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Abstract: In this paper, we propose a method for deep-learning-based real-time road traffic predictions
using long-term evolution (LTE) access data. The proposed system generates a road traffic speed
learning model based on road speed data and historical LTE data collected from a plurality of base
stations located within a predetermined radius from the road. Real-time LTE data were the input
for the generated learning model in order to predict the real-time speed of traffic. Since the system
was developed using a time-series-based road traffic speed learning model based on LTE data from
the past, it is possible for it to be used for a road where the environment has changed. Moreover,
even on roads where the collection of traffic data is invalid, such as a radio shadow area, it is possible
to directly enter real-time wireless communications data into the traffic speed learning model to
predict the traffic speed on the road in real time, and in turn, raise the accuracy of real-time road
traffic predictions.

Keywords: road traffic prediction; LTE access data; cellular phones; long short-term memory (LSTM);
deep learning

1. Introduction

Recently, there has been a rapid diversification of traffic information services, and vehicle
navigation is one of the most representative services. A navigation system receives information on
the current location of a vehicle and provides information on the route and arrival time from a global
positioning system (GPS). Since the user requires a high reliability for the arrival time, it is critical to
increase the reliability of traffic information. In order to do so, it is important to include as much traffic
information as possible for the prediction of traffic conditions ahead. However, because there are roads
where probe vehicles do not pass by and where speed detectors are not installed, shadow roads are
somewhat inevitable. Typically, historical statistics-based pattern data are used for these shadow roads.
Still, such historical statistics-based pattern data cannot reflect the current traffic conditions, in turn
creating the possibility that road traffic speed information will be completely different from actual road
traffic speeds. Therefore, this paper proposes a method to obtain more accurate predictions of traffic
speeds on the road by using long-term evolution (LTE) access data from each base station instead
of individual driver’s access information, which avoids issues of privacy infringement. To raise the
performance of a road traffic speed learning model, this paper suggests a way to extract only data
exclusively generated by drivers from the access data of each base station by considering the nature of
wireless connections.

2. Related Works

The most widely used parameters for creating traffic information using mobile communications
data have included cellular phone locations, cell dwelling times, signal strength, and handover data.
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Cellular phone position-based traffic information generation uses the GPS from among the various
sensors of a cellular phone to predict speed, congestion, and other conditions on the road [1–7]. There is
also a method of predicting the volume of traffic based on the hours of cellular phone use [8–11].
However, these methods have the weakness of increasing battery consumption due to the frequent
sampling of the GPS in the driver’s cellular phone. Chandrasekaran et al. [12,13] estimated the
average speed of traffic by using the signal strength of cellular phones, comparing the signal strength
trace on the cellular phones with the known trace of roads and calculating the average traffic speed.
However, even though this method could cover most arterial roads, it fails to trace the changes in traffic
speed in an accurate manner. Another method is a handover type of speed estimation. It searches
for a base station that consequently hands over a large number of users and predicts the traffic speed
on the road in real time by calculating the difference in access times between two consecutive base
stations [14–20]. However, these methods have an issue owing to large system loads from the search
for base stations, as well as from calculating the differences in distance and access times between them.
Moreover, unless the hand over is always made at a specific point, it could be highly reliant on
just a few users, which could be outliers or stationary drivers, and the predicted road traffic speeds
could greatly vary. In order to properly address such weaknesses in the aforementioned methods,
this paper suggests using wireless communications access logs, collected in real time, and only data
taken exclusively from drivers, considering the nature of wireless connections.

3. Correlation Analysis of LTE Access Data and Traffic Information

The purpose of this paper was to analyze correlations with traffic density to identify whether it is
meaningful to generate traffic information using an amount of LTE access data. However, collecting
traffic volume or density directly is a hurdle that has always been identified in the field of transportation.
Fortunately, Seoul collects traffic density information on several major roads and makes this data public.
In this paper, as a result of analyzing the relationship between traffic density information and speed
information acquired from public data, linear characteristics were confirmed, as shown in Figure 1.
This fits with Greenshield’s model [21] among the theoretical models providing correlations between
traffic volume–speed–density, as defined in traffic engineering.

Figure 1. Speed–density correlation analysis of Nambusunhwan-ro in Seoul (Korea).

To analyze the relationship between the LTE access volume and traffic information, traffic speed
information was converted into traffic density. By reflecting the nature of the actual road environment
and traffic flow, the volume of traffic flow for the northbound lane was combined with that of the
southbound lane for the analysis, as shown in Figure 2. This paper analyzed the correlation between
the converted density data and the LTE access data amount by applying the speed data collected using
the Greenshield’s model [21].
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Figure 2. Conversion of speed into road density for the correlation analysis between the long-term
evolution (LTE) access and road traffic.

Figure 3 shows the findings from the analysis of the relationship between the LTE traffic volume
and the actual speed–density data, in units of time, obtained by Topis [22], a Seoul traffic information
system, on the Seoul Nambusunhwan-ro for one week (1–7 August 2017). As shown in Figure 3,
generating traffic information using an amount of LTE access data was meaningful.

Figure 3. Correlation analysis of the traffic density and LTE access.

4. Deep-Learning-Based Real-Time Road Traffic Prediction System Using LTE Access
Data Preprocessing

4.1. Configuration of the System

Figure 4 presents the configuration of a real-time road traffic prediction using LTE access data.
A data collector collected wireless communication access data and GPS-based 5-minute road speeds
from multiple base stations. Wireless access data was used as the input to the learning model,
and GPS speed was used as the ground truth value for the output of the learning model. The wireless
communication access data used in this paper was not data that could be collected or accessed by
the public. The authors, as workers of a telecom provider, received and analyzed the data for the
purpose of this research in a secure environment that was not connected to an external network.
This telecom provider manages data in the form of a platform without personal information. This paper
uses encrypted data, such as Secure Hash Algorithm (SHA)-256, for information that may have privacy
or security issues, such as International Mobile Subscriber Identity (IMSI), rather than raw data. A data
filter filtered the driver information from the collected data to raise the prediction accuracy of this
learning model. Based on the filtered data and road traffic speed data, a traffic speed learning model
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was generated, and by entering the real-time wireless communications access data into the learning
model, the real-time speed of the traffic was predicted. Each component of the system is described in
detail in the following subsections.

Figure 4. LTE traffic-based road traffic prediction system.

4.2. Data Collector

Data are collected from select effective base stations to which drivers connect via wireless
communications while driving by, and from LTE access data from these base stations in real time.
As shown in Figure 5, a valid base station must be located within a predetermined radius from the road,
and its antenna must be installed outside and directed toward the target road. Considering the nature
of a base station where wireless communications access is distributed, two or more base stations must
be selected. The collected access data included information on users who made attempts at wireless
connection to each valid base station, as well as information about each effective base station.

Figure 5. Effective base station selection.

By distinguishing the up and down directions of the roads based on the distribution of wireless
communications traffic volume among multiple base stations and their locations, it is possible to
predict the real-time traffic speed for each direction of the road. As shown in Figure 6, by using
log data on the S1 application protocol (S1AP) collected from a plurality of base stations located
within a predetermined radius of the road, it was possible to identify the distribution of wireless
communications traffic volume among these base stations and to assign a direction on the road by
examining the relationship between the location and distributed wireless communications traffic
volume at each base station. For instance, among the effective base stations, the volume of wireless
communications traffic could be higher at a base station with a distance d2 > d1 from Seoul, compared
to a base station at distance d1 from Seoul. In such a case, the traffic flow of the southbound lane could
be considered stagnant while the traffic flow of the northbound lane is smoother.
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Figure 6. Classification of northbound and southbound directions according to the distribution
of access.

Figure 7 shows the results of the assignment of a direction based on the relationship between the
numbers of effective base stations and cells. When predicting the traffic speed on a road line with one
cell, it is difficult to predict the pattern of speed change since the speed of the northbound lane and
of the southbound lane have to be predicted with a single datum. However, it is possible to predict
a low-speed pattern by having three effective base stations and differentiating the road direction by
using the distribution of wireless communications traffic volume. This cannot be done with a single
base station.

Figure 7. The results of assigning directionality from the relationship between the number of effective
base stations and cells.

4.3. LTE Data Preprocessing

As for the information accessed from a base station, it included both drivers driving by on a
nearby road and non-drivers who were nearby. To raise the accuracy of the prediction of the road
traffic speed, it was critical to filter out information on non-drivers, increasing the ratio of data on
drivers, and to eliminate outliers. Generally, it is acceptable to consider the person whose dwelling
time at one base station within one day is up to 15 minutes as a driver, assuming the driver generally
drives along a highly congested one-kilometer section at a speed of, say, 4km/h, and to filter out others.
However, this method has a critical drawback in that the dwelling time cannot be calculated in real time.
In order to overcome this, we propose two methods. In addition, we suggest distinguishing between
the volumes for incoming and outgoing traffic in order to raise the performance of the suggested deep
learning model.

4.3.1. LTE Access Frequency-Based Filtering

In the case of access data from pedestrians or residents who spend a large amount of time at
a place adjacent to the road, there is a high possibility that it is not generated from a vehicle on
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the road; therefore, by excluding such data, it is possible to raise the accuracy of the road traffic
speed predictions. Figure 8 shows the results of an analysis of the frequency of access to a certain base
station by assumed drivers having a dwelling time of 15 minutes or less at one base station. It shows
that 99% of 18,953 assumed drivers in one day accessed that base station up to five times. In other
words, a person establishing LTE access to one base station more than five times is highly likely to be
a non-driver. Thus, to distinguish between drivers and non-drivers, we suggest filtering the data for
users who establish LTE access to one base station no more than five times.

Figure 8. Correlation between the assumed driver and the number of LTE connections.

In addition, to eliminate data from residents, it is necessary to eliminate access data arising
out of paging communication in the early morning. Paging communication refers to broadcast
communications to regularly page a device in order to inspect the reception status and location of
the device. Since access data arising out of paging communication is not access data generated from
vehicles on the road, they should be eliminated to raise the accuracy of the road traffic speed predictions.
Figure 9 shows that LTE access patterns of assumed drivers were very similar to users whose number
of accesses were only up to five times. As shown in Figure 10, the comparison between the LTE access
data, preprocessed with the suggested method, and the speed and pattern of the road shows the
method of identifying assumed drivers based on the number of accesses.

Figure 9. Comparison of assumed drivers and LTE access pattern with fewer than five accesses.
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Figure 10. Comparison of preprocessed LTE connection data and road speed.

4.3.2. Filtering by Radio Resource Control (RRC) Link Classification of S1AP

S1AP handles the functions of paging and User Equipment (UE) context release, such as the UE
context at the location of an evolved packet system (EPS) bearer, calls that are outgoing/ending, data
service attempts, mobility, text messages, and push messages, among others. Table 1 shows the data
schema of S1AP. We suggest filtering by the analysis of traffic volume based on the RRC classification,
since it gets allocated with the resources from a network for a device using a communications service,
as shown in Table 2.

Figure 11 shows that terminals are often awakened by outbound packets since navigation or
music services are mainly used while driving. As shown in Figure 12, the ratio of incoming data
reception increases during congestion. Since the number of incoming and outgoing signals differs,
depending on the road environment (such as congestion), it was necessary to differentiate them for the
learning process.

Table 1. S1 application protocol (S1AP) data schema (gray box: S1AP characterization factor). (MME:
Mobility Management Entity, TMSI: Temporary Mobile Subscriber Identity, RLC: Radio Link Control,
SRMO: Service Request Mobile Originated, SRMT: Service Request Mobile Terminated, TAU: Tracking
Area Update, S1HO: S1 Handover, ESRMO: Extended-SRMO, ESRMT: Extended-SRMT, QCI: QoS
Class Index, NAS: Non Access Stratum, PDU: Protocol Data Unit, eNB: Evolved Node B, SGW: Serving
Gateway, TAC: Tracking Area Code, PCS: Physical Coding Sublayer).

Column Description Remarks

imsi IMSI value User unique identification code
mme_cd MME code value

tmsi TMSI value MME code + TMSI
start_time S1 call process start time
end_time RLC or reset time

setup_time Attach request to attach complete processing time
cal_time end_time–start_time

sbt_bts_cd Alternate base station code

tp 1: Attach, 2: SRMO, 3: SRMT, 4: TAU, 5: S1HO,
6: Detach, 7: ESRMO, 8: ESRMT RRC connection detail function type

rrc_estab_cause RRC establish cause value RRC connection type
qci QCI value Service priority index

reslt 0: success, 1: fail, 2: reset, 3: warning, 4: ODB
rsn Defined reject message in NAS PDU

mbl_ip_adr_inet Mobile IP address IPv4 or IPv6
enb_ip eNB IP address

mme_ip MME IP address
sgw_ip SGW IP address

tac TAC
cell_id Cell ID
pcs_ip PCS IP
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Table 1. Cont.

Column Description Remarks

pagng_stat

1: primary paging, 1: SP(SMRT_TIME-Paging_TIME) < 3
sec

2: secondary paging, 2: 3 sec ≤ SP < 6 sec
3: tertiary paging, 3: 6 sec ≤ SP < 10 sec

4: etc. 4: 10 sec ≤ SP

Table 2. S1AP RRC connection type.

RRC Connection Type
(S1AP-“rrc_estab_cause”)

Connection Detail Function Type
(S1AP-“tp”)

Mobile originating signaling
(when the terminal wakes up for signal processing)

Attach: Initial access to MME
TAU: Update location when TA changes

Detach
Mobile originating data

(when the terminal wakes up for data transmission)
SMRO: When a data service is requested

E-SMRO
Mobile termination access

(when the terminal wakes up due to an incoming packet)
SMRT

E-SMRT

Figure 11. Analysis of driver-oriented characteristics: building complex versus the Olympic Expressway
(in the driving environment, the number of wake-ups by an outgoing packet is more than 14%).
(a) The number of connections according to the RRC connection type and (b) the number of connections
according to the detail function type.

Figure 12. Analysis of abnormal situation characteristics: normal situations versus abnormal situations
(in cases of congestion, the reception ratio of incoming data increased by 3%). (a) The number of
connections according to the RRC connection type and (b) the number of connections according to the
detail function type.

4.3.3. Filtering by QoS Class Index (QCI) Packets Under S1AP

It was possible to eliminate data arising out of the access to services that could interfere with
driving, such as a video streaming service, based on the index value for the service purpose of the
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communication protocol from a plurality of access data. The index value of the protocol, herein,
was the QCI under S1AP, and it represents the priority of service importance in integers to assure
the traffic quality. Table 3 shows a definition of the QCI. Figure 13 shows the results of filtering by
using service packets that interfere with driving, such as a video streaming service. To reduce errors
in learning and to increase the accuracy of prediction, it is necessary to eliminate data arising out
of streaming services (QCI 6) that are not generally used when driving and that are highly used
by residents, and to have data learning done mainly by QCI 5:6, which had a high explanation
power during congestion. Passengers can watch videos or drivers can listen to music through
YouTube streaming. However, in Korea, drivers are prohibited from watching videos. Even if illegal,
many people will use streaming services while driving. It does not only matter where the driver’s LTE
connection is collected, such as on the highway, but on residential roads, the number of streaming
services by residents will be much higher than that of the drivers. In this paper, excluding streaming
service access is done to strictly filter only drivers.

Table 3. QoS class index (QCI) value for bearers. (TCP: Transmission Control Protocol, WWW: World
Wide Web, FTP: File transfer protocol)

QCI Resource Type Priority Packet Delay
Budget (ms)

Packet Error
Loss Rate Example Services

1 GBR 2 100 10−2 Conversational voice

2 GBR 4 150 10−3 Conversational video
(live streaming)

3 GBR 3 50 10−3 Real-time gaming

4 GBR 5 300 10−6 Non-conversational video
(buffered streaming)

5 Non-GBR 1 100 10−6 IMS signaling
6 Non-GBR 6 300 10−6 Video (buffered streaming)

7 Non-GBR 7 100 10−3 Voice, video (live streaming),
interactive gaming

8 Non-GBR 8 300 10−6 TCP-based (WWW, email, FTP);
privileged subscriber

9 Non-GBR 9 300 10−6 TCP-based (WWW, email, FTP);
non-privileged subscriber

Figure 13. Analysis of driver-oriented characteristics according to the QCI value.

4.4. Road Traffic Speed Prediction Deep Learning Model

Based on wireless communication access data and road speed data collected from multiple base
stations, a road traffic speed learning model was generated. In other words, a time-series–based long
short-term memory (LSTM) deep learning model was generated by using the wireless communications
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(S1AP) access volume from the past (t, t−1, t−2), which has gone through the suggested preprocessing,
and the road speed data of the present (t), as shown in Figure 14. After entering the wireless
communications access data (consisting of incoming and outgoing accesses for each effective base station)
and communication influence weights, the time, day of the week, and traffic speeds were entered into
the road traffic speed prediction deep learning model, we taught the model to output the current traffic
speed for the up and down roads in the present. Communication influence weights varied depending
on the scope of influence of each base station when there were multiple base stations on the road.
By entering the collected real-time access data (real-time incoming and outgoing access volume) and
the time and the day into the learning model, it was possible to estimate the speed of the northbound
and southbound lanes. Twenty percent of the data set was put aside to become the test set, which was
not used for model training, but only for model evaluation.

Figure 14. Deep learning model structure for traffic speed predictions.

5. Experimental Results and Analysis

5.1. Performance Evaluation Metric

To evaluate the reliability of the proposed deep-learning-based prediction model, the difference
between the actual speed and the predicted speed was examined. The mean absolute percentage error
(MAPE) was calculated using Equation (1):

MAPE(%) =
100
T

T∑
t=1

∣∣∣yt − ft
∣∣∣

yt
(1)

where:
t : time index, t ∈ 0, . . . , T

yt : actual value

ft : predicted value.

MAPE represents the mean absolute error from the actual value and it is suitable for the intuitive
evaluation of a situation in which there are significant fluctuations [23]. Considering the nature
of a field of traffic where the accurate prediction of low-speed traffic, such as during congestion,
is critical, MAPE is used as the error metric for the performance evaluation since it is highly sensitive
to the prediction of relatively small values.
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5.2. Performance Analysis of the Suggested Deep Learning Model

To evaluate the performance of the proposed deep-learning-based prediction model, as shown
in Figure 15, a comparison between the existing statistics-based pattern method and the
deep-learning-based prediction using the LTE access data was made for one interrupted road and one
uninterrupted road in Seoul. LTE access data from one month was used to create the deep learning
model; the traffic speeds of the selected roads were predicted for every five minutes for 10 days, and the
differences from the actual speeds were compared using MAPE. As shown in Figure 15, 100% −MAPE
of the suggested deep learning was 84.3%, which was much higher than the existing statistics-based
pattern prediction of 70.5%.

Figure 15. Cont.
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Figure 15. Performance comparison results (red line: actual value, blue line: predicted value.)
(a) Test regions, (b) historical-statistics-based pattern versus proposed LTE data-based prediction in test
region #1, (c) historical-statistics-based pattern result in test region #2 (100%−MAPE: 67.9%), (d) proposed
LTE-data-based prediction in test region #2 (100% −MAPE: 83.4%), (e) historical-statistics-based pattern
result in test region #3 (100% −MAPE: 65.5%), and (f) proposed LTE-data-based prediction in test region
#3 (100% −MAPE: 82.3%).

5.3. Analysis of Road Traffic Speed Predictions in Areas with Different Traffic Flows

The performance of the suggested deep learning model was evaluated by making predictions for
an interrupted road and an uninterrupted road, each having different traffic flows. The characteristics
of an interrupted road, as in a downtown area, are as follows: there are several buildings adjacent to
the road, pedestrians have a significant influence, and traffic lights are present at each intersection.
On the other hand, for the uninterrupted road, such as an urban expressway, there are few buildings
adjacent to the road and speed limits are higher than for downtown roads. To evaluate the performance
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of the suggested deep learning model in areas having different properties, as described in Section 5.2,
LTE access data from one month was used to create the deep learning model. Then, the traffic speeds
of the selected roads were predicted every five minutes for 10 days, and their differences from the
actual speeds were compared with accuracy. Figure 16 shows the predicted speeds of the northbound
and southbound lanes of the roads in three downtown areas: the average (100% −MAPE) was 89.8%.
Figure 17 shows the predicted speeds of the northbound and southbound lanes of the uninterrupted
road (the Olympic Expressway) in three areas, where the average (100% −MAPE) was 74.5%, relatively
lower than downtown and different from what was expected. From the analysis of such variances,
it was shown that in the downtown area, the number of directions and roads covered by a single base
station was small since the cells were divided in the form of a lattice, whereas the uninterrupted road
was rather complicated and consisted of many types of road, such as crossing roads and junctions, so it
was harder to make a prediction.

Figure 16. Prediction results of interrupted flow (red line: actual value, blue line: predicted value).
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Figure 17. Prediction results of uninterrupted flow (Olympic Expressway) (red line: actual value, blue
line: predicted value).

6. Conclusions

This paper proposed a deep-learning-based real-time road traffic prediction method using
LTE access data between drivers and base stations. In the past, models based on historical speed
statistics were mainly used, but they have issues when there is a change in the road environment,
as well as providing low-reliability predictions. Therefore, this paper suggested a method of using
a time-series-based road traffic speed learning model based on LTE access data. As a result of the
experiment, the prediction accuracy of the proposed method was 84.3%, which was better than
the 70.5% from the existing historical-statistics-based pattern. It can be used for roads where the
environment has changed; moreover, even on roads where the collection of traffic data is invalid
(such as in a radio shadow area), it is possible to directly enter real-time wireless communications data
into the traffic speed learning model to predict the traffic speeds on the road in real time, in turn raising
the accuracy of the real-time road traffic predictions. In addition, in the case of the existing handover
method, there is an issue with speed measurement that can be biased by some users, such as stopped
drivers or outliers. However, such issues can be resolved since the suggested method generates a
road traffic speed learning method that is generalized based on wireless communications access data
without handovers. With the proposed deep-learning-based real-time road traffic prediction system,
it was possible to generate information about the road and traffic by using the predicted real-time
speed, and even to predict unexpected situations, which at the present, can only be learned via reports
from a citizen or the police.

In this paper, a model was constructed for each region with similar LTE connection characteristics,
but it is necessary to extend it to further study with a generalized prediction model that considers
the base station radiation angle or the number of lanes. In addition, although a 4G LTE network
was used as the wireless communications connection technology, 5G is currently being distributed.
Due to the characteristics of 5G network, it will be installed as base stations at narrower intervals
than LTE network base stations, such that the number of connections around roads can be collected
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more accurately. Therefore, it is necessary to verify the effect by applying the proposed method to the
5G connection data.
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