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Abstract: In extant radar signal processing systems, detection and tracking are carried out
independently, and detected measurements are utilized as inputs to the tracking procedure. Therefore,
the tracking performance is highly associated with detection accuracy, and this performance may
severely degrade when detections include a mass of false alarms and missed-targets errors, especially
in dense clutter or closely-spaced trajectories scenarios. To deal with this issue, this paper proposes a
novel method for integrating the multiple hypothesis tracker with detection processing. Specifically,
the detector acquires an adaptive detection threshold from the output of the multiple hypothesis
tracker algorithm, and then the obtained detection threshold is employed to compute the score function
and sequential probability ratio test threshold for the data association and track estimation tasks.
A comparative analysis of three tracking algorithms in a clutter dense scenario, including the proposed
method, the multiple hypothesis tracker, and the global nearest neighbor algorithm, is conducted.
Simulation results demonstrate that the proposed multiple hypothesis tracker integrated with
detection processing method outperforms both the standard multiple hypothesis tracker algorithm
and the global nearest neighbor algorithm in terms of tracking accuracy.

Keywords: multiple hypothesis tracker; adaptive detection threshold; score function; sequential
probability ratio test

1. Introduction

Multi-target tracking (MTT) aims to obtain an estimation of target states from the measurements
(localizations, velocities, etc.) received by a sensor in complex scenarios [1,2]. In addition to being
widely used in radar, sonar and other surveillance systems, MTT has also been used to obtain the
accurate localization of moving targets in sensor networks [3,4]. In conventional radar target tracking
systems, measurement data are obtained by a detector with a specific detection probability, and they
are then provided to a tracker for target trajectory estimation [2,5]. This radar system simplifies
the implementation of the detection and tracking process, thereby easing its computing burden.
Nevertheless, this leads to performance degradation, as this simplified structure breaks the internal
coupling relationship between the detector and the tracker.

In order to improve the system performance, a two-way information flow (also known as the
integration of detection with target tracking) was developed, in which the tracker informs the detector
where to find the target and the detector utilizes this information to better locate the target [6]. In other
words, the integration of detection with the target tracking method supplies the detector with feedback
information from the tracker, and the feedback has the form of a posterior distribution on the target
location. This couple relationship between the detector and the tracker was revealed in [7–10] by
analyzing the Riccati equation iterative operation and track results, which demonstrated that the prior
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information from the tracker can be used to determine the optimal detection threshold. One advantage
of integrating detection with tracking is that the Bayesian detector can use the feedback from the tracker
as a priori information for its hypothesis test. Moreover, it is expected to have fewer false alarms and a
location-dependent detection threshold—the threshold decreases when it gets close to the estimated
target location. This method has been successfully applied to the probabilistic data association (PDA)
filter to enhance tracking performance when the detector threshold is adjusted by using the prior
information from the PDA tracker [6]. Furthermore, in [11], the idea of the integration of detection
with target tracking was extended to multi-target tracking scenarios by integrating the detection with
the joint probability data association (JPDA) tracker instead. In this way, the recalculation of joint
association probability was enabled, reducing the mutual interference between adjacent targets and,
hence, enhancing the performance of the JPDA tracker.

In order to exploit the best of integrating detection with the tracking method in MTT scenarios,
alternative data association algorithms besides JPDA are being considered. Among them, multiple
hypothesis tracking (MHT) is an optimal multi-target data association algorithm that defers the
decision to confirm the tracks. In complex environments with a low detection probability, high density
clutter, and/or closely-spaced targets, it has been shown that the performance of MHT is significantly
better than JPDA and any other data association algorithms. Normally, MHT algorithms are divided
into hypothesis-oriented MHT (HOMHT) [12] and track-oriented MHT (TOMHT) algorithms [13–15].
HOMHT maintains the hypothesis structure from scan to scan and exerts the probabilities of global
measurement to directly target association hypotheses. HOMHT experiences an exponentially growing
global association number and is therefore too complex to be widely adopted. In contrast, TOMHT is
favored due to its simplicity in track hypothesis generation. Typically, TOMHT updates the global
hypothesis by using newly detected tracks on each scan and utilizes a track tree structure to maintain
potential track sets.

The problem of tracking in a dense clutter in which the number of false tracks is large and
the quality of the true track is poor has not been adequately addressed in the tracking literature.
As the integration structure of detection and tracking can efficiently reduce the number of false tracks,
in this paper, we propose a new multiple hypothesis tracking algorthim integrated with detection
processing (MHT-IDP) under an efficient TOMHT framework. In our algorithm, the target spatial
distribution information from MHT is utilized as a priori knowledge to calculate an adaptive detection
threshold. Then, the MHT algorithm estimates trajectories by using the receiving measurements from
the adaptive detector. Unlike methods where the detection threshold is fixed, here, the detection
threshold is adaptive. As the detection probabilities and clutter density chane with the detection
threshold, the adaptive score function and sequential probability ratio test (SPRT) thresholds can be
accordingly calculated so as to improve the tracking performance. The effectiveness of the proposed
algorithm is verified through the comparison with the standard MHT algorithm and the global nearest
neighbor (GNN) algorithm [2] in a dense clutter scenario.

The rest of this paper is organized as follows. Section 2 briefly introduces the target tracking
model and the integration of detection with the target tracking method. In Section 3, the MHT-IDP
algorithm is proposed, and its realization process is presented in detail. In particular, we exhibit the
calculation of the adaptive detection probability and adaptive clutter density. Section 4 compares the
tracking performance of the MHT-IDP algorithm, the MHT method, and the GNN algorithm. Finally,
our conclusions are drawn in Section 5.

2. Integration of Detection with Target Tracking

The integration of detection with a target tracking algorithm stems from the idea of two-way
information flow. The location information of the target is fed back from the tracker to the detector in
order to better adjust the detection threshold, obtain more accurate measurements, and, hence, enhance
the tracking performance. The detailed derivation of this algorithm can be found in [6].
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At scan k, the motion model and measurement model of target can be expressed as:

x(k) = Fx(k− 1) + v(k) (1)

z(k) = Hx(k) + w(k) (2)

where x(k) and z(k) denote the target state and target measurement at time k, respectively; F is the
system transition matrix; H is the measurement matrix; v(k) is the system process noise; and w(k) is
the measurement noise, which are assumed to be independent zero-mean Gaussian white noises.

At scan k, the predicted target state x̂(k|k− 1) and predicted measurement ẑ(k|k− 1) can be
obtained by using Kalman filtering. They are then formulated as:

x̂(k|k− 1) = Fx̂(k− 1|k− 1) (3)

ẑ(k|k− 1) = Hx̂(k|k− 1); (4)

and the innovation and the innovation covariance of the true measurement can be computed as:

v(k) = z(k) − ẑ(k|k− 1) (5)

S(k) = HP(k|k− 1)HT + R(k) (6)

where P(k|k− 1) is the prediction covariance and R(k) is the measurement noise covariance.
In most multi-target tracking systems, gating is a technique for eliminating unlikely

measurement-to-track pairings and thereafter reducing the computation of the data association
step. The gate is generally described by an ellipsoid region around the predicted measurement position
at the next scan:

V =
{
z(k)|d2 = (z(k) − ẑ(k|k− 1))TS(k)−1(z(k) − ẑ(k|k− 1)) ≤ G

}
(7)

where G is a maximum likelihood gate. Only the measurements that fall in the tracking gate are likely
to be associated with the track.

Assume that at scan k, Mk measurements exist in the gate: zm(k), m = 1, 2, · · · , Mk. Then, a test of
absence or presence of a target at location zm(k) is to be performed. Hypothesis H0 indicates that no
target exists at location zm(k), whereas hypothesis H1 indicates that a target exists at location zm(k).
Thus, referring to the derivation of the prior probability in [6], the prior probability of these two
hypotheses can be expressed as:

PH1 ∝

 1√∣∣∣2πS(k)
∣∣∣
 exp

{
−

1
2

vT
mS(k)−1vm

}
(8)

PH0 ∝
1
V

(9)

where vm(k) = zm(k) − ẑ(k|k− 1) and V denotes the volume of the gate.
Assume that the amplitude of target complies with a Swerling I fluctuation model, and the noise

is a Gaussian white noise. The likelihood function can be written as:

P(am(k)|H0) = exp(−am(k)), without target (10)

P(am(k)|H1) =
1

1 + ρ
exp

(
−

am(k)
1 + ρ

)
, with target (11)
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where am(k) is the magnitude-square output of a matched filter and ρ is the signal to noise ratio (SNR).
According to the Bayesian criterion, the appropriate test can be written as:

P(am(k)|H1)

P(am(k)|H0)

H1

≷

H0

PH0 [c10 − c00]

PH1 [c01 − c11]
, (12)

where ci j indicates the cost of judging as i when j is true. Thus, by substituting Equations (8)–(11) into
Equation (12), we can obtain the test:

am(k)
H1

≷

H0

1 + ρ

2ρ
vT

mS(k)−1vm + ηBD (13)

where ηBD is a parameter independent of vm. Therefore, the adaptive detection threshold is:

τm =
1 + ρ

2ρ
vT

mS(k)−1vm + ηBD. (14)

As in Equation (10), the false alarms rate changes with the detection threshold. Let τ denote the
detection threshold. The false alarms rate can be computed as P f a = e−τ. Combined with Equation (13),
the average false alarm rate in the tracking gate can be calculated as:

P f a =
∫
V

P(a ≥ τ|v)PH0 dv

=
∫
V

e−
1+ρ
2ρ vTS(k)−1v−ηBD 1

V dv

≈
1
V e−ηBD

√∣∣∣∣2π ρ
ρ+1 S(k)

∣∣∣∣
(15)

Assuming that the average false alarm rate required by the task is a constant denoted as P f a, by
substituting it into Equation (15) we can get:

ηBD = ln

√∣∣∣∣∣2π ρ

ρ+ 1
S(k)

∣∣∣∣∣− ln(P f aV). (16)

Therefore, the adaptive test can be written as:

am(k)
H1

≷

H0

1 + ρ

2ρ
vT

mS(k)−1vm + ln

√∣∣∣∣∣2π ρ

ρ+ 1
S(k)

∣∣∣∣∣− ln(P f aV). (17)

The measurements which are satisfied with the gating restriction are sent to the tracker, and
the tracker makes an measurements-to-track assignment and then updates tracks. For each track,
the SNR at the current scan k is unknown and needs to be estimated from the association results of the
previous scan.

3. The MHT-IDP Algorithm

In this section, a new multiple hypothesis tracker integrated with detection processing (MHT-IDP)
is proposed. The diagram of the MHT-IDP algorithm based on the TOMHT structure [16,17] is shown in
Figure 1. The location information is predicted by the MHT algorithm, and we utilize this information
to calculate the adaptive threshold. Subsequently, the adaptive score function and the adaptive SPRT
thresholds are computed to make the association decision and track judgement. Then, the surviving
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tracks are clustered, and the global hypothesis of each cluster is calculated. Finally, the tracks that
survive after the pruning step are reserved for the next scan. The MHT-IDP algorithm mainly makes
improvements on the track score module and the SPRT module. Specifically, the algorithm employs
the adaptive detection threshold to calculate the adaptive detection probability and clutter density,
and then it obtains a new adaptive scoring function and SPRT threshold. The MHT-IDP algorithm
can then make the association decision and adaptively track the judgement according to the adaptive
detection threshold. Compared to the commonly-used fixed threshold, adopting an adaptive threshold
can effectively improve the accuracy of data association and the quality of the track in complex scenes.

At scan k, we assume that N tracks exist Tt(k), t = 1, 2, · · · , N. For track t, denote its innovations
covariance as St(k), the volume of tracking gate as Vt, and SNR as ρt.
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3.1. Adaptive Detection Module

According to the previous section, the adaptive detection threshold that varies with the detection
position is shown in Equation (17). In the tracking gate, the detection environment varies with the
detection threshold. Therefore, the adaptive detection probability and the adaptive clutter density of
the track Tt(k) can be calculated by using this adaptive detection threshold.

3.1.1. Detection Probability

The detection probability represents the ratio of the number of targets that exceed the threshold
to the existing target number. The detection probability varies with a location-dependent threshold,
which means that the measurement in the vicinity of the estimated position exceeding the detection
threshold is more likely target than one further away. According to Equation (10), when the threshold is
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τ, the detection probability can be described as Pd = exp
(
−
− ln P f a

1+ρ

)
= exp

(
−

τ
1+ρ

)
. Thus, in the tracking

gate, the average adaptive detection probability can be calculated as:

Pd =
∫
V

P(a ≥ τ|v)PH1dv

=
∫
V

exp
[
−

1
(ρ+1)

( 1+ρ
2ρ vTS(k)−1v + ηBD

)]
1√
|2πS(k)|

exp
[

1
2 vTS(k)−1v

]
dv

=
( ρ
ρ+1

) nz
2 exp

[
−
ηBD
ρ+1

] (18)

where nz is the dimension of the measurements. By substituting Equation (16) into Equation (18), we
can obtain the average detection probability of Tt(k), which is:

Pd
t(k) =

(
ρt

ρt + 1

) nz
2

exp

 1
ρt + 1

− ln

√∣∣∣∣∣2π ρt

1 + ρt
S(k)

∣∣∣∣∣+ ln(P f aVt)


. (19)

3.1.2. Clutter Density

A Poisson distribution is a natural selection for seeding clutter within the space data cube [2,6,18].
In the tracking process, we generally assume that the spatial distribution of clutter obeys a Poisson
distribution. When a fixed-threshold detector is used, the probability mass function (PMF) of the
clutter that generates l false alarms in the gate is expressed as:

P(l) =
(
λV
l!

)l
e−λV. (20)

Here, λ is the average number of false alarm per unit volume. In the tracking system, λ is commonly
referred to as clutter density, and based on the statistical results of the experimental data, the fixed
thresholds used in the experiment were set to τF.

When a detection test is made on the clutter, the amplitude of the detected clutter is retained
(or discarded) when it exceeds (or falls below) the threshold τ. Thus, the clutter through the testing
threshold still obeys a Poisson point process. It is assumed that the clutter density λ is generated by a
Poisson point process with a spatial density of clutter λ̃ through a fixed threshold of τF. Then, it can be
written as:

λ = λ̃e−τF (21)

Thus, the clutter density of the mth measurement in the tracking gate of Tt(k) can be expressed as:

_
λ

t

m(k) = λ̃e−τ
t
m = λ̃eτF−τ

t
m (22)

After substituting Equations (14) and (16) into Equation (22), the new clutter density can be defined as:

_
λ

t

m(k) =
λP f aVt√∣∣∣∣2π ρt
ρt+1 St(k)

∣∣∣∣ exp
(
τF −

ρt + 1
2ρt

vmSt(k)
−1vm

)
(23)

The clutter density in Equations (22) and (23) is decided by the test threshold, which varies with
the measurement location.

3.2. Adaptive Score Function

The probability of the track is evaluated by the track score, which includes all aspects of the
data association problem, and each track corresponds to one track score. In the traditional score
function, the environment parameters and the detection probability are fixed. Thus, when the detection
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environment changes, the track score error grows, and the accuracy of the data association deteriorates
accordingly. In order to improve the accuracy of data association, this section utilizes the adaptive
detection probability and clutter density to calculate the score increment. The detail derivation of the
adaptive score increment can be described as follows.

The track score can be expressed by the log likelihood ratio of the association hypothesis [2]. At
scan k, a recursive form of the track score can be written as:

L(k) = L(k− 1) + ∆L(k) (24)

We assume that there exist Mt
k measurements zm(k), m = 1, 2, · · · , Mt

k in the tracking gate of Tt(k−1).
z0 represents the fact that no detection has occurred. Then, the increment of the corresponding track
score for each likely measurement-track pair can be expressed as:

∆Lt
m(k) =

 ln(1− Pd), m =0

ln
[

P{zm(k)|Tt(k−1)}Pd
λ+λv

]
, m , 0

(25)

where Pd is the detection probability and if no update on scan k, the increment of score is ln(1− Pd),
λv indicates the density of new target, λ represents the density of clutter, and P

{
zm(k)|Tt(k− 1)

}
=

1
(2π)nz/2

|St(k)|
1/2 exp

{
−

1
2

(
vmSt(k)

−1vm
)}

represents the likelihood ratio of associating the track Tt(k− 1)

with the measurements zm(k) at scan k.

From Section 3.1.1, we know that the detection probability Pt
d and the clutter density

_
λ

t

m vary
with the detection threshold. After substituting Equations (19) and (23) into Equation (25), the adaptive
increment of score function can be represented as:

∆Lt
m(k) =


ln(1− Pt

d), m =0

ln

P{zm(k)|Tt(k−1)}Pt
d

_
λ

t

m+λv

, m , 0
. (26)

3.3. Adaptive SPRT Threshold

We make use of the SPRT to test the track score, and its value determines the actions of confirming
the track, deleting the track, or continuing to test the track. The traditional SPRT uses fixed upper
and lower detection thresholds to test with respect to the track score. When the detection scenario
changes, track judgement accuracy decreases, and the number of intermittent tracks and false tracks
increases. Therefore, in complex scenarios, we use the adaptive detection threshold instead to calculate
the adaptive false track confirmation probability at each scan in order to enhance the quality of the
track judgment and generation. Thereafter, an adaptive SPRT threshold can be obtained.

The logic of the SPRT [2,19–21] to test track is shown in Figure 2:
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The standard SPRT test thresholds are defined as: T2 = ln
[ 1−β
α

]
T1 = ln

[ β
1−α

] (27)

whereα represents false track confirmation probability and β represents the true track deletion probability.
The false track confirmation probability is defined from the requirements on false track initiation

in the system [2]. For instance, assuming that the system produces N f a false alarms per second and it
permits N f c false alarms confirmation per hour, the probability that any false alarm generates a false
track is:

α =
N f c

3600N f a
(28)

In the MHT-IDP algorithm, by dynamically adjusting the test threshold parameter ηBD, the false
alarm rate in each tracking gate can be kept as a constant P f a. Thus, at scan k, the changing false alarm
number in the tracking gate of track Tt(k) can be expressed as:

Nt
f a(k) = P f aMt

k. (29)

The number of false alarms which are generated by the system is:

N f a(k) =
N∑

t=1

Nt
f a(k) =

N∑
t=1

P f aMt
k (30)

where N is the number of existing tracks at scan k. After substituting Equation (30) into Equation (28),
the false track confirmation probability can be calculated as:

α(k) =
N f c

3600
N∑

t=1
P f aMt

k

. (31)

Since the influence of β on the track confirmation threshold is very small, the choice of β is
unimportant, and we can thus limit β ≤ 0.1 for the calculation of T2. Then, the low-score track deletion
rule is defined according to the track maintenance capability of the system.



Sensors 2019, 19, 5278 9 of 16

In the MHT-IDP algorithm, the newly adaptive SPRT threshold can be written as:
T2[α(k), β] = ln

[
1−β
α(k)

]
T1[α(k), β] = ln

[
β

1−α(k)

] . (32)

Thus, at scan k, the logic of the adaptive SPRT to process the measurements is:

L(Tt(k))


≤ T2[α(k), β], delete
≥ T1[α(k), β], con f irm
otherwise, continue track

(33)

The module of the adaptive SPRT manages the tracks by deleting the low-score tracks, which
reduces unnecessary calculation. We cluster the tracks, form the global hypothesizes, and then deliver
the tracks that the survive pruning step to the next scan. The MHT-IDP pseudo-code is presented in
Algorithm 1.

Algorithm 1 Pseudo-code of the MHT-IDP algorithm.

Input: the measurement data z(k).
Output: the best tracks Tt(k), t = 1, 2, · · · , N.
1: Set k=1.
2: for i=1→length (z(k))
3: calculate the adaptive threshold τi(k) with (14)
4: if amplitude ai(k) > τi(k)
5: calculate the adaptive detection probability Pi

d(k) with (19) and calculate the clutter density and

λ
i
m(k) with (22).

6: calculate the adaptive score function ∆Li
m(k) with (26) and acquire the changing alarm number

Ni
f a(k) with (29).

7: end if
8: end for
9: calculate the track score Lt(k), t = 1,2,...,N. with (24).
10: calculate the adaptive SPRT threshold with (31) and (32)
11: for t = 1→N
12: if Lt(k) > T1(k), confirm the track, end if
13: else if T2(k) ≤ Lt(k) ≤ T1(k), continue to test track, end if
14: else if Lt(k) < T2(k), delete the track, end if
15: end for
16: cluster the tracks, form the global hypothesizes and N-best pruning the tracks.
17: Set k = k+1, return the predicted data ẑ(k + 1) to step 2.

4. Experimental Results

In this section, we evaluate the MHT-IDP algorithm in the dense clutter simulation scenarios by
several performance metrics. Comparisons were made with the standard MHT algorithm and the
GNN algorithm in order to demonstrate the MHT-IDP algorithm’s superiority in tracking performance.

4.1. Simulation Scenairo.

In the simulation scenario, we had 10 motion targets distributed in a space of [−4000, 4000 m] ×
[−4000, 4000 m] × [0, 1000 m]. We assumed a sampling interval T = 1s. The measurements covered 100
scans. Figure 3 shows the trajectories of the target, and Figure 4 shows the target measurements with
the dense clutter.
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The state space model of the filter was a constant velocity (CV) model. Targets moved in a 3D
surveillance area. At scan k, the target state was xk = [px,k,

.
px,k, py,k,

.
py,k, pz,k,

.
pz,k]

T which included the
information of velocity and location in the X–Y–Z coordinate system. The state transition matrix F,
the measurement matrix H, the covariance matrix of process noise Q, and the covariance matrix of
measurement noise R were defined as follows

F =


F1 0 0
0 F1 0
0 0 F1

, F1 =

[
1 T
0 1

]
; H =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0


Q =


Q1 0 0
0 Q1 0
0 0 Q1

δ2
v, Q1 =

[ 1
2 T2

T

]
; R =


1 0 0
0 1 0
0 0 1

δ2
ε

where the standard deviation of process noise was δv = 50m3 and the standard deviation of
measurement noise was δε = 50m3. The density of the new target was λv = 1 × 10−11/m3.
The density of clutter was λ = 2 × 10−4/m3, the average false alarm rate was P f a = 10−6, and
the true track deletion probability was β = 10−3. To verify the performance of the proposed algorithm,
we compared the proposed algorithm with the MHT algorithm and the GNN algorithm under 100
Monte Carlo simulations.
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4.2. Results and Evaluation.

In this part, we compare the performance of three algorithms with respect to the miscorrelation
rate, the correct correlation rate, the average number of false tracks, the average track maintenance
time, and the optimal sub pattern assignment distance. The detailed description of these metrics was
introduced in [22–28].

(a) The correct correlation rate of true tracks (RCC) is defined as the ratio of the total number of
observations correctly associated with true tracks NCC to the number of the observations that originate
from targets NOT. The correct correlation rate of the true tracks is one of the metrics to evaluate the
quality of data correlation. It can be expressed as:

RCC =
NCC
NOT

. (34)

(b) The miscorrelation rate of true tracks (RMC) is also used for evaluating the data association quality.
It is defined as the ratio of the average number of miscorrelation NMC over the average track life TAT,
and it can be calculated as:

RMC =
NMC
TAT

(35)

(c) The average number of false track (N f t) is defined as the average number of false tracks over the
Monte Carlo simulations. When assuming that the kth Monte Carlo simulation produces N f t(k) false
tracks and the total number of Monte Carlo simulation is NM, then the average number of false track is:

N f t =

NM∑
N=1

N f t(k)

NM
. (36)

(d) The average track maintenance time (TAm) metric is defined to evaluate the performance of track
maintenance in each scan. If we suppose at scan k that the duration of track m is Tdt(m) and the total
number of tracks is NN, then the average track maintenance time can be calculated as:

TAm(k) =

NN∑
m=1

Tdt(m)

NN
(37)

(e) The average processing time for per scan (TH)metric is defined to evaluate the tracker computational
complexity in seconds.
(f) The optimal sub pattern assignment (OSPA) distance is defined to measure the accuracy of cardinality
and state estimation. The OSPA distance between the set of the target real state X = {x1, · · · , xn} and
the set of the estimated state Y =

{
ŷ1, · · · , ŷm

}
is calculated by

d
(c)
p (X, Y) =


{

1
n

[
min
π∈Πn

m∑
i=1

d(c)(xi, ŷπ(i))
p + cp(n−m)

]}1/p

, n ≥ m

d
(c)
p (Y, X), n < m

(38)

where Πn represents the set of all possible permutations of {1, 2, · · · , n}, and d(c)(x, y) = min(c, d(x, y))
is the truncated Euclidean distance between the vectors x and y. In our simulations, the cut-off distance
c was set to 200, and the order parameter p was set to 2.

The performances of the MHT-IDP algorithm, the MHT algorithm, and the GNN algorithm are
shown in Table 1 and Figures 5–11. It can be clearly seen that, compared to the conventional GNN
algorithm and the MHT algorithm, the MHT-IDP algorithm had fewer false tracks, less clutter, and less
mutual interference; thus, it presented a better tracking quality.
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Table 1. Simulation results of three algorithms.

Algorithm RCC Nft TH

GNN 0.901 10 0.283s
MHT 0.924 11 0.309s

MHT-IDP 0.982 3 0.486s
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Table 1 illustrates the tracking performance of the three algorithms under several metrics.
Compared with the MHT algorithm and the GNN algorithm, the MHT-IDP algorithm had a lower
miscorrelation rate of true tracks RMC and a higher correct correlation rate of true tracks RCC. Thus, the
MHT-IDP algorithm had a better accuracy of data association. Furthermore, the MHT-IDP algorithm
had a smaller average number of false tracks N f t. This means that the MHT-IDP algorithm could
effectively reduce the number of false tracks. Moreover, the MHT-IDP algorithm had a longer average
processing time for per scan TH than the MHT algorithm and the GNN algorithm, which means that
the MHT- IDP algorithm obtained better tracking effect at the expense of more computation time.

Figure 8 shows the comparison results of the average track maintenance time of the three
algorithms. The average track maintenance times of the GNN algorithm, the MHT algorithm, and the
MHT-IDP algorithm were 28.92, 27.12, and 34.91 s, respectively. According to Figure 8, the MHT-IDP
algorithm improved the track continuity, reduced the interference of false track, and effectively
increased the track maintenance time.

Sensors 2019, 19, x FOR PEER REVIEW  13 of 16 

 

 
Figure 7. The estimated trajectories of the MHT-IDP algorithm. 

Table 1 illustrates the tracking performance of the three algorithms under several metrics. 
Compared with the MHT algorithm and the GNN algorithm, the MHT-IDP algorithm had a lower 
miscorrelation rate of true tracks MCR  and a higher correct correlation rate of true tracks CCR . 
Thus, the MHT-IDP algorithm had a better accuracy of data association. Furthermore, the MHT-IDP 
algorithm had a smaller average number of false tracks ftN . This means that the MHT-IDP 

algorithm could effectively reduce the number of false tracks. Moreover, the MHT-IDP algorithm 
had a longer average processing time for per scan HT  than the MHT algorithm and the GNN 
algorithm, which means that the MHT- IDP algorithm obtained better tracking effect at the expense 
of more computation time. 

Table 1. Simulation results of three algorithms. 

Algorithm CCR  ftN  HT  

GNN 
MHT 

0.901 
0.924 

10 
11 

0.283s 
0.309s 

MHT-IDP 0.982 3 0.486s 

 
Figure 8. The average track maintenance time of three algorithms. 

 
Figure 8 shows the comparison results of the average track maintenance time of the three 

algorithms. The average track maintenance times of the GNN algorithm, the MHT algorithm, and 

Figure 8. The average track maintenance time of three algorithms.

Sensors 2019, 19, x FOR PEER REVIEW  14 of 16 

 

the MHT-IDP algorithm were 28.92, 27.12, and 34.91 s, respectively. According to Figure 8, the 
MHT-IDP algorithm improved the track continuity, reduced the interference of false track, and 
effectively increased the track maintenance time. 

 
Figure 9. The optimal sub pattern assignment (OSPA) distance of three algorithms. 

 
Figure 10. The cardinality estimation of three algorithms. 

Figures 9 and 10 show the OSPA distance and the cardinality estimation of three algorithms. It 
can be seen that the MHT-IDP algorithm had a lower average OSPA distance. Moreover, the mean 
value of cardinality estimation was closer to the actual target number, and the covariance of 
cardinality estimation was smaller. These simulation results prove that the proposed algorithm can 
acquire better estimation performance. 

Figure 9. The optimal sub pattern assignment (OSPA) distance of three algorithms.



Sensors 2019, 19, 5278 14 of 16

Sensors 2019, 19, x FOR PEER REVIEW  14 of 16 

 

the MHT-IDP algorithm were 28.92, 27.12, and 34.91 s, respectively. According to Figure 8, the 
MHT-IDP algorithm improved the track continuity, reduced the interference of false track, and 
effectively increased the track maintenance time. 

 
Figure 9. The optimal sub pattern assignment (OSPA) distance of three algorithms. 

 
Figure 10. The cardinality estimation of three algorithms. 

Figures 9 and 10 show the OSPA distance and the cardinality estimation of three algorithms. It 
can be seen that the MHT-IDP algorithm had a lower average OSPA distance. Moreover, the mean 
value of cardinality estimation was closer to the actual target number, and the covariance of 
cardinality estimation was smaller. These simulation results prove that the proposed algorithm can 
acquire better estimation performance. 

Figure 10. The cardinality estimation of three algorithms.

Figures 9 and 10 show the OSPA distance and the cardinality estimation of three algorithms. It can
be seen that the MHT-IDP algorithm had a lower average OSPA distance. Moreover, the mean value
of cardinality estimation was closer to the actual target number, and the covariance of cardinality
estimation was smaller. These simulation results prove that the proposed algorithm can acquire better
estimation performance.

Figure 11 shows the true tracks miscorrelation rate of three algorithms. The means of the
miscorrelation rate of true tracks of the GNN algorithm, the MHT algorithm, and the MHT-IDP
algorithm were 0.0697, 0.0676 and 0.0142, respectively. According to Figure 11, we can see that the
MHT-IDP algorithm effectively reduced the miscorrelation rate of true tracks.

Sensors 2019, 19, x FOR PEER REVIEW  15 of 16 

 

 
Figure 11. The miscorrelation rate of true tracks of three algorithms. 

 
Figure 11 shows the true tracks miscorrelation rate of three algorithms. The means of the 

miscorrelation rate of true tracks of the GNN algorithm, the MHT algorithm, and the MHT-IDP 
algorithm were 0.0697, 0.0676 and 0.0142, respectively. According to Figure 11, we can see that the 
MHT-IDP algorithm effectively reduced the miscorrelation rate of true tracks. 

5. Conclusions 

In this paper, we proposed a new multiple hypothesis tracker, MHT-IDP, in which tracking is 
integrated with the detection process. This algorithm obtains adaptive thresholds by using the 
coupling relationship between the detector and the tracker, and it calculates the corresponding 
adaptive score function and adaptive SPRT thresholds in order to improve the data association and 
track management performance. To illustrate the effectiveness of the proposed algorithm in both 
data association and track management, we compared the MHT-IDP algorithm with the standard 
MHT algorithm and the GNN algorithm in a dense-clutter scenario. We found that the proposed 
MHT-IDP algorithm can efficiently suppress the false alarm tracks and obtains a better tracking 
effect at the expense of more computation time. Specifically, it has a higher correct correlation rate 
of true tracks, a smaller average number of false tracks, and a lower miscorrelation rate of true 
tracks, as well as a lower OSPA distance and a more accurate cardinality estimation. 

 

Acknowledgments: This work was supported by the National Natural Science Foundation of China 
(61471019). 

Author Contributions: project administration, J.S; conceptualization, Z.W and J.S; methodology, Z.W and 
J.Sun; simulation, Z.W, G.D and Q.L; writing—original draft, Z.W and G.D; writing—review & editing, Q.L. 
All authors read and approve the manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Bar-Shalom, Y.; Thomas, E.F.; Peter, G.C. Tracking and data association. J. Acoust. Soc. 1990, 87, 918–919. 
2. Blackman, S.; Popolo, R. Design and Analysis of Modem Tracking System; Artech House: Boston, MA, USA, 

1999. 
3. Raguraman, P.; Ramasundaram, M.; Balakrishnan, V. Localization in Wireless Sensor Networks: A 

Dimension based pruning approach in 3D environments. Appl. Soft Comput. 2018, 68, 219–232. 
4. Strumberger, I.; Minovic, M.; Tuba, M.; Bacanin, N. Performance of Elephant Herding Optimization and 

Tree Growth Algorithm Adapted for Node Localization in Wireless Sensor Networks. Sensors 2019, 19, 
2515–2545. 

Figure 11. The miscorrelation rate of true tracks of three algorithms.



Sensors 2019, 19, 5278 15 of 16

5. Conclusions

In this paper, we proposed a new multiple hypothesis tracker, MHT-IDP, in which tracking is
integrated with the detection process. This algorithm obtains adaptive thresholds by using the coupling
relationship between the detector and the tracker, and it calculates the corresponding adaptive score
function and adaptive SPRT thresholds in order to improve the data association and track management
performance. To illustrate the effectiveness of the proposed algorithm in both data association and
track management, we compared the MHT-IDP algorithm with the standard MHT algorithm and the
GNN algorithm in a dense-clutter scenario. We found that the proposed MHT-IDP algorithm can
efficiently suppress the false alarm tracks and obtains a better tracking effect at the expense of more
computation time. Specifically, it has a higher correct correlation rate of true tracks, a smaller average
number of false tracks, and a lower miscorrelation rate of true tracks, as well as a lower OSPA distance
and a more accurate cardinality estimation.
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