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Abstract: Every pixel in a hyperspectral image contains detailed spectral information in hundreds of
narrow bands captured by hyperspectral sensors. Pixel-wise classification of a hyperspectral image is
the cornerstone of various hyperspectral applications. Nowadays, deep learning models represented
by the convolutional neural network (CNN) provides an ideal solution for feature extraction, and has
made remarkable achievements in supervised hyperspectral classification. However, hyperspectral
image annotation is time-consuming and laborious, and available training data is usually limited. Due
to the “small-sample problem”, CNN-based hyperspectral classification is still challenging. Focused
on the limited sample-based hyperspectral classification, we designed an 11-layer CNN model called
R-HybridSN (Residual-HybridSN) from the perspective of network optimization. With an organic
combination of 3D-2D-CNN, residual learning, and depth-separable convolutions, R-HybridSN can
better learn deep hierarchical spatial–spectral features with very few training data. The performance
of R-HybridSN is evaluated over three public available hyperspectral datasets on different amounts
of training samples. Using only 5%, 1%, and 1% labeled data for training in Indian Pines, Salinas,
and University of Pavia, respectively, the classification accuracy of R-HybridSN is 96.46%, 98.25%,
96.59%, respectively, which is far better than the contrast models.

Keywords: hyperspectral image classification; deep learning; convolutional neural network; residual
learning; depth-separable convolution; R-HybridSN

1. Introduction

Hyperspectral sensors can collect abundant spectral information of target objects in hundreds of
narrow bands. Hyperspectral images have extremely high spectral resolution, pixel-wise classification
of which is the cornerstone of various hyperspectral applications, including agricultural yield
estimation [1], environment monitoring [2], resource surveying [3], and disaster monitoring [4].
However, hyperspectral classification is still challenging due to high dimensionality, high nonlinearity,
and the “small-sample problem” of hyperspectral data [5,6].

Research of hyperspectral classification is focused on the feature extraction and classifier
designing [7]. Classic feature extraction methods include principal components analysis (PCA) [8],
independent components analysis (ICA) [9], linear discriminant analysis [10], etc., aiming at
dimensionality reduction and feature discrimination enhancement of hyperspectral data. Subspace
clustering, which has a good theoretical foundation, is an important unsupervised representation
learning method for high dimensional and large-scale data analysis [11,12]. Recently, subspace
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clustering has been successfully applied to hyperspectral classification in both an unsupervised
manner and a supervised manner [13,14]. It is noteworthy that subspace clustering can be used as
a powerful tool for band selection [15,16]. Classifiers designing combined with pattern recognition
and machine learning is an effective solution for hyperspectral classification, and representative
algorithms include support vector machine (SVM) [17], multinomial logistic regression (MLR) [18],
extreme learning machines (ELMs) [19], etc. Most earlier studies are based on spectral information,
while spatial information has attracted more attention recently. Furthermore, a large number of
literatures indicate that classification utilizing spatial–spectral information can effectively remove
salt–pepper noise and generate better predicted maps [20–23]. High dimensionality, high nonlinearity,
and limited training samples of hyperspectral data require feature extraction methods and classifiers to
be capable of extracting and processing deep abstract features, making feature extraction the core issue
of hyperspectral classification [24]. However, most above-mentioned learning methods and classifiers,
such as PCA, ICA, MLR, SVM, etc., are not based on a “deep” manner and deep architectures; on
the contrary, can promote the re-use of features and learn more abstract features at higher layers of
representations [25]. For example, subspace clustering when employed as a deep model can better
handle realistic data without the linear subspace structure [26]. In recent years, deep learning has
attracted much attention by providing an ideal solution for feature extraction. On the one hand, a deep
learning model can extract features through active learning, with less human intervention and strong
generalization ability [27]. On the other hand, deep structures can extract hierarchical features with
increasing levels of abstraction [28]. Different from deep learning models, which take 1D vector as input,
such as the stacked auto-encoder (SAE) [29] and deep belief network (DBN) [30], the convolutional
neural network (CNN) [31] can directly process 2D or 3D image data. Many important breakthroughs
have been made in the field of computer vision by applying CNN, such as image classification [31–34],
object detection [35], and semantic segmentation [36]. A large number of literatures have shown that
CNN can effectively extract the deep spatial–spectral features directly from raw hyperspectral data
blocks and achieve ideal classification accuracy [37–42].

A deep CNN model called AlexNet won the championship of the ImageNet Large Scale Visual
Recognition Challenge (ILCVRS) in 2012, creating a giant wave of solving image processing issues with
the study of the CNN model. Since then, VGG [32], GoogleNet [33], ResNet [34], and other networks
with excellent performance in the ILCVRS competition have overcome one milestone after another
in CNN model research. In addition, the lightweight design of the CNN model has attracted more
attention in recent years, aiming at reducing computational complexity. Xception [43], SqueezeNet [44],
MobileNet [45], ShuffleNet [46], and other lightweight CNN models have been proposed successively.
Researches on the CNN model strongly promote its penetration into related image processing areas.
CNN-based hyperspectral classification mainly focus on hierarchical feature extraction with 2D-CNN or
3D-CNN. 2D-CNN-based hyperspectral classification mostly extract spatial features form hyperspectral
data after dimension reduction [37,38]. The number of retained spectral bands and spatial window size
vary from model to model. However, because of spectral information loss during 2D convolutional
operation, the accuracy of 2D-CNN-based hyperspectral classification can be improved by utilizing
3D-CNN to extract spatial–spectral features. Chen et al. extract the deep spatial–spectral features
from hyperspectral data using the 3D convolution kernel [39]. The spatial window size is 27 × 27
and kernel size is 5 × 5 × 32. Li et al. built a 3D-CNN-based model with relatively small kernel and
window size [40]. Moreover, features with stronger discrimination can be extracted by optimizing the
network structure of 3D-CNN. Hamida et al. alternatively used 3D convolution kernel of different
scales to extract spatial–spectral features [41]. He et al. used multi-scale convolution kernel in the
same convolutional layer to extract spatial–spectral features, and then concatenated the extracted
spatial–spectral features for hyperspectral classification [42].

Hyperspectral data annotation is time-consuming and laborious, resulting in very limited labeled
samples which can be used for training models. The “small-sample problem” has attracted more and
more attention recently [47,48]. There are several mainstream methods in the machine learning field to
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solve the “small-sample problem” of hyperspectral classification, which are data augmentation [39,49],
semi-supervised learning [50–52], transfer learning [53,54], and network optimization [55–58]. Unlike
the other three strategies, network optimization focuses on the model itself. Based on above observations,
further optimizing the network structure to extract more discriminative features, and meanwhile
improving the parameter using efficiency to avoid overfitting, is the focus of hyperspectral classification
research based on 3D-CNN.

In terms of extracting discriminative features, theoretical research and image processing practice
have proved that network depth is the key factor [32–34,59,60]. By using residual connections in
ResNet [34], some researchers construct relatively deeper networks for hyperspectral classification.
Lee et al. use 1 × 1 convolution kernels to learning hierarchical features extracted by the previous
multi-scale convolution kernels, in which residual connections are used to make a network deeper [55].
Liu et al. built a Res-3D-CNN of 12 layers with 3D convolution kernels and residual connections [56].
Zhong et al. improved the position of residual connections and built a SSRN (Spectral–Spatial Residual
Network) in which residual connections are used in the spectral feature learning and the spatial feature
learning, respectively [57]. In addition, structure innovation is also an important aspect of network
optimization. Lately, Swalpa K R et al. proposed HybridSN, applying a 2D convolutional layer to
further processing spatial–spectral features extracted by successive 3D convolutional layers [58]. This
concise and elegant model shows the giant potential of 2D-3D-CNN in hyperspectral classification by
comparing it with previous state-of-the-art models, such as SSRN.

In order to better solve the “small-sample problem” of hyperspectral classification, we proposed
a deeper 2D-3D-CNN called R-HybridSN (Residual-HybridSN). R-HybridSN not only inherits the
advantages of some existing models, but also has considerably innovative designs. With a deep and
efficient network structure, our proposed model can better learn deep hierarchical spatial–spectral
features. Specially, the depth-separable convolutional layer proposed in Xception [43] is used to
replace the traditional 2D convolutional layer, aiming to reduce the number of parameters and further
avoid overfitting.

2. Methodology

2.1. Proposed Model

Figure 1 shows the whole framework of hyperspectral imagery classification based on R-HybridSN.
In the light of lightweight designing, we conduct dimension reduction on raw hyperspectral data using
PCA and keep a relatively small number of principle components. Hyperspectral data can be viewed
as a 3D cube. Suppose the spatial size of hyperspectral data is W ×H and the number of spectral
bands is D, then the hyperspectral 3D cube can be denoted as CW×H×D PCA is used in the spectral
dimension of hyperspectral data. After selecting the first B principle components, the hyperspectral
data can be denoted as CW×H×B . The proposed R-HybridSN is based on 3D-CNN and accepts the
3D hyperspectral image patch as input, the land-use type of which is determined by the center pixel.
A hyperspectral patch includes not only the spectral information of the pixel to be classified, but also
the spatial information of the pixel within a certain range around. Every hyperspectral patch can be
denoted as PM×M×B, where M is the predefined neighborhood size.

The R-HybridSN has 11 layers and Table 1 shows the output dimension of each layer, the number
and size of convolution kernels. Reshape and Flatten module is applied for data dimension adjustment,
the purpose of which is adapt to the data dimension requirement of next layer. Deep hierarchical
spatial–spectral features are extracted by six successive 3D convolutional layers and two depth-separable
2D convolutional layers. In addition, we chose the widely used rectified linear unit (Relu) as the
nonlinear activation function. After further abstract integration of spatial–spectral features, every pixel
is classified with a specific land-use type in the output layer. Three residual connections are introduced
to ease the training process of R-HybridSN and information from the upstream of the network is
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injected downstream. Specifically, the residual connections used in R-HybridSN include dimension
adjustment. The position and dimension adjustment methods are shown in the dotted box in Figure 1.

Figure 1. Illustration of the proposed R-HybridSN (Where FC is the fully connected layer).

Table 1. The output data dimension and convolution kernel size of each layer in the network.

Layer Name Output Dimension Convolution Kernel Size Convolution Kernel Number

Input 15, 15, 16, 1
Conv3D_1 15, 15, 16,12 (1, 1, 3), (3, 3, 3), (5, 5, 3) 4 + 4 + 4
Conv3D_2 13, 13, 14, 16 (3, 3, 3) 16
Conv3D_3 11, 11, 12, 32 (3, 3, 3) 32
Conv3D_4 11, 11, 12, 40 (1, 1, 3) 40
Conv3D_5 9, 9, 10, 48 (3, 3, 3) 48
Conv3D_6 7, 7, 8, 64 (3, 3, 3) 64
Reshape 7, 7, 512

Separable2D_1 4, 4, 128 (4, 4, 4) 128
Separable2D_2 1, 1, 512 (4, 4, 4) 512

Flatten 512
FC 96

Output number of
land-use categories

2.2. The 2D Convolution Operation

Convolutional neural networks are usually composed of input layer, convolutional layer, pooling
layer, fully connected layer, and output layer. The convolutional layer is the core component for the
extraction of deep hierarchical features. A convolutional layer extracts features by means of inner
product of kernels in this layer and input data of the previous layer, in which convolutional kernel
traverses all spatial positions of each channel of input data. The overall 2D convolution operation
is shown in Figure 2 and the value of the (x, y) position on the jth feature map at the ith layer is
calculated by Formula (1),

mapx,y
i, j = f

(∑
m

∑Hi−1

h=0

∑Wi−1

w=0
kh,w

i, j,mmap(x+h),(y+w)

(i−1),m
+ bi, j

)
, (1)

where kh,w
i, j,m represents the value at the position (h, w) of the jth convolution kernel in the ith layer,

and the kernel convolutes the m th feature map of the previous layer; Hi and Wi represnets the size of

the kernel; map(x+h),(y+w)
i−1,m represents the value at the position (x + h, y + w) of the mth feature map

of the previous layer; mapx,y
i, j represents the output at the position (x, y) of the jth feature map in the

ith layer; bi, j represents the bias and f () is the activation function. Different parameters are used for
convolution operation in different channels, and the two-dimensional tensor obtained by summation
of operation results is the feature extracted by the convolution kernel.
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Figure 2. The overall 2D convolution operation. The input data dimension is W ×H ×C1 , where C1 is
the channel number; the 2D convolution kernel size is k× k and it denotes the coverage of convolution
kernel over spatial dimension in each convolution operation; the output data dimension of single kernel
is (W − k + 1)(H − k + 1) and the final output data generated by p kernels is a 3D tensor.

Through 2D convolution operation, one layer can learn local features from the previous layer and
the kernel size determines local spatial size. Successive convolutional layer can increasingly abstract
hierarchical features. In addition, the spatial feature learning and cross-channel feature learning in the
ordinary 2D convolutional layer is carried out simultaneously. For the input 3D image data with length,
width, and band, the operation result of multiple convolution kernels is also a 3D tensor. However,
the depth dimension no longer corresponds to the band, but to the number of convolution kernels.

2.3. The 3D-CNN and 2D-3D-CNN

Different from 2D-CNN, feature learning is extended to the depth dimension by using 3D
convolution kernels. The 3D convolution kernels conduct inner product across the spatial dimension
and the depth dimension. Thus, it is suitable for the feature learning of hyperspectral data with
rich spectral information. Firstly, R-HybridSN extracts spatial–spectral features using multi-scale
3D convolution kernels, in which padding is used to ensure the consistent dimension of input and
output data. The operation results are concatenated in the spectral dimension as the output feature
map of the first layer. The next step is to further integrate and abstract the spatial–spectral features
with 5 successive convolutional layers. The process of 3D convolution operation is shown in Figure 3.
The calculation method of the position (x, y, z) of the jth feature cube in the ith convolutional layer is
shown in Formula (2).

Vx,y,z
i, j = f

(∑
m

∑Hi−1

h=0

∑Wi−1

w=0

∑Ci−1

c=0
kh,w,c

i, j,m V(x+h),(y+w),(z+c)
(i−1),m

+ bi, j

)
, (2)

3D Convolution and 2D convolution have their own characteristics in feature extraction. In the
3D-CNN-based hyperspectral classification task, let the input data dimension, convolution kernel
size, and the kernel number be W × H × B × C1, k × k × k, p, respectively. In the 2D-CNN-based
hyperspectral classification task, let the input data dimension, convolution kernel size, and the kernel
number be W ×H × C2, k × k, p , respectively. If padding is not used and the stride is 1, then the
dimension of feature map is (W − k + 1)(H − k + 1)(B− k + 1)p generated by 3D convolutional layer,
and (W − k + 1)(H − k + 1)p generated by 2D convolutional layer, respectively. In terms of network
parameters, the number of weight parameters is p × k × k × k × C1 for the 3D convolutional layer,
and p× k× k×C2 for the 2D convolutional layer. Therefore, on the one hand, the feature map generated
by the 3D convolution operation contains more spectral information. On the other hand, the parameters
of 3D convolutional layer are usually far more than those of 2D convolutional layer.
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Figure 3. The overall 3D convolution operation. The input data dimension is W ×H × B×C1 , where
B is the band number and C1 is the channel number; the 3D convolution kernel size is k× k× k and
the last k denotes the coverage of convolution kernel over spectral dimension in each convolution
operation; if padding is not used and the stride is 1, then the output data dimension of single kernel is
(W − k + 1)(H − k + 1)(B− k + 1) and the final output data generated by p kernels is a 4D tensor.

Inspired by HybridSN, the 2D convolutional layer is placed behind the successive 3D convolutional
layers to further discriminates the spatial features. In order to fit the input dimension of 2D convolutional
layer, the feature cubes generated by the 3D convolutional layer should be jointed in the spectral
dimension, namely the dimension of the 4D tensor W ×H × B×C should be reshaped to W ×H × BC .
Different from HybridSN, R-HybridSN utilizes two depth-separable convolutional layers to enhance
parameters using efficiency and residual connections to ease network training and to enhance the flow
of spectral information in the network.

2.4. Depth-Separable Convolution

It can be observed from the operation process of traditional 2D convolution that in terms of
feature map generation, the information of spatial dimension and channel dimension is mapped
simultaneously. Different from traditional 2D convolution, depth-separable convolution can be
divided into depthwise convolution and pointwise convolution. Firstly, every channel of input data is
convoluted by 2D convolution kernels and the number of kernels is usually set to one in depthwise
convolution. The second step is similar to traditional 2D convolution of which kernel size is 1 × 1.
The above operation process is illustrated in Figure 4.

Figure 4. The overall depth-separable convolution operation. Different from traditional 2D convolution,
depth-separable convolution can be divided to depthwise convolution and pointwise convolution.

Compared with the traditional 2D convolution, depth-separable convolution both reduces the
number of parameters and the calculation times in the network, thus speeding up the network
training and reducing the possibility of overfitting in the classification task. Suppose that the
channel number of input feature map is C, the size of convolution kernel is K × K , the number of
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depthwise convolution kernel is q, the number of pointwise convolution kernel is N, and the size of
the generated feature map is W ×H ×N . The number of parameters in the traditional convolutional
layer is K × K ×N × C and the number of parameters in the depth-separable convolutional layer is
N ×C× q + K ×K ×C× q . The times of multiplications is K ×K ×C×W ×H ×N for the traditional
convolutional layer and 1 × 1 ×W ×H ×N × C × q + W ×H × K × K × C × q for the depth-separable
convolutional layer, respectively. The ratios on parameters and times of multiplications of traditional
convolutional layer to depth-separable convolutional layer are both

( q
N +

q
K2

)
. Since q is usually set to

1, using depth-separable convolution can greatly reduce the number of parameters and the calculation
times required.

The performance of hyperspectral classification can be improved by applying depth-separable
convolution. First, the number of parameters and calculation times are reduced. Second,
the concatenated feature map generated by successive 3D convolutional layers can be considered to
contain extremely abundant spectral information in a certain neighborhood of the pixel to be classified.
The depth-separable convolution is very suitable for the data structure of the concatenated feature
map, of which the size depth dimension is far larger than that of spatial dimension.

2.5. Residual Learning

The theoretical research on the feedforward deep network indicates that the depth of the network
has an exponential advantage over the width of the network (namely the number of neurons in the
same layer) in terms of function fitting ability [59,60]. In addition, the image classification practice
based on CNN shows that the deep network can learn abstract features better [32–34]. Therefore, deep
network construction is an important strategy to deal with the challenge of hyperspectral classification.
And in terms of constructing deep network for “small-sample problem”, the key point is reducing
training difficulty and avoid overfitting.

The training of the deep convolutional neural network can be successfully realized through
residual connection proposed in literature [34]. Residual connections can be divided into identity
connection and non-identity connection according to whether there is dimension adjustment. Schematic
diagram of the two types of residual connections is shown in Figure 5. Tensor addition requires
same dimension. If the input x does not change its dimension after several convolutional layers, x
can be directly injected into the downstream of the network by using identity connection; otherwise,
dimension adjustment is required. Specially, [34] indicated that identity connection is sufficient to solve
the degradation problem of deep network, and is more economical and practical than non-identity
connection with dimension adjustment. In the mentioned hyperspectral classification researches
above based on residual learning, all the authors used identical connection and achieved excellent
classification performance.

Figure 5. Schematic diagrams of two types of residual connections: (a) Identity connection;
(b) non-identity connection using convolutional layer for dimension adjustment.
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However, there are three non-identity residual connections in R-HybridSN. The first two residual
connections occurred among the successive 3D convolutional layers, and the 3D convolutional layer
was used to conduct the dimension adjustment. In addition, the dimension adjustment in the third
residual connection is done by a max pooling layer. The reasons why identical residuals are not used
in this article are as follows:

1. From the perspective of network structure, identical connection requires consistent input and
output dimensions, which reduces the flexibility of model construction to some extent. Thus,
we aim to explore the classification performance of hyperspectral data using non-identity
residual connection.

2. Residual connections with convolutional layers make the network more like directed acyclic
graphs of layers [61], in which each branch has the ability to independently extract
spectral-spectral features.

3. The feature map generated by the Reshape module is believed to contain extremely rich spectral
information. However, due to the mode of feature map generating used by subsequent 2D
convolutional layers, the extracted spectral features suffer some losses. In order to better realize
spatial–spectral association, we add the feature map generated by the Reshape module to
the feature map generated by the last 2D convolutional layer, enhancing the flow of spectral
information in the R-HybridSN.

3. Datasets and Contrast Models

To verify the performance of the proposed model, we use three public available hyperspectral
datasets, namely Indian Pines, Salinas, and University of Pavia. The Indian Pines, Salinas,
and University of Pavia datasets are available online at http://www.ehu.eus/ccwintco/index.php?
title=Hyperspectral_Remote_Sensing_Scenes. We use some public available codes to prepare the
training and testing data, compute the experimental results and implement the M3D-DCNN as one
of the contrast models. The codes are available online at https://github.com/gokriznastic/HybridSN
and https://github.com/eecn/Hyperspectral-Classification. Indian Pines consists of 145 × 145 pixels
with a spatial resolution of 20 m. The bands covering the water absorption region were removed and
the remaining 200 bands are used for classification. The Indian Pines scene mainly contains different
types of crops, forests, and other perennials. The ground truth available is designed to sixteen classes.
Salinas consists of 512 × 217 pixels with a spatial resolution of 3.7 m. As with Indian Pines, the water
absorption bands were discarded and the number of remaining bands is 204. The Salinas scene mainly
consists of vegetation, bare soil, and vineyards. The labeled samples are divided into 16 classes, total
of which is 54,129. The University of Pavia consists of 610 × 340 pixels with a spatial resolution of 1.3
m. The labeled samples are divided into 9 classes, most of which are the features of the town, such as
metal plate, roof, asphalt pavement, etc. The total number of labeled samples is 42,776.

Most of CNN-based hyperspectral classification algorithms are supervised and the number of
training samples are of great significance to the classification accuracy. The same three datasets
were used in [58] and the proportion of training samples used was 30%. In addition, supplementary
experiments using 10% labeled data as training samples were conducted to further observe the
performance of HybridSN. In [57], 20% labeled data were used to train SSRN for Indian Pines, and 10%
for University of Pavia, respectively.

In our experiment, the number of training samples was further reduced to observe the classification
performance of R-HybridSN. In addition, different from the common setting of most hyperspectral
classification experiments, we do not use the same amount of training samples for each class in this
paper. Instead, the training sample ratio of each ground object class is consistent with that in the total
labeled samples. Three landmark CNN-based hyperspectral classification models—2D-CNN [37],
M3D-DCNN [42], and HybridSN [58]—are compared with our proposed R-HybridSN. In addition,
in order to observe the impact of residual learning and depth-separable convolution in R-HybridSN on
classification performance, we built the following two extra contrast models, namely Model A and

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
https://github.com/gokriznastic/HybridSN
https://github.com/eecn/Hyperspectral-Classification
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Model B. Model A replaces the part of depth-separable convolution with traditional 2D convolution
and Model B removes residual connections from R-HybridSN. The other settings are consistent
with R-HybridSN.

4. Experimental Results and Discussion

Details of 2D-CNN, M3D-DCNN, and HybridSN are set in accordance with the corresponding
paper. In order to better investigate the training speed, the training epoch of R-HybridSN, Mode A,
and Model B is set to 50. We use Adam as optimizer, and the learning rate is set to 0.001. In addition,
in order to observe the impact of model structure itself on training speed, normalization strategies,
such as batch normalization [62], are not used.

4.1. Hyperspectral Classification Experiments Using Different Amounts of Training Samples

In this section, multiple hyperspectral classification experiments were conducted with different
amounts of training samples, and the classification performance of different models was evaluated by
overall accuracy (OA). The OA is calculated by the number of correctly classified testing pixels divided
by the total number of testing pixels. The purpose of these experiments is to observe the variation
trend and sensitivity of OA with the changing amount of training samples. In particular, in this section,
we remove seven classes with too few labeled samples in Indian Pines referring to literature [56]. If
not, under the rigorous experimental settings, some ground object may not have even one training
sample. The OA of each model on Indian Pines, Salinas, and University of Pavia is shown in Tables 2–4.
In addition, the training time of each model on Indian Pines is shown in Table 5. The data in the table
were obtained by averaging the results of ten consecutive experiments.

Table 2. The overall accuracy of different models in Indian Pines 1.

Model\Amount of
Training Samples 20% 10% 8% 6% 4% 2%

2D-CNN 91.23 ± 0.21 83.86 ± 1.00 82.43 ± 0.62 78.59 ± 0.79 74.92 ± 0.98 67.13 ± 1.12
M3D-DCNN 90.03 ± 2.18 80.10 ± 4.56 78.04 ± 2.13 74.57 ± 2.63 70.48 ± 3.21 62.28 ± 3.18

HybridSN 99.30 ± 0.18 97.66 ± 0.23 96.37 ± 1.19 93.64 ± 4.40 91.88 ± 1.39 83.14 ± 1.60
Model A 99.21 ± 0.24 96.94 ± 0.59 97.03 ± 0.43 93.80 ± 0.97 91.20 ± 1.61 81.97 ± 2.28
Model B 99.12 ± 0.20 96.47 ± 0.59 95.09 ± 0.52 91.46 ± 1.40 87.25 ± 1.07 73.81 ± 3.33

R-HybridSN 99.52 ± 0.16 98.44 ± 0.44 98.12 ± 0.35 96.69 ± 0.70 94.99 ± 0.39 86.67 ± 1.02
1 The standard deviation is shown after ±.

Table 3. The overall accuracy of different models in Salinas.

Model\Amount of
Training Samples 5% 2% 1.6% 1.2% 0.8% 0.4%

2D-CNN 96.63 ± 0.24 94.67 ± 0.15 94.47 ± 0.24 93.82 ± 0.21 93.03 ± 0.26 91.38 ± 0.44
M3D-DCNN 92.65 ± 0.49 90.17 ± 0.56 88.68 ± 1.80 87.60 ± 1.35 86.82 ± 1.18 83.42 ± 1.60

HybridSN 99.83 ± 0.10 99.57 ± 0.25 99.53 ± 0.19 99.12 ± 0.33 97.78 ± 0.78 94.88 ± 0.90
Model A 99.62 ± 0.15 99.12 ± 0.19 98.64 ± 0.27 98.17 ± 0.41 96.73 ± 0.53 92.72 ± 0.94
Model B 99.46 ± 0.19 98.38 ± 0.33 97.51 ± 0.70 96.46 ± 1.04 93.74 ± 2.07 88.25 ± 1.93

R-HybridSN 99.82 ± 0.04 99.36 ± 0.14 99.18 ± 0.24 98.49 ± 0.60 96.97 ± 0.57 94.33 ± 0.48

Table 4. The overall accuracy of different models in University of Pavia.

Model\Amount of
Training Samples 5% 2% 1.6% 1.2% 0.8% 0.4%

2D-CNN 96.59 ± 0.21 94.50 ± 0.40 93.55 ± 0.22 91.82 ± 0.56 89.98 ± 0.38 85.27 ± 0.90
M3D-DCNN 92.80 ± 0.95 89.27 ± 1.35 88.28 ± 1.47 87.19 ± 1.71 82.75 ± 2.84 76.53 ± 3.94

HybridSN 99.45 ± 0.09 97.86 ± 0.56 96.87 ± 0.31 95.86 ± 0.93 93.30 ± 1.41 85.95 ± 1.58
Model A 99.37 ± 0.12 97.99 ± 0.53 97.83 ± 0.64 95.01 ± 1.44 93.98 ± 1.70 90.85 ± 1.51
Model B 99.03 ± 0.10 96.89 ± 0.59 96.45 ± 1.02 88.54 ± 4.45 91.05 ± 2.33 81.06 ± 3.21

R-HybridSN 99.47 ± 0.14 98.47 ± 0.27 98.30 ± 0.21 96.40 ± 1.66 95.64 ± 0.52 91.60 ± 1.12
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Table 5. Training time(s) of different models in Indian Pines.

Model\Amount of
Training Samples 20% 10% 8% 6% 4% 2%

2D-CNN 14.6 8.9 7.4 6.6 5.0 4.0
M3D-DCNN 314.8 157.2 126.3 95.2 64.2 34.5

HybridSN 425.9 237.0 199.5 165.2 118.3 77.4
Model A 119.6 72.3 64.7 52.1 44.5 35.3
Model B 66.2 41.7 39.0 25.8 20.0 13.7

R-HybridSN 109.9 63.4 60.9 46.9 31.5 21.8

As can be seen from the classification accuracy results, when the training samples accounted
for 20% of the total number of labeled samples, all models reached the highest accuracy. 2D-CNN
and M3D-DCNN have lower accuracy than other models. The classification accuracy of all models
decreased with the decrease of training samples and the reduction speed of different models varies
greatly. In all experiments in this section, HybridSN has higher classification accuracy than 2D-CNN
and M3D-DCNN. Combined with the experimental conclusions in [58], the experimental results in this
section further show that the combination of 2D and 3D convolutional layers can effectively improve
the accuracy of hyperspectral classification. The classification accuracy of R-HybridSN in Indian
Pines and University of Pavia is far better than all other models, and the advantages of R-HybridSN
gradually increase as the amount of training samples decreases. For example, in Indian Pines_10%,
the classification accuracy of R-HybridSN is 0.78% higher than HybridSN. Furthermore, as the
proportion of training samples decreases from 10% to 2%, the classification accuracy of R-HybridSN is
successively 1.75%, 3.05%, 3.11%, and 3.53% higher than HybridSN. This trend is even more pronounced
in University of Pavia. In the Salinas data set, the classification accuracy of R-HybridSN is slightly
lower than HybridSN and superior to all the other models. Specially, the gap between R-HybridSN and
HybridSN in Salinas does not expand as the amount of training samples decreases. In the process of
reducing the proportion of training samples from 5% to 2%, the classification accuracy of R-HybridSN
was at most 0.81% lower than HybridSN, which occurred in the Salinas_0.8% experiment, while in
Salinas_0.4%, the gap was reduced to 0.55%. We can tell by the experimental results that the network
structure of R-HybridSN is good enough to extract sufficient discriminative features using a very few
training samples, so as to maintain a high classification accuracy. The reason why the accuracy of
R-HybridSN is slightly lower than HybridSN in Salinas will be further discussed in Section 4.2.

The classification accuracy of Model A is higher than Model B, and that of Model A and Model B
is far lower than R-HybridSN. Again, this trend became more pronounced as the number of training
samples decreased. For example, the classification accuracy of R-HybridSN is 1.5% higher than Model
A in the Indian Pines_10% experiment, and as the proportion of training samples decreases from 10%
to 2%, the classification accuracy of R-HybridSN is successively 1.09%, 2.89%, 3.79%, and 4.7% higher
than Model A. Therefore, depth-separable convolution and residual connections used in R-HybridSN
can effectively improve the classification accuracy. In Salinas_0.4% and University of Pavia_0.4%,
the classification accuracy of Model B is even lower than that of 2D-CNN, indicating that serious
degradation exists in the deep CNN model. In particular, it is noted that in University of Pavia, when
the proportion of training samples decreased from 1.2% to 0.8%, the classification accuracy of Model
B increased from 88.54% to 91.05% on the contrary. It can be observed from the standard deviation
that the classification accuracy of model B on the University of Pavia_1.2% is very unstable. This
phenomenon may be caused by the fact that the model without residual connections was more difficult
to train, and the training accuracy can hardly be improved to 100% within 50 epochs. Once this
situation occurs, there will be a great impact on the calculated average accuracy. Detailed observation
and further analysis of this phenomenon is shown in Section 4.2.

The training time of deep learning model is related to experimental environment, model structure,
number of training epoch, amount of training samples, etc. The training time of each model varies
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greatly and all decrease with the decreasing amount of training samples. 2D-CNN has the shortest
training time, while the training time of 3D-CNN and HybridSN are relatively long. The training
time of R-HybridSN is moderate, higher than 2D-CNN, lower than M3D-DCNN and HybridSN.
The training epoch of the last three models in Table 5 are all 50. The training time of R-HybridSN is
shorter than that of Model A, and longer than that of Model B. The experimental results indicate that
the depth-separable convolution can not only improve the classification accuracy, but also shorten the
training time, while the introduction of non-identical residual connection can prolong the training time.

4.2. Hyperspectral Classification Experiments under “Small-Sample Problem”

The problems exposed in the previous section should be further observed and the “small-sample
problem” will be paid more attention. Therefore, in this section, a small sample proportion was
fixed to further observe the classification effect of each model from various indices. In this section,
the proportion of training samples used in Indian Pines, Salinas and University of Pavia is 5%, 1%,
and 1%, and the proportion of training samples selected for each class of ground object is consistent
with the proportion of such ground object in the total number of labeled samples. Different from the
experiments in Section 4.1, all the 16 classes in Indian Pines are included in this section. In light of
the distribution of training samples are highly unbalanced and some ground object have only one or
two training samples, the IP_5% experiment in this section can be viewed as one extreme condition
of “small sample” hyperspectral classification. The detailed distribution of training samples and test
samples of Indian Pines, Salinas and University of Pavia are shown in Tables 6–8.

Table 6. Training and testing sample numbers in Indian Pines.

No. Class Name Total Labeled Samples Training Testing

1 Alfalfa 46 2 44
2 Corn-notill 1428 71 1357
3 Corn-mintill 830 41 789
4 Corn 237 12 225
5 Grass-pasture 483 24 459
6 Grass-trees 730 37 693
7 Grass-pasture-mowed 28 1 27
8 Hay-windrowed 478 24 454
9 Oats 20 1 19
10 Soybean-notill 972 49 923
11 Soybean-mintill 2455 123 2332
12 Soybean-clean 593 30 563
13 Wheat 205 10 195
14 Woods 1265 63 1202
15 Buildings-Grass-trees-drives 386 19 367
16 Stone-steel-towers 93 5 88

Total 10,249 512 9737

Table 7. Training and testing sample numbers in Salinas.

No. Class Name Total Labeled Samples Training Testing

1 Brocoli_green_weeds_1 2009 20 1989
2 Brocoli_green_weeds_2 3726 37 3689
3 Fallow 1976 20 1956
4 Fallow_rough_plow 1394 14 1380
5 Fallow_smooth 2678 27 2651
6 Stubble 3959 39 3920
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Table 7. Cont.

No. Class Name Total Labeled Samples Training Testing

7 Celery 3579 36 3543
8 Grapes_untrained 11,271 113 11,158
9 Soil_vinyard_develop 6203 62 6141
10 Corn_senesced_green_weeds 3278 33 3245
11 Lettuce_romaine_4wk 1068 11 1057
12 Lettuce_romaine_5wk 1927 19 1908
13 Lettuce_romaine_6wk 916 9 907
14 Lettuce_romaine_7wk 1070 11 1059
15 Vinyard_untrained 7268 72 7196
16 Vinyard_vertical_trellis 1807 18 1789

Total 54,129 541 53,588

Table 8. Training and testing sample numbers in University of Pavia.

No. Class Name Total Labeled Samples Training Testing

1 Asphalt 6631 66 6565
2 Meadows 18,649 186 18,463
3 Gravel 2099 21 2078
4 Trees 3064 31 3033
5 Painted metal sheets 1345 13 1332
6 Bare Soil 5029 50 4979
7 Bitumen 1330 13 1317
8 Self-Blocking Bricks 3682 37 3645
9 Shadows 947 10 937

Total 42,776 427 42,349

In this section, three indices were used to evaluate the classification performance of different
models, namely OA, AA, Kappa. AA refers to the average accuracy of all ground features, and it
is calculated by the arithmetic average of the classification accuracy of all ground objects. Kappa is
an index measuring classification accuracy based on confusion matrix, and its calculation method is
shown in Equation (3), where ti is the true sample number of the ith class sample, pi is the predicted
number of ith class sample, n is the total number of sample, and k is the number of sample classes.

Kappa =
OA− t1p1+t2p2+...+tkpk

n2

1− t1p1+t2p2+...+tkpk
n2

, (3)

Figures 6–8 show the ground truth of Indian Pines, University of Pavia, and Salinas and the
classification map generated by different models in one certain experiment. As can be seen from these
figures, in this experiment, the classification effect of R-HybridSN and HybridSN is far better than that
of 2D-CNN and M3D-CNN. In addition, the classification effect of R-HybridSN is better than that of
Model A and Model B. Table 9 shows the classification result of the most seriously misclassified ground
object by R-HybridSN in Salinas, which will be discussed in detail later. Tables 10–12, respectively,
show the test results of R-HybridSN and five contrast models in Indian Pines, Salinas, and University of
Pavia. The data in these tables were obtained by averaging the results of ten consecutive experiments.
Similar to the experimental results in Section 4.1, R-HybridSN are superior to all the remaining models
in Indian Pines and University of Pavia. For example, in Indian Pines, the OA of R-HybridSN is
20.99%, 27.58%, 2.22%, 3.49%, and 6.66% higher than 2D-CNN, M3D-DCNN, HybridSN, Model A,
and Model B, respectively. In the University of Pavia, R-HybridSN has an advantage of 1.5% over the
suboptimal Model HybridSN in terms of OA and 3.25% in terms of AA. In Salinas, the Kappa, OA, AA
of R-HybridSN are only slightly lower than HybridSN.
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Figure 6. The classification maps of Indian Pines. (a) Ground truth. (b–g) Predicted classification maps
for 2D-CNN, M3D-CNN, HybridSN, Model A, Model B, and R-HybridSN, respectively.

Figure 7. The classification maps of Salinas. (a) Ground truth. (b–g) Predicted classification maps for
2D-CNN, M3D-CNN, HybridSN, Model A, Model B, and R-HybridSN, respectively.

Figure 8. The classification maps of University of Pavia. (a) Ground truth. (b–g) Predicted classification
maps for 2D-CNN, M3D-CNN, HybridSN, Model A, Model B, and R-HybridSN, respectively.

Table 9. Classification result of Lettuce_romaine_6wk by R-HybridSN 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 1 0 0 0 0 0 0 0 0 0 0 849 57 0 0
2 0 0 0 0 0 0 0 0 0 2 0 0 728 177 0 0
3 0 0 0 0 0 0 0 0 0 0 0 56 689 162 0 0
4 0 0 0 0 0 0 0 0 0 0 0 91 779 37 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 872 35 0 0
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Table 9. Cont.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6 0 0 0 0 0 0 0 0 0 0 0 4 700 203 0 0
7 0 0 0 0 0 0 0 0 0 0 0 256 573 78 0 0
8 0 0 0 0 0 0 0 0 0 4 2 0 857 44 0 0
9 0 0 0 0 0 0 0 0 0 0 0 176 717 14 0 0

10 0 0 0 0 0 0 0 0 0 0 0 4 748 155 0 0
2 The classified land-use type index of the thirteenth class of ground object, Lettuce_romaine_6wk, in ten
consecutive experiments.

Table 10. Classification results of different models in Indian Pines.

2D-CNN M3D-DCNN HybridSN Model A Model B R-HybridSN

1 7.95 27.50 61.82 30.91 29.55 45.00
2 70.69 59.15 92.25 91.16 88.81 95.45
3 52.84 45.07 92.97 90.08 85.17 97.36
4 27.51 38.49 78.22 76.27 67.20 94.80
5 90.44 70.33 96.60 97.58 94.44 98.85
6 98.59 97.20 98.11 99.06 97.65 99.32
7 10.37 18.52 68.52 62.22 37.41 95.56
8 99.96 98.04 99.96 99.85 99.47 100.00
9 16.32 25.79 83.68 61.58 11.05 65.26

10 67.84 55.85 96.12 93.07 86.16 95.90
11 78.16 76.20 96.66 95.53 93.31 98.09
12 42.01 33.89 85.44 83.46 79.01 89.15
13 98.97 91.23 94.97 98.41 96.92 99.74
14 97.65 94.68 99.34 98.51 98.05 99.26
15 62.62 42.37 82.92 80.52 74.01 87.66
16 76.02 49.32 80.00 85.11 83.18 88.18

Kappa 0.718 ± 0.010 0.642 ± 0.045 0.934 ± 0.012 0.920 ± 0.008 0.883 ± 0.012 0.960 ± 0.004
OA(%) 75.47 ± 0.81 68.88 ± 3.77 94.24 ± 1.01 92.97 ± 0.73 89.80 ± 1.03 96.46 ± 0.33
AA(%) 62.37 ± 1.64 57.73 ± 6.52 87.97 ± 1.93 83.96 ± 2.41 76.34 ± 2.36 90.60 ± 1.53

Table 11. Classification results of different models in Salinas.

2D-CNN M3D-DCNN HybridSN Model A Model B R-HybridSN

1 99.97 94.88 99.99 100 99.94 100.00
2 99.86 99.61 100 99.82 99.85 99.97
3 99.43 91.89 99.82 99.32 98.32 99.49
4 98.83 98.33 98.38 99.26 98.09 98.72
5 96.77 98.83 99.26 98.17 98.31 98.43
6 99.79 98.09 99.93 99.80 99.88 99.90
7 99.33 97.67 99.95 99.94 98.88 99.96
8 87.39 82.40 97.77 97.84 92.43 98.23
9 99.97 98.14 99.99 99.51 99.79 99.99

10 93.98 87.60 98.36 98.04 95.45 97.90
11 89.62 86.72 96.06 95.87 90.40 96.46
12 99.99 96.99 97.44 98.12 95.67 99.09
13 98.52 97.14 97.42 77.46 74.10 82.82
14 97.64 91.78 99.52 93.39 92.72 97.25
15 79.46 64.42 97.06 89.79 86.69 95.12
16 95.71 78.14 100 99.16 98.56 99.71

Kappa 0.928 ± 0.003 0.867 ± 0.002 0.985 ± 0.007 0.968 ± 0.010 0.945 ± 0.012 0.980 ± 0.004
OA(%) 93.55 ± 0.26 88.02 ± 1.35 98.72 ± 0.59 97.15 ± 0.90 95.07 ± 1.08 98.25 ± 0.40
AA(%) 96.02 ± 0.42 91.41 ± 0.81 98.81 ± 0.5 96.59 ± 2.42 94.94 ± 2.12 97.69 ± 0.69
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Table 12. Classification results of different models in University of Pavia.

2D-CNN M3D-DCNN HybridSN Model A Model B R-HybridSN

1 96.88 90.56 95.72 95.40 96.53 96.94
2 99.01 89.47 99.68 99.36 99.00 99.69
3 75.08 59.11 84.38 87.60 78.59 87.17
4 87.74 93.25 87.70 89.16 87.71 89.15
5 98.17 93.66 98.99 99.50 98.86 99.51
6 75.51 69.63 96.82 96.59 94.68 98.44
7 61.32 65.71 84.42 94.37 94.66 95.82
8 80.61 78.35 89.18 88.08 84.25 93.28
9 97.97 94.41 71.71 79.51 81.28 77.82

Kappa 0.881 ± 0.008 0.798 ± 0.016 0.935 ± 0.011 0.941 ± 0.013 0.927 ± 0.097 0.955 ± 0.007
OA(%) 91.13 ± 0.55 84.63 ± 1.21 95.09 ± 0.80 95.55 ± 0.99 94.50 ± 0.72 96.59 ± 0.50
AA(%) 85.81 ± 1.48 81.57 ± 1.79 89.84 ± 1.93 92.17 ± 1.91 90.62 ± 1.79 93.09 ± 1.20

The experimental results in Table 11 indicate that the reason that the classification effect of
R-HybridSN is slightly lower than that of HybridSN in the Salinas is that Lettuce_romaine_6wk,
the thirteenth class of ground object, has a poor classification result. Table 9 shows the confusion
of Lettuce_romaine_6wk in the 10 experiments of R-HybridSN in Salinas. Lettuce_romaine_6wk is
mainly misclassified as Lettuce_romaine_7wk and Lettuce_romaine_5wk. Meanwhile, the classification
effect of Model A and Model B on Lettuce_romaine_6wk is lower than that of R-HybridSN, while
the classification effect of 2D-CNN, M3D-DCNN, and HybridSN on Lettuce_romaine_6wk is much
better than that of R-HybridSN. Based on this phenomenon, it is speculated that the specific network
structure of R-HybridSN may be the reason that the classification effect of thirteenth class of ground
object is unsatisfactory.

It is noted that the classification accuracy of Model B on the University of Pavia using 1% labeled
samples for training is higher than that of using 1.2% labeled samples for training, with a difference of
5.96%. This is inconsistent with the overall experimental phenomenon that the classification accuracy
decreases with the decrease of the amount of training samples. Figure 9 shows the changing curves of
the training accuracy with the training epoch of R-HybridSN, Model A, and Model B using 1% and 1.2%
labeled samples for training, respectively. These curves were obtained in six consecutive experiments.
It can be seen from the figure that Model B could get fully trained (the final training accuracy was
close to 1) within 50 epochs using 1% labeled samples. The reason for this phenomenon may be that
1% samples had a special coupling relationship with the batch size that we set, which could make
the training smooth. In addition, it can be seen that R-HybridSN and Model A could be fully trained
within 50 epochs under the same condition of batch size and training samples. In particular, the training
accuracy of R-HybridSN increases most rapidly, and it could reach nearly 100% within about 20 epochs.
The significance of residual connection for the training of deep CNN is further verified.
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Figure 9. Training accuracy curves in six consecutive experiments (a) Model B_1.2%, OA = 93.37%;
(b) Model B_1%, OA = 94.01%; (c) R-HybridSN_1.2%, OA = 97.52%; (d) R-HybridSN_1%, OA = 97.03%;
(e) Model A_1.2%, OA = 95.95%; (f) Model A_1% OA = 96.39%.

4.3. Discussion

The CNN-based hyperspectral classification model degenerates with the decrease of the amount
of training samples. Roughly, the models with fewer layers and simpler structure has more serious
degeneration problem. The good performance of HybridSN with limited training samples shows the
importance of network optimization and the potential of 2D-3D-CNN in hyperspectral classification.
The performance of proposed R-HybridSN is verified by a series of rigorous experiments and its
classification effect is far better than HybridSN and other contrast models in Indian Pines, University
of Pavia and slightly lower than HybridSN in Salinas. The significance of residual connections and
depth-separable convolution layers has already been demonstrated. Next, the structural advantage of
R-HybridSN will be further discussed.

Constructed on the idea of network optimization, R-HybridSN is designed to extract robust and
discriminative features while mitigating over-fitting. Compared with the most existing CNN-based
hyperspectral classification models, R-HybridSN is more like directed acyclic graphs of layers. This
structural advantage of R-HybridSN might provide a better solution for “small sample” hyperspectral
classification. On the one hand, R-HybridSN has more ways for feature extraction besides the
main path. For example, the multiscale convolution module can exploit spatial structure as well as
spectral correlations [55]. Every non-identity residual connection can learn spatial–spectral features
independently. On the other hand, convolutional layers in R-HybridSN is rich in variation in terms
of category and kernel size, and they are arranged in a carefully designed order which can better
control over-fitting. For example, different 3D convolutional layers are combined with depth-separable
convolutional layers, providing a novel hierarchical spatial–spectral learning pattern. The tail branch
of R-HybridSN, namely the max pooling layer, should be paid more attention. We remove the
third residual connection in R-HybridSN and supplementary experiments have been conducted.
The comparison between whether the third residual connection is used in R-HybridSN is shown
in Table 13 and the structural advantage of R-HybridSN is further demonstrated. In the last few
layers, the number of convolution kernels increased sharply, meanwhile the spatial size of the output
feature map was reduced to the minimum (1 × 1). While increasing the feature discrimination degree,
overfitting has been effectively controlled. Based on the above settings, the pooling layer adds the
feature map generated by the last 3D convolutional layer to the feature map generated by the last
depth-separable convolutional layer, boosting the flow of spectral features in the whole network. To
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sum up, the R-HybridSN can better learn deep hierarchical spatial–spectral features and obtained
excellent classification effect using very few training samples.

Table 13. The comparison between whether the third residual connection is used in R-HybridSN 3.

Indian Pines Salinas University of Pavia

Kappa 0.960 ± 0.004 0.927 ± 0.012 0.980 ± 0.004 0.975 ± 0.005 0.955 ± 0.007 0.953 ± 0.006
OA 96.46 ± 0.33 93.63 ± 0.011 98.25 ± 0.40 97.78 ± 0.41 96.59 ± 0.50 96.45 ± 0.43
AA 90.60 ± 1.53 85.28 ± 0.029 97.69 ± 0.69 97.75 ± 0.72 93.09 ± 1.20 94.15 ± 0.86

3 The classification results of R-HybridSN and R-HybridSN without the third residual connection are shown in the
left and right side below every dataset, respectively.

Although R-HybridSN achieved far better classification performance than all the contrast models,
fixed window size and principle component number may not be the best choice for different
hyperspectral datasets with various spatial and spectral resolution. In the future, in order to
better exploit spatial correlations for different datasets, deformable convolutional networks [63] may
be a workable solution. And in order to better learn spectral features, other efficient and novel
high dimensional data mining methods, such as subspace clustering, can be combined with our
proposed model.

5. Conclusions

On account of the fact that it is difficult to obtain enough labeled samples in supervised
hyperspectral classification, we present R-HybridSN from the perspective of network optimization.
Based on 2D-3D-CNN, residual connections and depth-separable convolution, R-HybridSN can learn
deep hierarchical spatial–spectral features for hyperspectral classification. Rigorous comparative
experiments were conducted on three public available hyperspectral data sets: Indian Pines, Salinas,
and the University of Pavia. Experimental results indicate that the proposed R-HybridSN can achieve
far better classification effect than all the contrast models using very few training samples.

In our research, PCA is used in the spectral dimension and a 3D patch with fixed size is extracted
from hyperspectral data. However, it may not be the best choice for different hyperspectral datasets with
various spatial and spectral resolutions. In our future researches, the nature of hyperspectral data should
be paid more attention. In addition, some novel, effective high dimensional data processing methods,
such as subspace clustering, should be further explored in hyperspectral classification. Constructing the
deep learning model in this paper is from the perspective of network optimization. Subsequent studies
can combine the idea of this paper with encoding–decoding learning [52] or generative adversarial
learning [64]. Building the semi-supervised deep learning model using R-HybridSN as the base
module might achieve better hyperspectral classification effect. Since the “small sample” hyperspectral
classification is quite an open area, we hope that the ideas behind R-HybridSN can be expanded and
go further.
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