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Abstract: Site-specific liming helps increase efficiency in agricultural production. For adequate
determination of the lime demand, a combination of apparent soil electrical conductivity (ECa) and
topsoil pH can be used. Here, it was hypothesized that this can also be done at low-input level. Field
measurements using the EM38 MK I (Geonics, Canada) were conducted on three experimental sites
in north Germany in 2011. The topsoil pH was measured based on two approaches: on the field
using a handheld pH meter (Spectrum-Technologies Ltd., Bridgend, UK) with a flat electrode (in
situ), and in the lab using standard equipment (ex situ). Both soil ECa (0.4–35.9 mS m−1) and pH
(5.13–7.41) were heterogeneously distributed across the sites. The same was true of the lime demand
(−1.35–4.18 Mg ha−1). There was a significant correlation between in situ and ex situ determined
topsoil pH (r = 0.89; p < 0.0001). This correlation was further improved through non-linear regression
(r = 0.92; p < 0.0001). Thus, in situ topsoil pH was found suitable for map-overlay with ECa to
determine the site-specific lime demand. Consequently, the hypothesis could be confirmed: The
combined use of data from EM38 and handheld pH meters is a promising low-input approach that
may help implement site-specific liming in developing countries.
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1. Introduction

Liming, the application of finely ground limestone or CaCO3, is an indispensable practice for
maintaining productivity on arable lands in humid climate zones due to soil acidification following
permanent leaching of carbonate fractions [1,2]. It helps to ensure long-term soil fertility and thus,
improves the growth conditions for arable crops, including pastures and grassland regimes with a
lower pH threshold than for arable crops. On arable sites, liming should be applied once every five to
six years or whenever it is required due to pH-levels falling below the site-specific pH thresholds, an
increased risk of clubroot (Plasmodiophora brassicae Woronin, 1877) onset, or for other reasons [3]. For
effective application on the topsoil pH, several tons of lime are required per hectare (Figure A1). The
cost of lime ranges between 30 and 36 €Mg−1 depending on the type of lime fertilizer [4]. Additionally,
further costs arise from both the transport of the lime to the field and its application on the field [5].
Since the amount of lime used in agriculture has increased from 2.67 to 2.94 Tg from 2017 to 2018 in
Germany [6] lime fertilization is an economically significant part of agriculture. Therefore it is critical
that liming becomes less efficient or even detrimental when the amount of lime is not adequately
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determined as referring to the site-specific requirements of the soil [7,8]. In order to reduce this risk of
inefficient use of lime, the identification of soil management zones is generally recommended [9–12].
This is a relevant issue in Germany, where it is still common to apply the same amount of lime across
the whole field [13]. This outdated approach implies that the lime is being homogeneously distributed
on the sites, which of course, may suit soils with low heterogeneity of texture. However, it becomes
crucial when the lime demand of the topsoil is spatially heterogeneous distributed, which is mostly
the case [11,14–23]. In developing countries, liming is in many cases not feasible for economical and
logistical reasons [24]. Therefore, site-specific approaches become meaningful since using lime must be
done as efficiently as possible [24].

Site-specific lime demand can be determined using the spatial variation of both the soil apparent
electrical conductivity (ECa) and the topsoil pH as input variables for lime demand prediction
models [7,8,25,26]. The ECa functions as offline data, i.e., data that only needs to be obtained once
and is used for background information in the following years. This is possible due to the fact that
the temporal variability of ECa values is very low [27]. In contrast, the pH value is a temporally
variable determinant [27] whose temporal changes must be taken into account when determining
the lime demands. Thus, the topsoil pH needs to be evaluated immediately prior to any scheduled
liming procedure. For both ECa and pH, low-input determination approaches are available [8,28]. For
ECa, it is the EM38 MK1 (Geonics Ltd., Mississauga, ON, Canada) [26,29–31], and for the pH it’s a
flat electrode (FE) with a handheld pH meter (FieldScout pH 110 Meter, Spectrum-Technologies Ltd.,
Bridgend, UK). Soil ECa mapping is a broad field of research with a long history [26,32–37]. Many
different types of sensors for soil mapping have been developed including EM38 MK1, Veris 3100 (Veris
Technologies Inc., Salina, CA, USA) and Geophilus Electricus [15,22,26,34,37–39]. The EM38 is one of
the most promising [26,39–42], and has been thoroughly investigated in numerous studies [35,39,40,42].
It allows quick and low-cost soil ECa mapping [36,42], wherein both the absolute values [43] and their
spatial heterogeneity are reproducible.

Adequate correlations between ECa data based on measurements with the EM38 MK1 and the
soil texture characteristics have been reported [26,36,40,42,44,45]. Generally, four classes of texture
(sand, loamy sand, loam and clay) can be detected using the EM38 MK1 (Table 1).

Table 1. Available information on the interpretability of the ECa values assessed via EM38 MK 1 in
terms of soil texture.

Texture
Domsch and Giebel [40] Reckleben and Lamb [42]

ECa Class (mS m−1)

Sand 1–6 1–8
Loamy sand 5–16 8–16

Loam 16–36 16–35
Clay 30–96 35–70

There are no relevant differences between ECa readings from the EM38 MK1 and the subsequent
model EM38 MK2 [39]. Considering the easy and quick use of the EM38 MK1 compared to direct EC
measurement approaches such as Veris 3100 [15,26] and Geophilus Electricus [22], it has generated
great interest among practitioners for determination of site-specific distributions of soil characteristics
in the past two decades. The site-specific ECa information allows for a better implementation of
precision farming approaches such as tillage, sowing and fertilization [11]. However, there is only
scarce information on both the ECa measurement approach using the EM38 MK1 and the potential
applicability of the ECa data for describing lime fertilizer requirements on heterogeneous sites. Sanches
et al. [7] showed that ECa can represent the spatial distribution of pH values (average pH = 5.14)
on a clayey site in Brazil. They found a high correlation of r = 0.59 between ECa and soil pH [7].
Consequently, the ECa values are likely sufficient for determining the lime demand under certain
conditions (e.g., clayey soil [7]), because the pH is essential for estimating the current lime demand
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of a site [46]. However, Sanches et al. [7] suggested that ECa data should not be used alone, but
in combination with a site-specifically arranged (targeted) sampling mesh [7]. A similar approach
is followed in Germany as well. Several large scale (field sizes of 50–200 ha) ECa mappings across
heterogeneous regions in northern Germany revealed that the ECa does not correlate with the pH
but rather the soil texture [47]. The soil texture is a fixed parameter (despite topsoil losses through
erosion) upon which official recommendations for site-specific lime fertilization were calculated in
Germany [46]. The ECa can thus be used for generating offline maps showing the spatial distribution
of the potential lime demand [42].

For estimating the current lime demand, the potential lime demand must be related to the
current topsoil pH value. Therefore, an adequate non-destructive (low-cost) topsoil pH measurement
must be taken whenever a lime application is planned [7]. In this context, several studies report
on the Veris 3100—a device that combines ECa and online pH measurement [8,15,48]. For this
device, good correlations between in situ and ex situ determined topsoil pH values of arable soils were
found [15,26,32]. However, this in situ sampling method is time consuming and still requires high-input
and expensive equipment, despite being more efficient than destructive determination approaches for
soil texture and pH [46,49]. Other low-input approaches, which are even less demanding than the
Veris 3100 such as handheld pH-meters, may be relevant for agricultural production in developing
countries—but as yet they have not been deeply investigated.

The aim of this study was to gain more insights to the potential suitability of a low-input in
situ pH-meter for low-input determination of the site-specific lime demand of arable fields. We
hypothesized that in situ determination based on a handheld pH meter results in similar pH values to
the reference (ex situ) approach and that it is therefore possible to determine the lime demand using
the low-input approach.

2. Materials and Methods

To fulfil the aim of this study, a field study was conducted in spring 2012. In the following
sections it will be described (i) which sites were chosen for investigation and when the field study was
conducted, (ii) how ECa was measured, (iii) which pH-measurements were applied, (iv) how the lime
demand was calculated, and (v) how both statistical analysis and the overall performance evaluation
were conducted.

2.1. Description of Experimental Sites

In this sub-section, some details are provided on the sampling-sites. In total, three sampling sites
were selected for this study due to their expected low pH values. The first site (‘Hochwollhagen’) belongs
to a dairy cattle farm with 500 ha of cultivation area located near Eckernfoerde in North-Germany
(54◦30′57.4” N, 9◦49′04.6” E, 24 m above sea level) (Figure 1a). The field Hochwollhagen has a size of
23.4 ha, and it is surrounded by farm tracks to the north and the west, and by woodlands to the south
and the east (Figure 1a). In the southeast, the field is connected to another field as shown in Figure 1a.
The field was selected according to the results of prior research studies with EM38, which indicated that
the texture of the site was both highly varied and heterogeneously distributed. The second restriction
for field selection was that for several years prior to the measurements in 2012 no liming should have
occurred, which was the case at Hochwollhagen. The other two sites ‘Bremerskamp’ (54◦20′56.6” N,
10◦06′26.2” E, 24 m above sea level) and ‘Suchsdorf’ (54◦21′02.9” N, 10◦04′05.1” E, 12 m above sea
level) are comparatively small (<2 ha) and located near Kiel (Figure 1, Table 2). The measurements of
both ECa and in-situ pH were conducted in spring 2012.
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a pickup truck (Figure 2b) driving at on average 15 km h−1. 

 
Figure 2. Experimental setup for ECa measurements using the EM38 MK1 (a): Pickup truck (b) with 
GPS-module (c) and DASY-Lab (d) pulling a wooden sledge (f) on a 4.5 m long rope (e). The cables 
for data transfer and power supply were attached to the rope via cable ties. The EM38 MK1 (A) was 
placed in vertical mode within a wooden box on the sledge covered in foam. Where necessary, plastic 
screws and tensioning ropes were used to increase stability of the sledge. 

Figure 1. Overview of shape, size and location of the sampling sites ‘Hochwollhagen’ (a), ‘Bremerskamp’
(c) and ‘Suchsdorf’ (d). The green arrows point at the locations of the sites in Schleswig-Holstein (b)
(north Germany). The pictures were adapted from Google Earth Pro (© 2018 Google LLC).

Table 2. Overview of soil properties of the three experimental sites (Hochwollhagen, Bremerskamp
and Suchsdorf) chosen for this study.

Name Size (ha) Soil
Properties P (mg 100 g−1) K (mg 100 g−1) Mg (mg 100 g−1)

Date of
EM38-Measurement

Hochwollhagen 23.4 Sandy loam 6.1 12.5 5.7 22.02.2012
Bremerskamp 0.8 Sand 10.5 14.1 6.6 15.02.2012

Suchsdorf 1.3 Sandy loam 6.6 15.8 4.2 08.03.2012

2.2. The Determination of Soil Apparent Electrical Conductivity

The EM38 MK1 (Figure 2a) was fixed to a wooden sledge (Figure 2f). The sledge was pulled by a
pickup truck (Figure 2b) driving at on average 15 km h−1.
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Figure 2. Experimental setup for ECa measurements using the EM38 MK1 (a): Pickup truck (b) with
GPS-module (c) and DASY-Lab (d) pulling a wooden sledge (f) on a 4.5 m long rope (e). The cables
for data transfer and power supply were attached to the rope via cable ties. The EM38 MK1 (A) was
placed in vertical mode within a wooden box on the sledge covered in foam. Where necessary, plastic
screws and tensioning ropes were used to increase stability of the sledge.
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The distance between the tracks was set to 10 m ± 1 m accuracy depending on coastal GPS-signal.
The whole pathway was both monitored online and recorded using DASY-Lab (measX GmbH & Co.
KG, Mönchengladbach, Germany) GPS module (CSI Inc., Wheaton, IL, USA).

The GPS-data was merged with EM38-data and recorded in 1 s intervals. The GPS-antenna was
7 m away from the middle of the sledge, because the sledge was pulled 4.5 m behind the pickup truck
(Figure 2e,f) and the distance from the antenna (Figure 2c) to the back of the pickup truck measured
2.5 m. Therefore, an offset of the GPS-signal of 7 m was calculated within DASY-Lab when merging
GPS and EM38 data streams. The DASY-Lab module was set to calculate average ECa values for each
GPS recording interval (1 s). This was necessary since prior tests have shown that average ECa values
ensure a better representativeness for the ECa than single ECa values.

The power supply for EM38 was provided via cable connection to the car battery to avoid any
voltage fluctuations as has been found to be relevant when using a 9 V-battery (as recommended by
Geonics) in prior tests. EM38 measurements were conducted from 8.00 AM to 9.00 AM after thoroughly
calibrating the EM38 as described within the EM38-Guidelines provided by Geonics. Additionally, the
ECa values of the starting point were measured once again after the whole field was measured. ECa

mapping was immediately done afterwards using ARC View (ESRI Inc., Redlands, CA, USA) to check
whether the ECa data was complete and correct, e.g., if there were any shifts in absolute ECa values
during the measurements via comparison of ECa values at the starting point at the start and at the end
of EM38 measurement. To illustrate the estimated spatial distribution of soil texture, EM38 data were
assigned to the classification of Domsch and Giebel [40] (Table 1).

2.3. In Situ and Ex Situ Determination of Topsoil pH

The pH value of each soil sample was determined both directly in the field (in situ) and according
to standard laboratory practice (ex situ). Both methods are detailed in the following subchapters.

2.3.1. Soil Sampling and In Situ Determination of Topsoil pH

For the collection of soil samples, a sampling grid was created using ARC View following the
ECa measurement. In this way, each soil sampling point was assigned to an ECa sampling point with
an accuracy of ±1 m (coastal GPS-signal). The soil sampling points of this sampling grid were then
individually visited to take topsoil samples. At each soil sampling point, topsoil samples were taken
from a depth of 0–30 cm using a boring rod of 18 mm diameter. Right after the rod was pulled out, 5
individual in situ pH measurements were taken on each soil sample using a handheld pH-meter in
combination with a FE (Figure 3a). The measurements were carried out at regular intervals (5, 10, 15,
20, 25 cm depth) directly on the earth still in the drill rod.
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Sensors 2019, 19, 5280 6 of 16

For each individual measurement, attention was paid to measurements of equal length and
pressure. After each measurement, the FE was cleaned within distilled water (H2ODEST) and dried
with a clean part of a kitchen towel. Note that the FE was dabbed and not rubbed with the kitchen
towel, as friction turned out to be sub-optimal for calibration stability. After ten measurements, a
two-point calibration was carried out (pH 4 and pH 7) according to the manufacturer’s specifications
(Spectrum-Technologies Ltd., Bridgend, UK). To avoid any shifts between the measurements, the last
probe before re-calibration was re-measured after re-calibration once again as control. Prior to the
statistical analysis, the average in-situ pH values were calculated. After each measurement of a soil
sample was completed, the soil sample was poured into a cup, roughly homogenized, transferred to
an aluminum dish and weighed together with the aluminum dish (FM weight). This FM-value was
later used to calculate the water content of the soil sample. The samples were stored in a cool box at
5–8 ◦C until further processing.

2.3.2. Ex-Situ Determination of Topsoil pH

In the laboratory, the samples were dried to constant weight, weighed back (DM weight) and
coarsely ground with a mill (Retsch GmbH, Haan, Germany). Further sample preparation and pH
measurement were carried out according to VDLUFA specifications [49] using a standard ex situ
pH-probe (testo230, Testo SE & Co. KGaA, Titisee-Neustadt, Germany). Additionally, the ex situ
approach was conducted twice: (i) ‘pHREFCaCl’ using CaCl2 [39] and ‘pHREFH2O’ using H2ODEST

instead of CaCl2 to examine the effect of CaCl2.

2.4. Statistical Analysis

A multiple linear regression (MLR) for the soil properties and the potential lime demand was
developed using the PROG REG procedure of SAS ®Proprietary Software 9.4 TS level 1M5 (SAS
Institute Inc., Cary, NC, USA) based on recommendations by VDLUFA [46] (Figure A1). Both linear and
non-linear regressors as well as an intercept were put into the model. For the selection of regressors,
stepwise selection was used. A correlation matrix was generated using the PROC CORR procedure of
SAS ®Proprietary Software 9.4 TS level 1M5.

2.5. Lime Demand Calculation

The lime demand was calculated according to official recommendations for determining the lime
demand of arable and grassland soils based on the pH value [46]. Therefore, the abovementioned MLR
was used to consider both ECa and pH when calculating the specific lime demand for each observation.
For the presentation of the interpolated spatial distribution of the lime demands, ARC View (ESRI Inc.,
Redlands, CA, USA) was used.

3. Results & Discussion

3.1. ECa and pH Distribution

All sites (Hochwollhagen, Bremerskamp and Suchsdorf) showed a heterogeneous spatial
distribution of both ECa and pH-values (Figures 4 and A2; Table 3). This heterogeneous spatial
distribution of ECa implies within-field variability of crop growth [50]. Therefore, it is necessary
to plan site-specific management [11,51,52]. The average topsoil pH of the sites ranged from 5.72
(Bremerskamp) to 6.61 (Suchsdorf) (Table 3) (Figure A2). The average ECa values of the sites ranged
from 2.6 mS m−1 (Bremerskamp) to 17.9 mS m−1 (Suchsdorf) (Table 3) (Figure A2). Sandy areas
(<5 mS m−1) were only observed on the sites Hochwollhagen and Bremerskamp, following the
recommendations by Domsch and Giebel [40] and Reckleben and Lamb [42] for texture-related EM38
classification (Table 1). However, the distribution of ECa values was higher at both Hochwollhagen
and Suchsdorf compared with Bremerskamp (Table 3). Therefore, the results of Hochwollhagen have
been used to illustrate the comparison between in situ topsoil pH- and ex situ topsoil pH-based lime



Sensors 2019, 19, 5280 7 of 16

demands. However, data from all three sites were used for the calculations of the correlations between
in situ and ex situ determined topsoil pH.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 16 

 

demands. However, data from all three sites were used for the calculations of the correlations 
between in situ and ex situ determined topsoil pH. 

Table 3. Overview of observations for ECa, ex situ determined topsoil pH and topsoil humidity at the 
three experimental sites (Hochwollhagen, Bremerskamp and Suchsdorf). 

Site N Minimum Average Median Maximum 
    ECa (mS m−1) 

Hochwollhagen 110 4.8 15.1 13.0 35.9 
Bremerskamp 35 0.4 2.6 2.2 6.7 

Suchsdorf 69 11.8 17.9 16.5 30.7 
    Topsoil pH  

Hochwollhagen 110 5.13 5.95 5.84 7.41 
Bremerskamp 35 5.22 5.72 5.70 6.53 

Suchsdorf 69 6.37 6.61 6.61 6.89 
    Topsoil humidity (wt.%) 

Hochwollhagen 110 9.0 14.4 14.0 25.0 
Bremerskamp 35 20.0 21.9 22.0 24.0 

Suchsdorf 69 11.0 14.7 15.0 17.0 

 
Figure 4. Histogram and spatial distribution of estimated soil texture (according to Domsch and 
Giebel [29] and Reckleben and Lamb [31]) based on ECa determination using the EM38 MK1 (Geonics, 
Canada) in vertical mode at the site Hochwollhagen (north Germany). 

A comparison of the spatial distribution of in situ and ex situ determined topsoil pH values 
revealed that the in situ pH determination produces a map that is basically comparable with the ex 
situ pH determination (Figure 5). Overall, this is in line with literature data [8]. However, there were 
clear differences in the very low (5.22–5.58) and the very high range of pH values (7.04–7.41) (Figure 
5). 

Figure 4. Histogram and spatial distribution of estimated soil texture (according to Domsch and
Giebel [29] and Reckleben and Lamb [31]) based on ECa determination using the EM38 MK1 (Geonics,
Canada) in vertical mode at the site Hochwollhagen (north Germany).

Table 3. Overview of observations for ECa, ex situ determined topsoil pH and topsoil humidity at the
three experimental sites (Hochwollhagen, Bremerskamp and Suchsdorf).

Site N Minimum Average Median Maximum

ECa (mS m−1)

Hochwollhagen 110 4.8 15.1 13.0 35.9
Bremerskamp 35 0.4 2.6 2.2 6.7

Suchsdorf 69 11.8 17.9 16.5 30.7

Topsoil pH

Hochwollhagen 110 5.13 5.95 5.84 7.41
Bremerskamp 35 5.22 5.72 5.70 6.53

Suchsdorf 69 6.37 6.61 6.61 6.89

Topsoil humidity (wt.%)

Hochwollhagen 110 9.0 14.4 14.0 25.0
Bremerskamp 35 20.0 21.9 22.0 24.0

Suchsdorf 69 11.0 14.7 15.0 17.0

A comparison of the spatial distribution of in situ and ex situ determined topsoil pH values
revealed that the in situ pH determination produces a map that is basically comparable with the ex
situ pH determination (Figure 5). Overall, this is in line with literature data [8]. However, there were
clear differences in the very low (5.22–5.58) and the very high range of pH values (7.04–7.41) (Figure 5).
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3.2. The Correlation Between ECa and Ex Situ Determined pH—Implications for Lime Demand Estimation

The ECa significantly correlated with the ex situ determined pH (Figure 6, Table 4), whereas
only about 60% (r = 0.596) of the pH values could be explained using ECa. These values correspond
well with those of Mahmood et al. [53] and Cambouris et al. [54], who found an average correlation
between ECa and pH of r = 0.513 and r = 0.449, respectively. Consequently, ECa would not have
been sufficient to explain the spatial variation in soil. This was in line with the findings from other
studies in which similar methods were employed [26,47]. Consequently, it was expected that the
ECa does not explain the estimated lime demand (LDe). The LDe was calculated from ECa and pH
according to recommendations by VDLUFA (Figure A1). However, the ECa was necessary for taking
the spatial variation of soil texture-related potential lime demand (LDp) into account, because following
VDLUFA [46], different soils have different lime demands (Figure A1). Furthermore, there was only a
low correlation between the ECa and the topsoil humidity (r = 0.256). This value was much lower
compared with the findings by Sun et al. [11] who reported a correlation between ECa and volumetric
soil water content of r = 0.663 [11]. Sudduth et al. [55] also reported a higher correlation between ECa

and soil moisture (r = 60.4). This is probably due to the fact that at the time of the measurement of the
present study the soil was less saturated than in the studies by Sun et al. [11] and Sudduth et al. [55].
The reason for this is that under drier conditions the influence of the soil water content on the ECa is
superimposed by the stronger influence of the texture [30].
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Table 4. Correlation (r) matrix for the parameters (i) apparent soil electrical conductivity (ECa), (ii)
soil humidity (SH), (iii) ex situ determined topsoil pH (pHREF), (iv) in situ determined topsoil pH
(pHFE), and (v-vi) two modified versions of pHFE using Model 1 (pHFEM1) and Model 2 (pHFEM2)
(*** = p < 0.0001; ** = p < 0.01; * = p < 0.05; n.s. = not significant) (n = 214).

SH pHREF pHFE pHFEM1 pHFEM2

ECa −0.259 ** 0.596 *** 0.475 *** 0.643 *** 0.646 ***
SH −0.098 n.s. −0.047 n.s. −0.106 n.s. −0.143 *

pHREF 0.888 *** 0.928 *** 0.924 ***
pHFE 0.957 *** 0.961 ***

pHFEM1 0.996 ***

Heil and Schmidhalter [26,30] proposed to use the ECa values not in absolute terms but as a
covariate, because the absolute ECa values strongly depend on soil and weather conditions [30]. Against
this, other studies have shown good correlations between ECa (EM38) and the soil texture [40,42] as far
as both similar surrounding conditions and calibration methods are used. Field observations conducted
prior to those presented in this study have outlined the importance of a continuous power supply
without any current fluctuations during the measurement. In this study, both similar surrounding
conditions (including thorough calibrations) and continuous power supply for the EM38 were given.
Thus, it was decided to use the absolute ECa values of the EM38 to represent the soil texture (Table 1)
and use this information as covariate for calculating the site-specific LDe (Figure A1). Thus, the current
pH information is also required for estimating the lime demand as was also reported by Lund et al. [8].

3.3. The Correlation Between In-Situ and Ex-Situ Determined Topsoil pH

A strong correlation between in situ and ex situ determined topsoil pH was found (r = 0.888,
p < 0.0001) (Table 4) which is in line with the literature [8,36]. Lund et al. [8] also found an almost
identical correlation between in situ (on-the-go) and ex situ (manually) determined pH of r = 0.894 [8].
In the present study however, the correlation was further improved through non-linear regression
(r = 0.924–0.928, p < 0.0001), whereas the extended model (Model 1) only marginally improved the
model accuracy (Table 5). This was also expected because soil humidity and topsoil pH did not
correlate (Table 4). Here, less complex models are preferred in terms of interpretability and practical
implementation [56]. Therefore, the less complex model (Model 2) (Table 5) was used for the comparison
of ex situ (pHREF), in situ (pHFE) and modified in situ (pHFEM1) pH-based lime demands.
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Table 5. Models for prediction of ex situ determined topsoil pH using the input variables in situ
determined topsoil pH (pHFE), soil apparent electrical conductivity (ECa), soil humidity (not in Model
2), and all two-fold interactions, including the squared terms. A stepwise selection was chosen to select
relevant regressors (significance level: p < 0.15) (*** = p < 0.0001; ** = p < 0.01; * = p < 0.05).

Intercept/Regressor Model 1 (r = 0.9276 ***) Model 2 (r = 0.9237 ***)

Estimate Standard Error p-Value Estimate Standard Error p-Value

Intercept 12.8995 3.2877 0.0001 15.4019 3.2370 <0.0001
pHFE −3.7371 1.0371 0.0004 −4.0646 1.0474 0.0001

ECa × pHFE 0.0053 0.0013 0.0001 0.0049 0.0010 <0.0001
pHFE × pHFE 0.4007 0.0841 <0.0001 0.4045 0.0847 <0.0001

ECa × ECa −0.0007 0.0002 0.0049 −0.0006 0.0002 0.0006
Soil humidity 0.1889 0.0684 0.0062

Soil humidity × Soil humidity −0.0019 0.0013 0.1307
Soil humidity × pHFE −0.0193 0.0114 0.0913

3.4. Effects of In Situ and Ex Situ Determined Topsoil pH on the Estimated Lime Demand Distribution

The range of variation in lime demand was higher at the site Hochwollhagen (−0.62–4.18 Mg
ha−1) than at the sites Bremerskamp (−1.35–0.67 Mg ha−1) and Suchsdorf (−0.64–1.59 Mg ha−1) (Table
S1). This was expected due to a higher soil heterogeneity (Table 3). The average lime demand of
Hochwollhagen amounted to 1.6 ± 1.2 Mg ha−1, whereby the average lime demand in the western part
of the field was found to be almost twice as high as in the eastern part (Figure 7). This underlines the
importance of site-specific lime management: If lime had been applied uniformly across the entire field
according to the calculated demand, almost half of the field would have received an excess of about 1
Mg CaO ha−1, while the rest of the field would have received about 1 Mg CaO ha−1 less than required
(Table S1). Using ECa− and pH-measurements it would be possible to quantify the heterogeneity of
lime demands and to proceed accordingly (through site-specific lime management) (Figure 7), as was
also suggested by Sanches et al. [7]. However, the in situ determination of topsoil pH would result in a
rather restrained lime management (Figure 7b). This is because the subareas with high lime demand
are rather underestimated. Here, a slight modification of the in situ pH values (M2) helps further
improve the in situ-based lime demand estimate. The subareas with higher lime demands are much
better represented in comparison with the unmodified in situ pH values (Figure 7c). This is mainly
due to a better representation of pH values below six (Figure A3). This also fits well with the results of
Sanches et al. [7], as in their study the average pH value of the soil was also below six [7].

Overall, the results indicate, that the use of a handheld in situ pH-meter can be effectively used
for topsoil pH determination on comparable sites - as far as accuracy is concerned. In this study, the
comparison of in situ and ex situ determined pH values revealed, that the accuracy of comparably
cheap (low-input) in situ measurements is only slightly lower compared with ex situ measurements,
given a pH ranging from 5.13 to 7.41.

The results of Gebbers et al. [57] refer to a smaller area compared with the fields used in this
study (Table 1). Also, the ECa was measured with a less suitable method for upscaling processes
compared with the EM38 [15,25,58]. This is because (i) the Veris 3100 is pulled much more slowly
than the EM38, and (ii) the equipment is much heavier and therefore, less easy to handle than the
EM38 [26] (Figure 3). In the present study, the in situ measurement of the pH was taken within topsoil.
This is more representative than the measurement conducted by Schirrmann et al. [25] who reported
inaccuracies in pH measurement because of plant residual material and other reasons. This explains
why the correlation between ex situ- and in situ determined pH was found to be higher in the present
study compared with Schirrmann et al. [25].
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non-linear model (M2) was used. The regressors included in M2 are the in situ determined pH, the
ECa, and all two-fold interactions between them.

3.5. Consequences for Practical Implementation and Future Research Directions

The results indicate that the low-input approach of current lime demand determination presented
here is ready for large scale implementation. This is because, low-input measurements need to
be fast, cheap and easy to understand while simultaneously being accurate enough to allow for
successful precision farming applications such as site-specific liming. These requirements are met by
the methodological approaches of both EM38-based ECa measurement and in situ determination of
topsoil pH using a handheld pH-meter. Regarding the ECa measurement, these results are in line
with findings from Heil et al. [26] and Koganti et al. [15]. Further research should focus on how the
methodological approach presented here could contribute to the implementation of site-specific lime
management in less developed countries, for example what a cost-benefit calculation would look like,
or what teaching effort would be necessary to enable a correct application of the method. Therefore,
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future research on this topic may help to improve both environmental and economic performance of
agricultural production on heterogeneous, specifically marginal agricultural lands [58,59].

4. Conclusions

Within humid climate zones, the agricultural land requires lime application to maintain fertile and
productive. In this study, the current lime demand of three experimental sites in northern Germany was
found to be heterogeneously distributed, which was to be expected, as the soil properties determining
the lime demand are usually heterogeneous. Therefore, the approach of homogeneous lime application
was unsatisfactory in terms of good agricultural practices. This study shows that it is possible to
determine the current lime demand using low-input approaches. Here, the combined use of ECa

(via EM38) and in situ determined topsoil pH (via handheld pH-meter) was found to be suitable for
low-input lime demand determination.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/23/5280/s1,
Table S1. Overview of combined observations for soil apparent electrical conductivity (via EM38 MK1 (Geonics,
Mississauga, Canada) in vertical mode), soil humidity, ex situ determined topsoil pH (pHREF), in situ determined
topsoil pH (pHFE), modified in situ determined topsoil pH (pHFEM2) and the respective estimated lime demands
based on ECa and pH (pHREF, pHFE, pHFEM2) values.
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