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Abstract: Embodied emotion is associated with interaction among a person’s physiological
responses, behavioral patterns, and environmental factors. However, most methods for determining
embodied emotion has been considered on only fragmentary independent variables and not
their inter-connectivity. This study suggests a method for determining the embodied emotion
considering interactions among three factors: the physiological response, behavioral patterns, and an
environmental factor based on life-logging. The physiological response was analyzed as heart rate
variability (HRV) variables. The behavioral pattern was calculated from features of Global Positioning
System (GPS) locations that indicate spatiotemporal property. The environmental factor was analyzed
as the ambient noise, which is an external stimulus. These data were mapped with the emotion of
that time. The emotion was evaluated on a seven-point scale for arousal level and valence level
according to Russell’s model of emotion. These data were collected from 79 participants in daily life
for two weeks. Their relationships among data were analyzed by the multiple regression analysis,
after pre-processing the respective data. As a result, significant differences between the arousal
level and valence level of emotion were observed based on their relations. The contributions of this
study can be summarized as follows: (1) The emotion was recognized in real-life for a more practical
application; (2) distinguishing the interactions that determine the levels of arousal and positive
emotion by analyzing relationships of individuals’ life-log data. Through this, it was verified that
emotion can be changed according to the interaction among the three factors, which was overlooked
in previous emotion recognition.

Keywords: embodied emotion; causality; life-logging; photoplethysmogram (PPG); global positioning
system (GPS); ambient noise

1. Introduction

The theory of the embodied mind has recently emphasized that emotion should be conceptualized
as being operated by the inter-connectivity of the body, the behavior, and the environment because
the intrinsic function of the emotion is for its adaptive survival in the environment [1,2]. Human
physiological changes and behaviors have been dependent with the environment, and the interactions
between them is a mechanism to cope with the environment [3]. Most scholars have agreed that there
are correlations among the physiological response, behavior, and environment. Nevertheless, emotion
has been recognized by fragmentary independent variables without consideration of the relationships
among the three main factors. These are, the physiological response, behavior, and environmental
factors. Therefore, it has been primitive that a heuristic understanding of the embodied emotion is
missing connections among the three main factors. Moreover, the embodied emotions recognized in the
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laboratory have been difficult to apply to real life, due to its limitation, compared to the experiences in
a complex, real-life environment. Ecological validity has been undermined by recognizing emotion in
laboratory settings. Emotional expressions tend to be reduced due to social desirability [4]. Therefore,
a field study is necessary to test the feasibility that emotional factors measured in laboratory settings
are applicable in real environment [5–7].

Field studies of emotion recognition have tried to collect data and measure emotion using
wearable sensors or smartphone [4,8,9]. Life-logging applications particularly hold for investigations
conducted in the field. An increased use of wearable devices and self-tracking behaviors has been
highlighted [10]. Life-logging is the process of automatically recording an aspects of one’s life in
digital form [11]. They have mainly measured autonomic nervous system (ANS) for analyzing
the physiological response in daily life [12–17]. The ANS included activities of sympathetic and
parasympathetic nervous system, which has been measured by the responses of cardiovascular,
respiratory, and electrodermal [18,19]. In particular, the photoplethysmoogram (PPG) has been
increasingly measured from portable devices according to the commercialization of wearable devices,
such as smart watches [14,16]. Therefore, the PPG signal is attracting attention as a measure of ANS
that can be measured in daily life.

Behavioral patterns associated with emotions have based on individual’s own mobility patterns
in life-logging studies. Stress and depression have been correlated with smaller variation of
mobility [20,21]. The individual’s own movement patterns can be measured by the global positioning
system (GPS) [21,22]. The GPS can be easily measured with sensors built into the smartphone. Emotions
have been inherent in physiological mechanisms to adapt to environment [23]. Therefore, emotions
have been affected by environmental factors.

The environment changes the physiological responses and human behavior according to emotions,
and vice versa [24]. It also affects emotions. Embodied emotions are highly related to the environmental
factors, such as sound [25,26] and exposure to ambient noise in daily life has been reported to affect
negative emotions and arousal [27–29]. Louder or long-lasting noise has been reported to negatively
impact emotion. Also, uncontrollable noise has been reported to have more emotional impact. On the
other hand, there were the results that the white noise had a positive effect [30,31]. Schuller et al. [32]
suggested that arousal is highly correlated with loudness and valence is negative correlated with
spectral flux and spectral harmonicity. The arousal and valence levels are the dimension of the Russell’s
emotional model [33]. These results indicate that ambient noise gives physical and emotional impact
on humans and it could be one of the factors to induce emotions. Moreover, field studies of real-time
noise monitoring suggested that environmental noise can be measured using smartphones [34–36].
Therefore, it can be easily measured in life-logging.

Despite the proposed application of emotion recognition in real-life, there is still little research,
which is often overlooked for emotion recognition in real-time, by considering three factors. Therefore,
this study attempts to recognize the emotions of the interactions of the three factors in real-life:
Physiological responses by measuring PPG, behavior by measuring GPS, and the ambient noise as
an environmental factor by measuring sound. The contributions of this study can be summarized as
follows: (1) The emotion was recognized in real-life for more practical applications; (2) the proposed
method analyzed the interactions of more causes of emotional determination compared with the
previous emotion recognition method that employs fewer factors.

2. Method

2.1. Hypothesis

This study hypothesized that the interactions among the physiological response, the behavioral
pattern, and the ambient noise would differ in the emotional arousal and valence.
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2.2. Participant

Seventy-nine participants (35 males) without cardiovascular disease were selected by convenience
sampling. Their average age was 23(±3). Everyone was given a detailed explanation and provided
consent before the field test. Participants were compensated ($140.38) for their role in the field test.

2.3. Data Collection

Data were collected from a field test and not in a usual laboratory environment to ensure the
authenticity of the physical experience and environmental factors of daily life. Seventy-nine participants
were a part of this field test, which lasted 5 h, every day for 2 weeks, including the weekends. They
were given a wearable device and received guidance for the smartphone application developed for
this field test. The participants were asked to wear their devices by connecting it to their smartphones
throughout the field test. They wore the device throughout the fixed time from 12 pm to 6 pm daily.
These 5 h may be a working time or a rest time depending on the participant, but only the people who
agreed to continue to measure data during this time participated in the experiment. A notification
function in the application was developed to ensure that measurements are taken continuously
throughout the experiment without missing data. The application sent a notification to the researcher
when there was a lost connection with the sensor or data was not measured for a certain period.
If the researcher received the notification from the application, the researcher asked the participant
to continuously measure the data via messenger. The collected data consisted of physiological and
behavioral responses based on photoplethysmogram, global positioning system location, along with
environmental factors based on ambient noise. Physiological responses were separately measured with
the wearable device, and the behavioral along with environmental factors were measured with the GPS
sensor and microphone embedded in the smartphone, respectively. To avoid disturbing daily activities
as much as possible, the wireless PPG sensor, which can be measured with one finger, was worn on
the infrequently used hand (mostly left hand) as shown in Figure 1. Also, the data from GPS and the
surrounding environment were automatically collected by using the smartphone that the participants
always possesses during daily activities. It provided convenience for the participants. The participants
only had to connect the application and the sensor at the start of the experiment to collect data.Sensors 2019, 19, x FOR PEER REVIEW 4 of 25 
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Figure 1. The wearable device for sensing photoplethysmogram (PPG) signals and the mobile
application for PPG, photoplethysmogram (GPS), ambient noise, and self-report data acquisition.

Participants received an emotional assessment request from the application on time every
hour. They answered two emotional questions about how arousal and how pleasant by assessing
their overall emotional state during the previous hour, based on the point of emotional evaluation.
These two questions are based on two independent dimensions, the arousal axis, and the valence axis,
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which constitute emotion in Russell’s two-dimensional circumplex model [33]. Russell’s model is one
of the most representative emotional models and has been evaluated on a seven-point Likert scale
when rating arousal and valence levels in other emotional assessment studies [37–42]. Therefore, in this
study, participants self-reported their emotions on a seven-point scale. Specifically, the participant
checked one of the radio buttons from 1 to 7 points in the application and clicked the submit button.
As with other data, if a subject did not respond to an emotional assessment, the application detected
it and alerted the investigator. When the investigator received such an alert, the investigator asked
the subject to evaluate the emotion. This experimental procedure was approved by the Institutional
Review Board of the Sangmyung University, Seoul, Korea (BE2017-22).

2.4. Measurement of Physiological Response by Analyzing HRV

2.4.1. Recording and Signal Processing

The PPG signals were recorded between 50 and 90 Hz sampling rate with the wireless PPG
sensing system (Emotion Science Research Center Inc., Seoul, Korea). Zero-padding and cubic spline
interpolation were applicated to stabilize the sampling rate of data to 80 Hz. After the interpolation,
Only the frequency components between 0.75 and 2.5 Hz corresponding to the ranges between 50 bpm
and 150 bpm, respectively, were extracted by the Butterworth bandpass filter for noise cancelation.
The peak was detected in the PPG raw signal by the peak detection algorithm. The peak to peak
interval (PPI), which is the interval between detected peaks, was calculated by detecting the dominant
frequency by Fast Fourier Transformation (FFT), while sliding the raw data signal accumulated for
120 s at intervals of 1 s.

2.4.2. HRV Analysis in Time Domain

Beat per minute (BPM) was calculated by dividing the window size of 60 s with the peak to peak
interval (PPI) as:

BPM = 60/
1
N

N∑
i=1

PPIi (1)

where N was the number of raw PPG signal samples. All variables of the heart rate variability (HRV)
were calculated by HRV analysis with the window size of 180 s and interval size of 60 s. The mean of the
standard deviation (SDNN) of all PPI for all 3-min segments of the entire recording was calculated as:

SDNN = SD(PPI) =

√√√
1

N − 1

N∑
I=1

[Mean(PPI) − PPIi]
2 (2)

where SD(PPI) is a standard deviation of PPI. The root mean square of differences between adjacent
PPI (RMSSD) was calculated as:

RMSSD =

√
1

N − 2

∑N

i=2
(PPIi − PPIi−1)

2. (3)

The proportion derived by dividing the number of interval differences of PPI greater than 50 ms by the
total number of PPI (pNN50) as:

pNN50 =
NN50 count

total NN count
(4)

where NN50 count is number of PPI greater than 50ms and total NN count is the total number of PPI.
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2.4.3. HRV Analysis in Frequency Domain

Very low frequency (VLF) which is the power in the frequency range of 0.0033–0.4 Hz was
analyzed as an indicator of sympathetic activity as:

VLF =
∑ 0.04

d f

i= 0.0033
d f

Poweri, d f =
SamplingRate(PPI)

Length(PPI)
=

1
Time

(5)

where Power is the power spectrum analyzed PPI by FFT and d f is frequency resolution. Low frequency
(LF) which is the power in the frequency range of 0.04–0.15 Hz was analyzed as an indicator of both
the sympathetic and the parasympathetic activity as:

LF =
∑ 0.15

d f

i= 0.04
d f

Poweri (6)

High frequency (HF) which is the power in the frequency range of 0.15–0.4 Hz was analyzed as an
indicator of parasympathetic activity as:

HF =
∑ 0.4

d f

i= 0.15
d f

Poweri. (7)

The VLF, LF, and HF components were also analyzed as percentage and normalized values, respectively.
The percentage of each variable were calculated by dividing each variable by the total power. Total
power is a band of power spectrum range between 0.0033 and 0.4 Hz as:

TotalPower =
∑ 0.4

d f

i= 0.0033
d f

Poweri. (8)

VLF(%) is VLF divided by the total power as:

VLF(%) =
VLF

TotalPower
. (9)

LF(%) is LF divided by the total power as:

LF(%) =
LF

TotalPower
. (10)

HF(%) is HF divided by the total power as:

HF(%) =
HF

TotalPower
. (11)

The normalized variables were calculated by natural logarithm of VLF, LF, and HF. lnVLF is natural
logarithm of VLF as:

lnVLF = ln(VLF) (12)

where ln is natural logarithm. lnLF is natural logarithm of LF as:

lnLF = ln(LF) (13)

lnHF is natural logarithm of HF as:
lnHF = ln(HF). (14)



Sensors 2019, 19, 5308 6 of 25

VLF, LF, and HF were also calculated as ratios such as LF/HF ratio, VLF/HF ratio. The LF/HF ratio and
VLF/HF ratio represent homeostasis of the sympathetic and parasympathetic activity [43] as:

LF/HF ratio =
LF
HF

(15)

VLF/HF ratio =
VLF
HF

. (16)

Peak power is the band of power spectrum range between −0.015 and 0.015 Hz based on peak Hz.
The peak power is an indicator of homeostasis [43] as:

PeakPower =
∑ PeakHz+0.015

d f

i= PeakHz−0.015
d f

Poweri. (17)

Peak Hz is a hertz of highest peak in power spectrum range of 0.04–0.26 Hz as:

PeakHz = argmax(Poweri) × d f ,
0.04
d f
≤ i ≤

0.26
d f

. (18)

Coherence ratio is the peak power divided by difference of total power and peak power which is
indicator of the emotional stability [43] as:

Coherence Ratio =
PeakPower

TotalPower− PeakPower
(19)

Dominant power is a power of highest peak in total power spectrum range of 0–0.5 Hz as:

Dominant Power = Powerargmax(Power) (20)

Dominant Hz is a hertz of highest peak in total power spectrum range of 0–0.5 Hz as:

Dominant Hz = argmax(Power) × d f (21)

2.5. Measurement of Behavior Patterns by Analyzing GPS Location

GPS locations were measured in two states: Stationary and transition state. The GPS locations
were classified into a stationary state or transition state were defined based on a distance by K-Means
algorithm. The GPS location in the stationary state were calculated when the latitude and longitude
have changed by less than 1 km per hour, and the GPS locations in the transition state were considered
only more than 1 km per hour [21]. The six variables of behavioral patterns were defined by analyzing
the GPS locations accumulated for 10 min at intervals of 1 min. Location Variance is the variability
in a participant’s GPS location which is calculated by logarithm of sum of squares of latitude and
longitude as,

Location Variance = log
(
σlat

2 + σlng
2
)

(22)

where σlat
2 is a sum of squares of latitude and σlat

2 is a sum of longitude. Number of Clusters is the
number of location clusters found by the k-means algorithm. Entropy is a variability of the time spent
at the location clusters as,

Entropy = −
N∑

i=1

pilog pi (23)
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where i was the location cluster, N was the number of clusters, and pi was the ratio of the time spent in
the clusters. Circadian Movement is the regularity of moving pattern in daily life as,

Circadian Movement = log
(
Elat + Elng

)
, E =

N∑
i=1

psd( fi)
(ii − iN)

(24)

where f was a bin in frequency domain analyzed from GPS locations by least-squares spectral analysis,
N was the number of frequency bins corresponding to 24-h periods, i was the index of frequency bin,
and psd( fi) was the power spectral density at frequency bin fi. The logarithm was applied to correct
the skewed distribution. Transition Time is the percentage of time during which a participant was in
the non-stationary state. Total Distance is accumulation of distances between the location samples in
kilometers taken by a participant as,

Total Distance =
N−1∑
i=1

111.19× 180
π × acos[sin(lati) × sin(lati+1)

+ cos(lati) × cos(lati+1) × cos(lngi+1 − lngi)]
(25)

where i was the GPS location, and N was the total number of GPS locations, and 111.19 was the constant
for unit conversion from miles to kilometers.

2.6. Measurement of Environmental Factors by Analyzing Ambient Noise

The environmental factors based on ambient noise were analyzed by raw sound signals. The raw
signals of ambient noise were recorded every second while accumulated for 5 s. The analyzed features
of raw signals were classified with volume and frequency components which are sound amplitude and
sound frequency. The sound amplitude was analyzed by averaging the measured the raw signal for
1 min as,

SoundAmplitude =
1
m

m∑
i=1

Amplitudei (26)

where Amplitude is amplitude of ambient noise, and m is a window size. The sound frequency was
analyzed by dominant power spectrum in frequency domain.

SoundFrequency = argmax(Power) × d f , d f =
SamplingRate(Amplitude)

Length(Amplitude)
=

1
Time

. (27)

2.7. Statistical Analysis

The relationships among the physiological response, the behavioral pattern, and the ambient
noise, based on emotion, were analyzed in the following three steps. First, the pre-processing step that
interpolates and normalizes data samples. In the second step, the correlations, between the 31 variables
measured the physiological response, the behavioral pattern, and the ambient noise, which are analyzed
by the multiple regression. Finally, the hypothesis of this study, which is that significant relationships,
resulting from multiple regression, differ depending on the emotions, is verified by ANOVA. Since
the above variables have different criteria, data interpolation and standardization were performed to
compare among the variables. The data were interpolated by averaging the data and standardized by
z-score. After data preprocessing, a multiple regression model was constructed by setting one of the
above 31 variables as the dependent variable and the remaining 30 variables as independent variables.
The same procedure was repeated for all variables that were not set as dependent variables.

Correlations between the dependent variable and independent variables were analyzed by
multiple regression. Multiple regression analysis is convenient to analyze multiple independent
variables for a dependent variable. In order to derive a significant correlation between the dependent
variable and independent variables by multiple regression, the following constraints should be
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checked. The multi-collinearity means that there is a strong correlation among independent variables.
The independent variables which have multi-collinearity should have been removed to prevent error.
In order to this constraint, the variance inflation factor (VIF) which is an indicator of multicollinearity
was checked that is less than 10. The second, autocorrelation was tested by Durbin-Watson statistics.
The autocorrelation indicates a strong correlation among dependent variables. It was verified that there
was not the autocorrelation since the Durbin-Watson statistics were more than 1 and less than 3. Third,
the normality and homogeneity of the residuals were tested by the Kolmogorov-Smirnov test (p > 0.1)
and Breusch-Pagan (p > 0.05). All assumptions for multiple regression were satisfied, therefore, this
study analyzed the multiple regression models. Finally, the existence of any significant independent
variable, which affect a dependent variable, was verified (p < 0.05). The suitability of the regression
model was verified by the adjusted r-squared, which is more than 0.6. The standardized coefficients (β)
obtained as a result of multiple regression are indicators of the influence of each independent variable
on the dependent variable.

The standardized coefficients for each person were stored in matrix form as shown in Figure 2.
Then, the subjective emotion labels were mapped to the standardized coefficients matrix to form a data
structure for ANOVA as shown in Figure 3. The emotion labels indicate the subjective questionnaire
score, which is evaluated as seven points for two emotion questionnaires of arousal level and valence
level. Samples that were analyzed 79 participants of standardized coefficient data mapped with
emotional labels were analyzed for differences between arousal levels or valence levels respectively
by ANOVA.Sensors 2019, 19, x FOR PEER REVIEW 8 of 25 
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Figure 3. Data structures of each analysis step. Standardized coefficients as results of multiple
regression were formed as a matrix. Map the subjective emotion labels to the standardized coefficients
matrix to form a data structure for ANOVA.

3. Results

Significant correlations among the physiological responses, the behavioral patterns, and the
ambient noise were analyzed by multiple regression for two weeks of data samples of 79 participants’.
An example of multiple regression results is shown in Table 1. The significant correlations derived
from the multiple regression were analyzed by ANOVA. This analysis analyzed the difference between
correlations depending on emotion levels. Specifically, we confirmed whether the standardized
coefficients obtained through the multiple regression analysis were different according to the three
emotion levels. The emotion was analyzed at the relevant time when a significant correlation was
analyzed on the basis of the subjective emotion recorded from the participants. The emotion was
recorded on seven-point scales according to the level of arousal, and valence, respectively. The level of
arousal was classified into three levels based on the median of the assessment. The data larger than
the median (5–7 points) were classified as arousal, the median (4-point) was neutral, and the data
smaller than the average (1–3 points) were classified as relaxation. Likewise, 5–7 points of valence
scores were classified into positive emotion, the median value (4-point) was into neutral, and 1–3
points were into negative emotion. The number of samples by arousal level was 1907 arousal samples,
1699 neutral, and 777 relaxation, respectively. While, 2300 samples were rated positive emotion, 1098
neutral, and 985 negative emotion. Specific descriptive statistics on mean and standard deviation of
the standardized coefficients were presented according to the levels of arousal in Table 2. Descriptive
statistics of the standardized coefficients according to the levels of valence were described in Table 3.
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Table 1. An example of the significant causalities analyzed by multiple regression among two weeks data
for 79 participants. All assumptions of multiple regression were satisfied. There was no autocorrelation
in the residuals (Durbin-Watson value = 2.264). Normality of residuals was satisfied (p-value of
Kolmogorov-Smirnov test = 0.728). Homeogeneity of residuals was satisfied (p-value of Breusch-Pagan
test = 0.499). Multiple regression was run to predict lnHF from location variance, circadian movement,
transition time, total distance, total distance, pNN50, peak hz, and coherence ratio. Only those variables
which were not affected by multicollinearity were entered in the multiple-regression (VIF < 10).
A significant regression equation was found (F(25, 34) = 40.231, p < 0.000, Adj.R2 = 0.943). Transition
time was significant predictor of lnHF. Regression model degrees of freedom: 25, Residual degrees
of freedom: 34, Autocorrelation Test - Durbin Watson: 2.264, Kolmogorov-Smirnov Test: Z = 0.089,
p = 0.728, Breusch-Pagan Test: F = 0.994, p = 0.499.

Dependent
Variables Tests Statistics

lnHF

Multiple
regression

Determining
how well the

model fits

Adj. R-square 0.943
F 40.231

Sig. 0.000

Statistical
significance of

the
independent

variables

Independent
variables

Unstandardized
coefficients (Beta) p

(constant) −10437988370.481 0.661
Location
Variance 0.012 0.687

Circadian
Movement 0.028 0.166

Transition Time −0.059 0.076
Total Distance 0.064 0.116

pNN50 0.020 0.792
Peak Hz 0.050 0.115

Coherence
Ratio 0.040 0.247

Multicollinearity
test

Independent variables VIF
Location Variance 2.759

Circadian Movement 3.673
Transition Time 7.764
Total Distance 8.050

pNN50 8.528
Peak Hz 3.704

Coherence Ratio 4.322

Table 2. Descriptive statistics of the standardized coefficients with significant differences between
arousal levels.

Variable Descriptive Statistics of Standardized Coefficients

Independent Dependent Statistic Arousal Neutral Relaxation

BPM VLF
Mean −5,745,442,617 −17,308,431,507 8,428,219,435

SD 270,176,000,000 245,484,000,000 231,354,000,000

pNN50 Dominant
Power

Mean −0.423 −0.613 −0.659
SD 1.866 2.63 3.945

RMSSD pNN50 Mean 0.013 0.008 0.01
SD 0.05 0.041 0.046

SDNN pNN50 Mean 0.025 0.032 0.034
SD 0.071 0.099 0.089

SDNN lnHF
Mean −0.055 −0.05 −0.141

SD 0.838 0.931 0.93
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Table 2. Cont.

Variable Descriptive Statistics of Standardized Coefficients

Independent Dependent Statistic Arousal Neutral Relaxation

SDNN VLF/HF ratio Mean −0.001 −0.003 −0.007
SD 0.073 0.062 0.082

SDNN Peak Power
Mean −0.045 −0.089 −0.056

SD 0.345 0.53 0.433

LF(%) VLF(%) Mean −0.001 −0.003 −0.006
SD 0.031 0.053 0.082

LF(%) HF(%) Mean −0.001 −0.003 −0.008
SD 0.04 0.068 0.098

lnLF BPM
Mean 0.001 0 −0.001

SD 0.022 0.017 0.022

lnHF Entropy Mean −1193.169 −140,776.746 14,580.387
SD 37,241.047 3,206,125.223 642,719.545

lnHF Circadian
Movement

Mean 0 0.001 0
SD 0.006 0.016 0.004

lnHF Dominant Hz
Mean −0.097 −0.112 −0.119

SD 0.236 0.249 0.254

lnHF Peak Hz
Mean 0.032 0.04 0.041

SD 0.08 0.092 0.091

LF/HF ratio pNN50 Mean −0.004 −0.006 0
SD 0.052 0.06 0.067

Dominant
Power

lnHF
Mean −0.041 0.004 0.035

SD 0.902 0.853 0.872

Dominant Hz Dominant
Power

Mean −0.008 −0.138 −0.055
SD 0.791 2.046 1.176

Dominant Hz Coherence ratio
Mean −0.042 −0.06 −0.064

SD 0.259 0.215 0.225

Dominant Hz
Sound

Frequency
Mean −0.002 −0.003 0.003

SD 0.077 0.051 0.044

Peak Power Coherence ratio
Mean 0.156 0.127 0.111

SD 0.456 0.359 0.339

Peak Hz RMSSD
Mean −0.075 0.2 −0.013

SD 1.933 4.134 1.17

Peak Hz Peak Power
Mean 0.043 0.119 0.216

SD 1.258 0.878 1.729

Coherence ratio pNN50 Mean 0.006 −0.002 0.001
SD 0.077 0.08 0.076

Coherence ratio VLF(%) Mean −105,267,518.5 −2,016,911,138 −48,597,422.56
SD 15,299,232,245 17,846,539,923 20,110,510,824

Coherence ratio LF(%) Mean −132,068,389.2 −2,021,703,780 −84,532,472.78
SD 14,109,144,081 17,824,867,958 18,840,262,720

Coherence ratio HF(%) Mean −217,938,238.3 −2,389,073,268 −85,954,745.84
SD 16,032,965,209 21,954,646,140 22,568,564,779

Coherence ratio Dominant Hz
Mean −0.065 −0.074 −0.093

SD 0.309 0.345 0.325

Transition Time Dominant Hz
Mean −0.015 −0.015 0.011

SD 0.259 0.175 0.194

Total Distance Dominant Hz
Mean 0.009 0.019 −0.003

SD 0.182 0.195 0.236
Sound

Amplitude RMSSD
Mean 0.005 0.376 0.02

SD 0.757 7.924 1.492
Sound

Amplitude
Sound

Frequency
Mean 0.062 0.078 0.094

SD 0.245 0.266 0.286
Sound

Frequency
Sound

Amplitude
Mean 0.075 0.086 0.109

SD 0.299 0.314 0.337
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Table 3. Descriptive statistics of the standardized coefficients with significant differences between
valence levels.

Variable Descriptive Statistics of Standardized Coefficients

Independent Dependent Statistic Positive Neutral Negative

Total Distance Peak Power
Mean −0.033 −0.128 −0.01

SD 0.717 2.004 0.7510.751

pNN50 LF(%) Mean −118,639,038.5 1,079,730,567 1,891,445,746
SD 21,820,377,528 18,397,399,419 29,119,919,937

pNN50 HF(%) Mean −209,743,703.2 1,227,721,976 2,344,251,772
SD 25,563,848,513 21,374,411,771 35,526,468,774

VLF(%) LF(%) Mean −0.002 −0.007 −0.001
SD 0.041 0.081 0.036

VLF(%) HF(%) Mean −0.002 −0.009 −0.002
SD 0.052 0.104 0.046

LF(%) VLF(%) Mean −0.003 −0.007 −0.001
SD 0.055 0.088 0.029

LF(%) HF(%) Mean −0.003 −0.009 −0.001
SD 0.064 0.109 0.041

HF(%) VLF(%) Mean −0.002 −0.006 −0.001
SD 0.037 0.068 0.021

HF(%) LF(%) Mean −0.002 −0.006 −0.001
SD 0.036 0.066 0.022

lnHF VLF(%) Mean −6,230,158.347 -808,663,867.5 139,285,674.2
SD 5,364,187,185 14,013,185,177 5,257,502,233

lnHF LF(%) Mean −5,812,633.013 -910,997,723.4 128,324,064
SD 5,522,380,316 16,960,721,918 5,205,893,477

lnHF HF(%) Mean −19,292,545.01 −1,142,833,043 160,581,520.7
SD 6,721,689,128 21,115,017,843 6,435,510,213

VLF/HF ratio VLF
Mean −6,771,606,848 4806843674 5,214,155,475

SD 191,933,000,000 89,138,008,055 97,000,248,564

VLF/HF ratio
Sound

Amplitude
Mean −0.001 0.007 −0.002

SD 0.051 0.07 0.057

Dominant Hz VLF
Mean 4,564,168,257 941,743,170 −10,176,921,026

SD 93,659,975,658 111,036,000,000 224,181,000,000

Dominant Hz Total Power
Mean −9,252,548,826 387775431.7 15,059,942,652

SD 190,801,000,000 222,377,000,000 381,999,000,000
Sound

Amplitude Transition Time
Mean 0.024 −0.007 0.004

SD 0.327 0.395 0.227
Sound

Amplitude Total Distance
Mean −0.023 0.023 0.031

SD 0.49 0.481 0.789
Sound

Amplitude VLF/HF ratio Mean −0.011 0.013 0.002
SD 0.285 0.141 0.304

Sound
Frequency Dominant Hz

Mean 0 −0.01 0.008
SD 0.143 0.167 0.138

The significant result of statistics that distinguish the three levels of arousal were presented in
Tables 4–21. The significant result of ANOVA (i.e., p < 0.05 in the ANOVA row in the tables) indicates
that there is more than one pair of differences among the three levels of emotions. However, this result
does not indicate which pair is significant. Therefore, the pairs (arousal-neutral, neutral-relaxation,
and arousal-relaxation) that show significant differences should be analyzed. This analysis has been
commonly referred to as post-hoc analysis. In this study, an independent t-test was used which is
a general method of analyzing the difference between two levels (i.e., p < 0.05 in the T-test row in
the tables). This paper presents only the results of the significant differences between all pairs (all
emotions). The correlations varied depending on the level of arousal were divided into the relationships
within physiological or environmental variables, the relationships between the physiological and
behavioral variables, and between the physiological and the environmental variables (Figure 4).
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There were many correlations between physiological variables, especially variables such as pNN50,
SDNN, lnHF, Dominant Power, Dominant Hz, Peak Hz and Coherence ratio. The relationships
between physiological and behavioral variables, which differed according to the level of arousal,
were correlations between lnHF and Entropy, lnHF and Circadian Movement, Dominant Hz and
Transition Time, and Dominant Hz and Total Distance. The relationships between physiological
and environmental variables, which differed according to the level of arousal, were correlations
between RMSSD and Sound Amplitude, and Dominant Hz and Sound Frequency. There was a
correlation between sound amplitude and sound frequency. There was no correlation between the
behavioral variables.

Table 4. Results of one-way ANOVA show a significant difference between Arousal-Neutral-Relaxation
among variables correlated with BPM analyzed by multiple regression. The difference between the two
emotion levels was verified by independent t-test.

Dependent variables Tests Statistics lnLF

BPM

ANOVA
F 3.173
p 0.042

T-test

Arousal-Neutral
t 1.487
p 0.137

Neutral-Relaxation
t 0.488
p 0.625

Arousal-Relaxation
t −2.358
p 0.018

Table 5. Results of one-way ANOVA show a significant difference between Arousal-Neutral-Relaxation
among variables correlated with RMSSD analyzed by multiple regression. The difference between the
two emotion levels was verified by independent t-test.

Dependent variables Tests Statistics Peak Hz Sound Amplitude

RMSSD

ANOVA
F 4.067 3.466
p 0.017 0.031

T-test

Arousal-Neutral
t -2.346 −2.023
p 0.019 0.043

Neutral-Relaxation
t 1.964 1.782
p 0.050 0.075

Arousal-Relaxation
t 1.143 0.401
p 0.253 0.688

Table 6. Results of one-way ANOVA show a significant difference between Arousal-Neutral-Relaxation
among variables correlated with pNN50 analyzed by multiple regression. The difference between the
two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics SDNN RMSSD LF/HF ratio Coherence Ratio

pNN50

ANOVA
F 5.367 4.233 3.496 3.946
p 0.005 0.015 0.030 0.019

T-test

Arousal-Neutral
t −2.200 2.625 0.969 2.502
p 0.028 0.009 0.332 0.012

Neutral-Relaxation
t −0.292 −1.109 −2.200 −0.885
p 0.770 0.268 0.028 0.376

Arousal-Relaxation
t 3.257 −2.004 1.994 −2.092
p 0.001 0.045 0.046 0.036
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Table 7. Results of one-way ANOVA show a significant difference between Arousal-Neutral-Relaxation
among variables correlated with VLF analyzed by multiple regression. The difference between the two
emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics BPM

VLF

ANOVA
F 3.109
p 0.045

T-test

Arousal-Neutral
t 1.032
p 0.302

Neutral-Relaxation
t −2.518
p 0.012

Arousal-Relaxation
t 1.681
p 0.093

Table 8. Results of one-way ANOVA show a significant difference between Arousal-Neutral-Relaxation
among variables correlated with VLF(%) analyzed by multiple regression. The difference between the
two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics LF(%) Coherence Ratio

VLF(%)

ANOVA
F 3.597 3.813
p 0.027 0.022

T-test

Arousal-Neutral
t 1.022 2.793
p 0.307 0.005

Neutral-Relaxation
t 1.117 −2.338
p 0.264 0.019

Arousal-Relaxation
t −2.604 0.096
p 0.009 0.924

Table 9. Results of one-way ANOVA show a significant difference between Arousal-Neutral-Relaxation
among variables correlated with LF(%) analyzed by multiple regression. The difference between the
two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics Coherence Ratio

LF(%)

ANOVA
F 4.166
p 0.016

T-test

Arousal-Neutral
t 2.905
p 0.004

Neutral-Relaxation
t −2.413
p 0.016

Arousal-Relaxation
t 0.086
p 0.931

Table 10. Results of one-way ANOVA show a significant difference between Arousal-Neutral-Relaxation
among variables correlated with HF(%) analyzed by multiple regression. The difference between the
two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics LF(%) Coherence Ratio

HF(%)

ANOVA
F 3.375 4.056
p 0.034 0.017

T-test

Arousal-Neutral
t 1.023 2.841
p 0.306 0.005

Neutral-Relaxation
t 1.050 −2.376
p 0.294 0.018

Arousal-Relaxation
t −2.550 0.204
p 0.011 0.838
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Table 11. Results of one-way ANOVA show a significant difference between Arousal-Neutral-Relaxation
among variables correlated with lnHF analyzed by multiple regression. The difference between the
two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics SDNN Dominant Power

lnHF

ANOVA
F 4.967 3.343
p 0.007 0.035

T-test

Arousal-Neutral
t −0.150 −1.178
p 0.881 0.239

Neutral-Relaxation
t 2.256 −0.832
p 0.024 0.406

Arousal-Relaxation
t −2.901 2.556
p 0.004 0.011

Table 12. Results of one-way ANOVA show a significant difference between Arousal-Neutral-Relaxation
among variables correlated with VLF/HF ratio analyzed by multiple regression. The difference between
the two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics SDNN

VLF/HF ratio

ANOVA
F 3.417
p 0.033

T-test

Arousal-Neutral
t 0.474
p 0.636

Neutral-Relaxation
t 1.509
p 0.132

Arousal-Relaxation
t −2.475
p 0.013

Table 13. Results of one-way ANOVA show a significant difference between Arousal-Neutral-Relaxation
among variables correlated with Peak Power analyzed by multiple regression. The difference between
the two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics SDNN Peak Hz

Peak Power

ANOVA
F 3.013 6.761
p 0.049 0.001

T-test

Arousal-Neutral
t 2.513 −1.537
p 0.012 0.124

Neutral-Relaxation
t −1.600 −1.476
p 0.110 0.140

Arousal-Relaxation
t −0.873 3.456
p 0.383 0.001

Table 14. Results of one-way ANOVA show a significant difference between Arousal-Neutral-Relaxation
among variables correlated with Peak Hz analyzed by multiple regression. The difference between the
two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics lnHF

Peak Hz

ANOVA
F 5.202
p 0.006

T-test

Arousal-Neutral
t −2.246
p 0.025

Neutral-Relaxation
t −0.179
p 0.858

Arousal-Relaxation
t 3.058
p 0.002
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Table 15. Results of one-way ANOVA show a significant difference between Arousal-Neutral-Relaxation
among variables correlated with Coherence ratio analyzed by multiple regression. The difference
between the two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics Dominant Hz Peak Power

Coherence ratio

ANOVA
F 4.194 5.807
p 0.015 0.003

T-test

Arousal-Neutral
t 1.690 1.553
p 0.091 0.120

Neutral-Relaxation
t 0.466 1.090
p 0.641 0.276

Arousal-Relaxation
t −2.737 −3.311
p 0.006 0.001

Table 16. Results of one-way ANOVA show a significant difference between Arousal-Neutral-Relaxation
among variables correlated with Dominant Power analyzed by multiple regression. The difference
between the two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics pNN50 Dominant Hz

Dominant Power

ANOVA
F 3.095 3.013
p 0.045 0.049

T-test

Arousal-Neutral
t 2.117 2.365
p 0.034 0.018

Neutral-Relaxation
t 0.296 −1.278
p 0.767 0.201

Arousal-Relaxation
t −2.342 −1.400
p 0.019 0.162

Table 17. Results of one-way ANOVA show a significant difference between Arousal-Neutral-Relaxation
among variables correlated with Dominant Hz analyzed by multiple regression. The difference between
the two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics Transition Time Total Distance lnHF Coherence Ratio

Dominant Hz

ANOVA
F 6.946 3.524 3.559 3.252
p 0.001 0.030 0.029 0.039

T-test

Arousal-Neutral
t 0.014 0.014 1.407 0.626
p 0.989 0.989 0.159 0.531

Neutral-Relaxation
t −3.155 −3.155 0.657 1.297
p 0.002 0.002 0.511 0.195

Arousal-Relaxation
t 3.326 3.326 −2.642 −2.570
p 0.001 0.001 0.008 0.010

Table 18. Results of one-way ANOVA show a significant difference between Arousal-Neutral-Relaxation
among variables correlated with Entropy analyzed by multiple regression. The difference between the
two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics lnHF

Entropy

ANOVA
F 3.538
p 0.029

T-test

Arousal-Neutral
t 1.900
p 0.058

Neutral-Relaxation
t −1.914
p 0.056

Arousal-Relaxation
t 1.069
p 0.285
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Table 19. Results of one-way ANOVA show a significant difference between Arousal-Neutral-Relaxation
among variables correlated with Circadian Movement analyzed by multiple regression. The difference
between the two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics lnHF

Circadian Movement

ANOVA
F 3.648
p 0.026

T-test

Arousal-Neutral
t −2.202
p 0.028

Neutral-Relaxation
t 1.621
p 0.105

Arousal-Relaxation
t 1.614
p 0.107

Table 20. Results of one-way ANOVA show a significant difference between Arousal-Neutral-Relaxation
among variables correlated with Sound Amplitude analyzed by multiple regression. The difference
between the two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics Sound Frequency

Sound Amplitude

ANOVA
F 5.174
p 0.006

T-test

Arousal-Neutral
t −0.878
p 0.380

Neutral-Relaxation
t −1.571
p 0.116

Arousal-Relaxation
t 3.191
p 0.001

Table 21. Results of one-way ANOVA show a significant difference between Arousal-Neutral-Relaxation
among variables correlated with Sound Frequency analyzed by multiple regression. The difference
between the two emotion levels was verified by independent t-test.

Dependent variables Tests Statistics Dominant Hz Sound Amplitude

Sound Frequency

ANOVA
F 3.314 6.380
p 0.036 0.002

T-test

Arousal-Neutral
t 0.359 −1.420
p 0.720 0.156

Neutral-Relaxation
t −2.788 −1.355
p 0.005 0.175

Arousal-Relaxation
t 2.141 3.574
p 0.032 0.000

Significant correlations and the statistics which distinguish the three levels of valence were
presented in Tables 22–32. Correlations that varied according to the level of valence were classified
into the relationships within physiological variables, the relationships between the physiological and
behavioral variables, the physiological and environmental variables, and between the behavioral
and the environmental variables (Figure 5). There were fewer relationships within the physiological
variables in the result of valence than the result of the arousal. The relationship between physiological
and behavioral variables was only significant between peak power and total distance. The significant
correlations between physiological and environmental variables were VLF/HF ratio and Sound
Amplitude, and the relationship between Dominant Hz and Sound Frequency.
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Table 22. Results of ANOVA show a significant difference between Positive-Neutral-Negative among
variables correlated with VLF analyzed by multiple regression. The difference between the two emotion
levels was verified by independent t-test.

Dependent Variables Tests Statistics VLF/HF Ratio Dominant Hz

VLF

ANOVA
F 3.238 4.067
p 0.039 0.017

T-test

Positive-Neutral
t −1.811 0.959
p 0.07 0.338

Neutral-Negative t −0.099 1.409
p 0.921 0.159

Positive-Negative t 1.953 −2.698
p 0.051 0.007

Table 23. Results of one-way ANOVA show a significant difference between Positive-Neutral-Negative
among variables correlated with VLF(%) analyzed by multiple regression. The difference between the
two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics LF(%) HF(%) lnHF

VLF(%)

ANOVA
F 3.359 4.107 4.281
p 0.035 0.017 0.014

T-test

Positive-Neutral
t 1.82 2.166 2.37
p 0.069 0.03 0.018

Neutral-Negative t −2.329 −2.366 −2.083
p 0.02 0.018 0.037

Positive-Negative t 1.094 0.913 0.744
p 0.274 0.361 0.457
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Table 24. Results of one-way ANOVA show a significant difference between Positive-Neutral-Negative
among variables correlated with LF(%) analyzed by multiple regression. The difference between the
two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics pNN50 VLF(%) HF(%) lnHF

LF(%)

ANOVA
F 3.001 3.872 3.952 4.002
p 0.05 0.021 0.019 0.018

T-test

Positive-Neutral
t −1.509 2.394 2.145 2.291
p 0.131 0.017 0.032 0.022

Neutral-Negative t −0.75 −1.997 −2.315 −1.931
p 0.453 0.046 0.021 0.054

Positive-Negative t 2.243 0.185 0.861 0.674
p 0.025 0.853 0.389 0.5

Table 25. Results of one-way ANOVA show a significant difference between Positive-Neutral-Negative
among variables correlated with HF(%) analyzed by multiple regression. The difference between the
two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics pNN50 VLF(%) LF(%) lnHF

HF(%)

ANOVA
F 3.367 3.938 3.438 4.057
p 0.035 0.02 0.032 0.017

T-test

Positive-Neutral
t −1.548 2.415 1.941 2.294
p 0.122 0.016 0.052 0.022

Neutral-Negative t −0.857 −2.014 −2.244 −1.946
p 0.392 0.044 0.025 0.052

Positive-Negative t 2.387 0.204 0.953 0.739
p 0.017 0.839 0.341 0.46

Table 26. Results of one-way ANOVA show a significant difference between Positive-Neutral-Negative
among variables correlated with VLF/HF ratio analyzed by multiple regression. The difference between
the two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics Sound Amplitude

VLF/HF ratio

ANOVA
F 3.149
p 0.043

T-test

Positive-Neutral
t −2.552
p 0.011

Neutral-Negative t 1.008
p 0.313

Positive-Negative t 1.28
p 0.201

Table 27. Results of one-way ANOVA show a significant difference between Positive-Neutral-Negative
among variables correlated with Peak Power analyzed by multiple regression. The difference between
the two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics Total Distance

Peak Power

ANOVA
F 3.186
p 0.041

T-test

Positive-Neutral
t 1.991
p 0.047

Neutral-Negative t −1.81
p 0.07

Positive-Negative t 0.858
p 0.391
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Table 28. Results of one-way ANOVA show a significant difference between Positive-Neutral-Negative
among variables correlated with Dominant Hz analyzed by multiple regression. The difference between
the two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics Sound Frequency

Dominant Hz

ANOVA
F 3.826
p 0.022

T-test

Positive-Neutral
t 1.784
p 0.075

Neutral-Negative t −2.671
p 0.008

Positive-Negative t 1.473
p 0.141

Table 29. Results of one-way ANOVA show a significant difference between Positive-Neutral-Negative
among variables correlated with Total Power analyzed by multiple regression. The difference between
the two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics Dominant Hz

Total Power

ANOVA
F 3.305
p 0.037

T-test

Positive-Neutral
t −1.26
p 0.208

Neutral-Negative t −1.055
p 0.291

Positive-Negative t 2.473
p 0.013

Table 30. Results of one-way ANOVA show a significant difference between Positive-Neutral-Negative
among variables correlated with Total Distance analyzed by multiple regression. The difference between
the two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics Sound Amplitude

Total Distance

ANOVA
F 4.284
p 0.014

T-test

Positive-Neutral
t −2.509
p 0.012

Neutral-Negative t −0.28
p 0.779

Positive-Negative t 2.473
p 0.013

Table 31. Results of one-way ANOVA show a significant difference between Positive-Neutral-Negative
among variables correlated with Transition Time analyzed by multiple regression. The difference
between the two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics Sound Amplitude

Transition Time

ANOVA
F 3.66
p 0.026

T-test

Positive-Neutral
t 2.333
p 0.02

Neutral-Negative t −0.769
p 0.442

Positive-Negative t −1.852
p 0.064



Sensors 2019, 19, 5308 21 of 25

Table 32. Results of one-way ANOVA show a significant difference between Positive-Neutral-Negative
among variables correlated with Sound Amplitude analyzed by multiple regression. The difference
between the two emotion levels was verified by independent t-test.

Dependent Variables Tests Statistics VLF/HF Ratio

Sound Amplitude

ANOVA
F 6.852
p 0.001

T-test

Positive-Neutral
t −3.389
p 0.001

Neutral-Negative t 2.918
p 0.004

Positive-Negative t −0.374
p 0.708
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The letters in red indicate physiological variables, blue indicate behavioral variables, and green
indicate environmental variables. The arrows represent the correlation between the two variables.
The red arrows represent the correlations within physiological variables, the green arrows represent the
correlations within environmental variables, and the black arrows represent the correlations between
the different construct variables.

4. Discussion and Conclusions

The embodied emotion has differed from the previous view of emotion and it has importantly
considered interactions among body, behavior, and environment. Therefore, this study was to
recognize the embodied emotion by analyzing correlations among physiological changes, behavior, and
environment. The physiological responses were determined by cardiovascular responses in this study.
The autonomic nervous system (ANS) has been monitored to recognize emotions in many previous
studies [44–46]. The behavioral patterns of individuals were determined by features, which were
analyzed by GPS (global positioning system) locations, according to suppose that lifestyle patterns
were associated with emotion [21]. The amplitude and frequency components of ambient sound were
considered as the environmental factors, based on environmental factors, particularly ambient sound,
which has been related to emotion and physiological arousal in daily life [25,26].

This study verified that there were differences between interactions that determine the arousal and
valence in emotion by analyzing an individual’s life-log data. There were more connections between the
physiological variables in the result of arousal (Figure 4) than the valence results (Figure 5). In addition,
there was no direct connection between behavioral and environmental variables, while both behavioral
and environmental variables were associated with physiological variables, as shown in Figure 4. These
relationships between physiological and behavioral variables were also more pronounced in the arousal
than the valence. These results showed that the autonomic nervous system response has been highly
related to physiological arousal [47–50]. Coherence ratio, an indicator of physiological coherence, has
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been associated with VLF, LF, an indicator of sympathetic activation, and VLF (%), an indicator of
parasympathetic activation. This was consistent with previous theories that physiological coherence
has been determined by the way the sympathetic and parasympathetic nerves have been controlled [51].
In addition, lnHF, another indicator of parasympathetic activity, was linked to dominant rhythms
(Dominant Power, Dominant Hz) in cardiac activity, which were also connected to the Coherence ratio.
This suggests that cardiac activity varies with the degree of activation of parasympathetic nerves and
which might be associated with physiological coherence. This association between the autonomic
nervous system and physiological coherence was also connected with the indicators of the regularity of
life patterns (Entropy, Circadian Movement) and movement patterns (Transition Time, Total Distance).
These results suggested that the physiological homeostasis coincides with the behavioral homeostasis
according to the polyvagal theory [51,52]. The relationships between physiological variables and
ambient noise (Sound Amplitude and Sound Frequency) were consistent with the results that ambient
noise has been related to the arousal in the previous studies [25,26].

The relationships among the physiological, behavioral, and environmental variables were more
systemic in the result of valence, as shown in Figure 5. It means that there was a connection between the
body-behavior-environment in the valence results, compared with arousal results that the behavioral
and environmental variables were only connected to physiological variables, respectively. It seems
that the conscious and cognitive judgment processes have been necessary to determine the valence
level of emotion compared with the arousal level of emotion, which is determined by unconscious and
autonomic physiological control [53].

In summary, the arousal levels of embodied emotion were represented by the more prominent
interactions with physiological responses, while the valence levels were represented as a balanced
relationship among the physiological, behavioral, and environmental variables. These results suggested
that the arousal level is an indicator of the regulation of behavioral and physiological homeostasis
to cope with the environment, while the valence level indicates the process of cognitive judgment,
taking into consideration the environment and behavior. However, because this study was a field test,
the experimental controls were less stringent than the laboratory studies. It might be necessary to
remove the device, such as when washing hands, in which case, the researchers may not have detected
it. Also, cross-validation of these results should be necessary to feasibility and consistency as this study
analyzed the data for two weeks for 79 participants for the twenties. Therefore, additional studies
should be supported to ensure reproducibility. Nevertheless, this study is valuable because it analyzed
practical data. Further, this study serves as an indicator of interpretations, which proves useful in
recognizing embodied emotion based on the life-log data in deep-learning or machine-learning.
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