proving Theorem 1, we should define some notations and operators first.
Suppose L0 ∈ Rn1×n2×n3 with tubal rank r has the skinny t-SVD L0 = U ∗ Λ ∗ V>, where

U ∈ Rn1×r×n3 , V ∈ Rr×n2×n3 are orthogonal tensors, and Λ ∈ Rr×r×n3 is an f -diagonal tensor. Define
the following set

T :=
{

U ∗A + B ∗V> | A ∈ Rr×n2×n3 , B ∈ Rn1×r×n3
}
⊂ Rn1×n2×n3 . (A1)

Then, define the projector onto T for any tensor T ∈ Rn1×n2×n3 as follows

PT(T) := U ∗U> ∗ T + T ∗V ∗V> −U ∗U> ∗ T ∗V ∗V>,

P
T⊥(T) := (I−U ∗U>) ∗ T ∗ (I−V ∗V>).

(A2)

Let Ω⊥ be the complement of Ω ⊂ [n1]× [n2]× [n3] which is the support of S0. Then, define two
operators PΩ,P

Ω⊥ as follows

PΩ(T) := ∑
(i,j,k)∈Ω

〈
T, e̊i ∗ ėk ∗ e̊>j

〉
, P

Ω⊥(T) := ∑
(i,j,k)∈Ω⊥

〈
T, e̊i ∗ ėk ∗ e̊>j

〉
, (A3)

for any T ∈ Rn1×n2×n3 .
Define two sets Γ and Γ⊥ as follows:

Γ = {(A, A) | A ∈ Rn1×n2×n3}, Γ⊥ = {(A,−A) | A ∈ Rn1×n2×n3}. (A4)

Then, for any tensors Xι, Xs ∈ Rn1×n2×n3 , the projectors of the tensor X = (Xι, Xs) into the sets Γ

and Γ⊥ are given as follows, respectively

PΓ(X) =

(
Xι + Xs

2
,

Xι + Xs
2

)
, P

Γ⊥(X) =

(
Xι − Xs

2
,

Xs − Xι

2

)
. (A5)

For any tensors Xι, Xs ∈ Rn1×n2×n3 , define two operators on X = (Xι, Xs) as follows:

(PT ×PΩ)(X) = (PT(Xι),PΩ(Xs)), (P
T⊥ ×PΩ⊥)(X) = (P

T⊥(Xι),PΩ⊥(Xs)). (A6)

Also define two norms as follows:

‖X‖F =
√
‖Xι‖2

F + ‖Xs‖2
F, ‖X‖F,µ =

√
‖Xι‖2

F + µ2‖Xs‖2
F. (A7)

where µ is a constant that will be determined afterwards.
We first give Lemma A1 which can be seen as a modified version of Lemma C.1 in [2].
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Lemma A1. Assume that ‖PΩPT‖ ≤ 1
2 , and λ ≤ 1

2
√

n3
. Suppose there exists a tensor G∗ satisfying the

following conditions 

PT(G
∗) = U ∗V>,

‖P
T⊥(G

∗)‖sp ≤
1
2

,

‖PΩ(G
∗ − λsign(S0))‖F ≤

λ

4
,

‖P
Ω⊥(G

∗)‖∞ ≤
λ

2
.

(A8)

Then for any perturbation ∆ ∈ Rn1×n2×n3 , one has

‖L0 + ∆‖TNN + λ‖S0 − ∆‖1

≥ ‖L0‖TNN + λ‖S0‖1 +
( 3

4 − ‖PT⊥(G)‖sp
)
‖P

T⊥(∆)‖TNN +
( 3

4 λ−P
Ω⊥(‖G‖∞)

)
‖P

Ω⊥(∆)‖1.
(A9)

Proof. Let Gι ∈ ∂‖L0‖TNN, i.e., any sub-gradient of ‖·‖TNN at L0, then it satisfies:

PT(Gι) = U ∗V>, ‖P
T⊥(Gι)‖sp ≤ 1. (A10)

Gι ∈ ∂‖L0‖TNN and Gs ∈ ∂(λ‖S0‖1). According to the convexity of ‖·‖TNN and ‖·‖1, we have

‖L0 + ∆‖TNN ≥ ‖L0‖TNN + 〈Gι, ∆〉 , λ‖S0 − ∆‖1 ≥ λ‖S0‖1 − 〈Gs, ∆〉 . (A11)

By choosing Gι = U ∗V> + P ∗Q>, where P and Q comes from the skinny t-SVD of P
T⊥(∆) =

P ∗ Σ ∗Q>, one has

〈Gι, ∆〉 = 〈G, ∆〉+ 〈Gι −G, ∆〉 = 〈G, ∆〉+
〈
P

T⊥(Gι),PT⊥(∆)
〉
−
〈
P

T⊥(G),P
T⊥(∆)

〉
= 〈G, ∆〉 − (1− ‖P

T⊥(G)‖sp)‖PT⊥(∆)‖TNN.
(A12)

Also, by choosing Gs = λsign(S0)− sign(P
Ω⊥(∆)), one has

− 〈Gs, ∆〉 = − 〈G, ∆〉 − 〈Gs −G, ∆〉

= − 〈G, ∆〉 − 〈PΩ(λsign(S0)−G),PΩ(∆)〉 −
〈
PΩ⊥ (Gs),PΩ⊥ (∆)

〉
+
〈
PΩ⊥ (G),PΩ⊥ (∆)

〉
≥ − 〈G, ∆〉 − ‖PΩ(λsign(S0)−G)‖F‖PΩ(∆)‖F + ‖PΩ⊥ (∆)‖1 − ‖PΩ⊥ (G)‖∞‖PΩ⊥ (∆)‖1

≥ − 〈G, ∆〉 − λ

4
‖PΩ(∆)‖F + (1− ‖PΩ⊥ (G)‖∞)‖PΩ⊥ (∆)‖1

(A13)

Also note that
‖PΩ(∆)‖F ≤ ‖PΩPT(∆)‖F + ‖PΩPT⊥(∆)‖F

≤ ‖PΩPT(∆)‖F + ‖PΩPT⊥(∆)‖F

≤ 1
2
‖∆‖F + ‖PΩPT⊥(∆)‖F

≤ 1
2
‖PΩ(∆)‖F +

1
2
‖P

Ω⊥(∆)‖F + ‖PΩPT⊥(∆)‖F

(A14)

which leads to

‖PΩ(∆)‖F ≤ ‖PΩ⊥(∆)‖F + 2‖PΩPT⊥(∆)‖F ≤ ‖PΩ⊥(∆)‖1 + 2
√

n3‖PT⊥(∆)‖TNN. (A15)
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Putting things together, we have

‖L0 + ∆‖TNN + λ‖S0 − ∆‖1 − (‖L0‖TNN + λ‖S0‖1)

≥
(

1−
λ
√

n3

2
− ‖P

T⊥(G)‖sp

)
‖P

T⊥(∆)‖TNN +

(
3
4

λ−P
Ω⊥(‖G‖∞)

)
‖P

Ω⊥(∆)‖1.
(A16)

Since λ ≤ 1
2
√

n3
, it holds that

‖L0 + ∆‖TNN + λ‖S0 − ∆‖1

≥ ‖L0‖TNN + λ‖S0‖1 +

(
3
4
− ‖P

T⊥(G)‖sp

)
‖P

T⊥(∆)‖TNN +

(
3
4

λ−P
Ω⊥(‖G‖∞)

)
‖P

Ω⊥(∆)‖1,

for any perturbation ∆ ∈ Rn1×n2×n3 .

Lemma A2. Suppose that ‖PΩPT‖ ≤ 1/2, then for any X = (Xι, Xs), we have

‖PΓ(PT ×PΩ)(X)‖2
F,µ ≥

1 + µ2

8
‖PT ×PΩ(X)‖2

F. (A17)

Proof. According to the definitions of PΓ and PT ×PΩ, we have

PΓ(PT ×PΩ)(X) =

(
PT(Xι) + PΩ(Xs)

2
,
PT(Xι) + PΩ(Xs)

2

)
. (A18)

Then, we have

‖PΓ(PT ×PΩ)(X)‖2
F,µ = (1 + µ2) · 1

4
·
(
‖PT(Xι)‖2

F + ‖PΩ(Xs)‖2
F + 2 〈PT(Xι),PΩ(Xs)〉

)
=

(1 + µ2)

4

(
‖PT(Xι)‖2

F + ‖PΩ(Xs)‖2
F + 2 〈PΩPTPT(Xι),PΩ(Xs)〉

)
≥ (1 + µ2)

4

(
‖PT(Xι)‖2

F + ‖PΩ(Xs)‖2
F − 2‖PΩPT‖‖PT(Xι)‖F‖PΩ(Xs)‖F

)
≥ (1 + µ2)

4

(
‖PT(Xι)‖2

F + ‖PΩ(Xs)‖2
F − 2 · 1

2
‖PT(Xι)‖F‖PΩ(Xs)‖F

)
≥ (1 + µ2)

4

(
‖PT(Xι)‖2

F + ‖PΩ(Xs)‖2
F −
‖PT(Xι)‖2

F + ‖PΩ(Xs)‖2
F

2

)

=
(1 + µ2)

8
‖PT ×PΩ(X)‖2

F.

(A19)

Hence completes the proof.

Appendix A.1.2. Proof of Theorem 1

Proof. For X = (L, S), define ‖X‖� = ‖L‖TNN + λ‖S‖1. Let X̂ = (L̂, Ŝ),X∗ = (L0, S0). According to
the optimality of (L̂, Ŝ) and the feasibility of (L0, S0), we directly have

‖X̂‖� ≤ ‖X∗‖�, (A20)

‖L̂ + Ŝ−M‖F ≤ δ, (A21)

‖L0 + S0 −M‖F ≤ δ. (A22)

Let ∆ι = L̂− L0, ∆s = Ŝ− S0. Then, we have

‖∆ι + ∆s‖F = ‖L̂ + Ŝ−M− (L0 + S0 −M)‖F ≤ ‖L̂ + Ŝ−M‖F + ‖L0 + S0 −M‖F ≤ 2δ. (A23)
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Define the pair of error tensors ∆ = X̂ − X∗ = (∆ι, ∆s). The goal is to bound ‖∆‖F,µ.
First, we use the decomposition ∆ = PΓ(∆) + PΓ⊥(∆), and let ∆Γ = PΓ(∆) = (∆Γ

ι , ∆Γ
s ) =

(∆ι+∆s
2 , ∆ι+∆s

2 ), ∆Γ⊥ = P
Γ⊥(∆) = (∆Γ⊥

ι , ∆Γ⊥
s ) = (∆ι−∆s

2 , ∆s−∆ι
2 ) for simplicity. Then, we have

‖∆‖F,µ = ‖∆Γ + ∆Γ⊥‖F,µ ≤ ‖∆Γ‖F,µ + ‖∆Γ⊥‖F,µ. (A24)

Please note that ∆Γ
ι = ∆Γ

s = ∆ι+∆s
2 , thus ‖∆Γ‖F,µ can be bounded easily as follows

‖∆Γ‖F,µ =
√
‖∆Γ

ι ‖2
F + µ2‖∆Γ

s ‖2
F =

√
1 + µ2

2
‖∆ι + ∆s‖F ≤ δ

√
1 + µ2. (A25)

Then, it remains to bound ‖∆Γ⊥‖F,µ. Due to the triangular inequality

‖∆Γ⊥‖F,µ ≤ ‖(PT ×PΩ)∆
Γ⊥‖F,µ + ‖(P

T⊥ ×PΩ⊥)∆
Γ⊥‖F,µ, (A26)

(A) bound ‖(P
T⊥ ×PΩ⊥)∆

Γ⊥‖F,µ. According to the convexity of ‖·‖� we have

‖X∗ + ∆‖� = ‖X∗ + ∆Γ + ∆Γ⊥‖� ≥ ‖X∗ + ∆Γ⊥‖� − ‖∆Γ‖�. (A27)

Using Lemma A1, we have

‖X∗ + ∆Γ⊥‖�≥ ‖X∗‖� +
( 3

4 − ‖PT⊥(G)‖sp
)
‖P

T⊥(∆
Γ⊥
ι )‖TNN +

( 3
4 λ−P

Ω⊥(‖G‖∞)
)
‖P

Ω⊥(∆
Γ⊥
s )‖1

≥ ‖X∗‖� + 1
4‖(PT⊥ ×PΩ⊥)∆

Γ⊥‖�.
(A28)

Combining Equations (A20), (A27) and (A28), we have

‖∆Γ‖� ≥
1
4
‖(P

T⊥ ×PΩ⊥)∆
Γ⊥‖� (A29)

Then, with µ =
√

n3λ, we reach a bound on ‖(P
T⊥ ×PΩ⊥)∆

Γ⊥‖F,µ as follows

‖(P
T⊥ ×PΩ⊥)∆

Γ⊥‖F,µ ≤ ‖PT⊥(∆
Γ⊥
ι )‖F + µ‖P

Ω⊥(∆
Γ⊥
s )‖F

≤
√

n3‖PT⊥(∆
Γ⊥
ι )‖TNN + µ‖P

Ω⊥(∆
Γ⊥
s )‖1

≤
√

n3

(
‖P

T⊥(∆
Γ⊥
ι )‖TNN + λ‖P

Ω⊥(∆
Γ⊥
s )‖1

)
≤
√

n3‖(PT⊥ ×PΩ⊥)∆
Γ⊥‖�

≤ 4
√

n3‖∆Γ‖�

≤ 4
√

n3

(
‖∆Γ

ι ‖TNN + λ‖∆Γ
s ‖1

)
≤ 4
√

n3

(√
min{n1, n2}‖∆Γ

ι ‖F + λ
√

n1n2n3‖∆Γ
s ‖F

)
= 4
√

n3

(√
min{n1, n2}+ λ

√
n1n2n3

)
‖∆Γ

ι ‖F

≤ 4
√

n3

(√
min{n1, n2}+ λ

√
n1n2n3

)
δ.

(A30)

(B) bound ‖(PT ×PΩ)∆
Γ⊥‖F,µ. Please note that

PΓ(∆
Γ⊥) = 0 = PΓ(PT ×PΩ)(∆

Γ⊥) + PΓ(PT⊥ ×PΩ⊥)(∆
Γ⊥), (A31)
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which means

‖PΓ(PT ×PΩ)(∆
Γ⊥)‖F,µ = ‖PΓ(PT⊥ ×PΩ⊥(∆

Γ⊥))‖F,µ ≤ ‖PT⊥ ×PΩ⊥(∆
Γ⊥)‖F,µ. (A32)

According to Lemma A2, we have

‖(PT ×PΩ)(∆
Γ⊥)‖F,µ ≤ ‖PT(∆

Γ⊥
ι )‖F + µ‖PΩ(∆

Γ⊥
ι )‖F

≤
√

1 + µ2
√
‖PT(∆

Γ⊥
ι )‖2

F + ‖PΩ(∆
Γ⊥
s )‖2

F

=
√

1 + µ2‖PT ×PΩ(∆
Γ⊥)‖F

≤
√

1 + µ2 ·
√

8√
1 + µ2

· ‖PΓ(PT ×PΩ)(∆
Γ⊥)‖F.

(A33)

According to Equations (A32) and (A33), we obtain

‖(PT ×PΩ)(∆
Γ⊥)‖F,µ ≤ 2

√
2‖(P

T⊥ ×PΩ⊥)(∆
Γ⊥)‖F,µ. (A34)

Thus, combing Equations (A24), (A25), (A30) and (A34), and setting µ =
√

n3λ, we obtain

‖∆‖F,µ ≤
(√

1 + n3λ2 + 4(1 + 2
√

2)
(√

min{n1, n2}n3 + n3λ
√

n1n2

))
δ. (A35)

Since λ = 1√
max{n1,n2}n3

, we have

‖∆‖F,µ ≤
(√

1 +
1

max{n1, n2}
+ 8(1 + 2

√
2)
√

min{n1, n2}n3

)
δ, (A36)

which indicates that

‖L̂− L0‖F ≤
(√

1 +
1

max{n1, n2}
+ 8(1 + 2

√
2)
√

min{n1, n2}n3

)
δ

‖Ŝ− S0‖F ≤
(√

1 + max{n1, n2}+ 8(1 + 2
√

2)
√

n1n2n3

)
δ.

(A37)

Moreover, according to the analysis in [2], the conditions ‖PΩPT‖ ≤ 1
2 and Equation (A8)

in Lemma A1 hold with probability at least 1 − c1(n3 max{n1, n2})−c2 , where c1 and c2 are
positive constants.

In this way, the proof of Theorem 1 is completed.

Appendix A.2. Proof of Theorem 2

Proof. The key idea is to rewrite Problem (29) into a standard two-block ADMM problem.
For notational simplicity, let

f (x) =
1
2
‖L + S− Y‖2

F, g(z) = γ‖K‖TNN + γλR(S),

where x, y, z and A are defined as follows

x =

[
vec(L)
vec(S)

]
, y =

[
vec(Y1)

vec(Y2)

]
, z =

[
vec(K)

vec(R)

]
, A =

[
diag(vec(B)) 0

0 diag(vec(B))

]
,

and vec(·) denotes an operation of tensor vectorization (see [40]).
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It can be verified that f (·) and g(·) are closed, proper convex functions. Then, Problem (29) can
be re-written as follows:

min
x,z

f (x) + g(z)

s.t. Ax− z = 0.

According to the convergence analysis in [48], we have:

objective convergence: lim
t→∞

f (xt) + g(zt) = f ? + g?,

dual variable convergence: lim
t→∞

yt = y?,

constraint convergence: lim
t→∞

Axt − zt = 0,

where f ?, g? are the optimal values of f (x), g(z), respectively. Variable y? is a dual optimal point
defined as:

y? =

[
vec(Y?

1)

vec(Y?
2)

]
,

where (Y?
1 , Y?

2) is the dual component of a saddle point (L?, S?, K?, R?, Y?
1 , Y?

2) of the unaugmented
Lagrangian L(L, S, K, R, Y1, Y2).

Appendix A.3. Proof of Lemma 4

Proof. Let the full t-SVD of X be X = U ∗Λ ∗V>, where U, V ∈ Rr×r×n3 are orthogonal tensors and
Λ ∈ Rr×r×n3 is f -diagonal. Then

‖X‖TNN =
∥∥U ∗Λ ∗V>

∥∥
∗ =

∥∥U ·Λ ·V>
∥∥
∗ =

∥∥Λ
∥∥
∗. (A38)

Then Q ∗ X = (Q ∗U) ∗Λ ∗V>. Since

(Q ∗U)> ∗ (Q ∗U) = U> ∗Q> ∗Q ∗U = I, (A39)

we obtain that
‖Q ∗ X‖TNN =

∥∥Q ∗ X
∥∥
∗

=
∥∥(Q ∗U) ∗ΛV>

∥∥
∗

=
∥∥(Q ∗U) ·Λ ·V>

∥∥
∗

=
∥∥Λ
∥∥
∗.

(A40)

Thus, ‖Q ∗ X‖TNN = ‖X‖TNN.

Appendix A.4. Proof of Theorem 3

Proof. Please note that (Q∗ ∗ X∗, S∗) is a feasible point of Problem (28), then we have

1
2
‖B� (L? + S? −M)‖2

F + γ(‖L?‖TNN + λ‖S?‖1)

≤ 1
2
‖B� (Q∗ ∗ X∗ + S∗ −M)‖2

F + γ(‖Q∗ ∗ X∗‖TNN + λ‖S∗‖1)

=
1
2
‖B� (Q∗ ∗ X∗ + S∗ −M)‖2

F + γ(‖X∗‖TNN + λ‖S∗‖1)

(A41)

By the assumption that rtubal(L?) ≤ r, there exists a decomposition L? = Q? ∗ X?, such that
(Q?, X?, S?) is also a feasible point of Problem (39).
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Moreover, since (Q∗, X∗, S∗) is a global optimal solution to Problem (39), then we have that

1
2
‖B� (Q∗ ∗ X∗ + S∗ −M)‖2

F + γ(‖X∗‖TNN + λ‖S∗‖1)

≤ 1
2
‖B� (Q? ∗ X? + S? −M)‖2

F + γ(‖X?‖TNN + λ‖S?‖1).

By L? = Q? ∗ X?, we have

‖L?‖TNN = ‖Q? ∗ X?‖TNN = ‖X?‖TNN. (A42)

Thus, we deduce

1
2
‖B� (Q∗ ∗ X∗ + S∗ −M)‖2

F + γ(‖X∗‖TNN + λ‖S∗‖1)

≤ 1
2
‖B� (L? + S? −M)‖2

F + γ(‖L?‖TNN + λ‖S?‖1).
(A43)

According to Equations (A41) and (A43), we further have

1
2
‖B� (Q∗ ∗ X∗ + S∗ −M)‖2

F + γ(‖X∗‖TNN + λ‖S∗‖1)

≤ 1
2
‖B� (L? + S? −M)‖2

F + γ(‖L?‖TNN + λ‖S?‖1).
(A44)

In this way, (Q∗ ∗ X∗, S∗) is also the optimal solution to Problem (28).
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