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Abstract: Excessive information significantly increases the mental burden on operators of critical
monitoring services such as maritime and air traffic control. In these fields, vessels and aircraft
have sensors that transmit data to a control center. Because of the large volume of collected data,
it is infeasible for monitoring stations to display all of the information on monitoring screens that
have limited sizes. This paper proposes a method for automatically selecting maritime traffic stream
data for display from a large number of candidates in a context-aware manner. Safety is the most
important concern in maritime traffic control, and special care must be taken to avoid collisions
between vessels at sea. It presents an architecture for an adaptive information visualization system
for a maritime traffic control service. The proposed system adaptively determines the information to
be displayed based on the safety evaluation scores and expertise of vessel traffic service operators.
It also introduces a method for safety context acquisition to assess the risk of collisions between
vessels, using parallel and distributed processing of maritime stream data transmitted by sensors on
the vessels at sea. It provides an information-filtering, knowledge extraction method based on the
work logs of traffic service operators, using a machine learning technique to generate a decision tree.
We applied the proposed system architecture to a large dataset collected at a port. Our results indicate
that the proposed system can adaptively select traffic information according to port conditions and to
ensure safety and efficiency.

Keywords: big data; stream data; context-aware service; distributed and parallel processing; vessel
traffic service; maritime traffic stream sensor data

1. Introduction

With advances in sensor technology and communication infrastructure, increasing amounts of
measurement data are generated and collected using sensors. In monitoring services, these data must
be displayed on screens for operators [1]. The limited size of display screens does not allow for all
information to be displayed, given the large volume of data collected. In most situations, all of the
available information is not useful for the operators of monitoring services. This type of information
overload distracts operators because they are forced to filter unnecessary information to find relevant
and useful information. The mental burden incurred by this filtering leads operators to make mistakes.
Because mistakes in monitoring services can be catastrophic, it is important to display only contextually
meaningful information to monitoring service operators.
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Maritime traffic monitoring is a crucial service in maritime transportation because of the following
unique characteristics: (1) in contrast with roads and highways, there are no visible paths at sea. (2) Sea
vessels vary in size and communication capabilities [2]. (3) Vessel movements are highly inertial;
it is difficult for vessels at sea to rapidly change course and accelerate or decelerate. Therefore, it
is necessary to provide proper traffic control services to prevent vessels from colliding with other
vessels or obstacles. In the literature, there have been some works for visualizing maritime traffic
information [3].

In harbors and coastal waters, vessel traffic service (VTS) stations monitor vessel traffic to enhance
safety and efficiency and preserve the maritime environment [4]. Most vessels are equipped with
various sensors to measure their status, movements, and environment. Because of wear and the poor
maintenance of these sensors, as well as environmental disturbances, measurement data from vessel
sensors are prone to corruption and duplication. VTS operators monitor vessel traffic on screens that
show vessel statuses at any given time, and this information may be contaminated by sensor noise.
In particular, when the number of vessels is large in a given area, it is stressful for a VTS operator to
coordinate traffic without error. Some information systems have been developed to assist operators
in understanding and effectively handling scenarios involving heavy traffic, predicting the courses
of vessels, and conveying instructions to navigators. While such systems have improved over the
years, they are not yet sufficiently functional to relieve operators of their monitoring responsibilities
altogether. Human agents are needed to examine specific situations, using such tools as risk evaluators
to make critical decisions.

Current maritime traffic systems do not address certain problems. They do not effectively manage
information overload, whereby all available information concerning all vessels is displayed on a
monitoring screen, called an electronic chart display and information system (ECDIS). As the number
of vessels increases, the information items tagged to the icon of a given vessel on a screen begin to
overlap, making it challenging for operators to extract meaningful information from a display. The
ECDIS allows operators to manually remove certain information. Figure 1a shows a monitoring screen
displaying vessels and their associated information. Figure 1b shows that some irrelevant information
is ignored. Vessel information includes the call sign, specifications, navigation status, schedule, and
indications relating to violations of regulations. When operators manually turn off, resize, or change
the colors of information items, they may have to weigh their importance in terms of safety and
efficiency. Safety is the most important concern of monitoring services. In conventional monitoring
information systems, the risk of collision is evaluated by examining the pairwise projective courses of
manually selected vessels.
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and delivered to control services by wireless networks in the form of stream data. Because of the 
duplication and corruption of data, some preprocessing is needed to clean these data. Stream data 
consist of ordered data items collected continuously. Vessel monitoring services should be provided 
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A large number of vessels are present in harbors and coastal waters at any given time, and the
information pertaining to these vessels dynamically changes. These changes are measured by sensors
and delivered to control services by wireless networks in the form of stream data. Because of the
duplication and corruption of data, some preprocessing is needed to clean these data. Stream data
consist of ordered data items collected continuously. Vessel monitoring services should be provided
in real time over large areas. Traditional information systems struggle to provide advanced services
and require heavy computation because of time constraints. This paper presents a distributed parallel
processing method that preprocesses input stream data in order to extract contextual information, such
as the risk of collision.

It is burdensome for operators to adjust manually the appearance of information items in dynamic
situations because vessels constantly enter and exit the monitoring region [5]. The information overload
on the operators could be mitigated by the computing system that adjusts automatically the appearance
of information items in a manner similar to expert human operators. Operators make judgments by
recognizing the situational context and using their experience. To build such a system, it is required to
have some methods to acquire contextual information and to extract knowledge from domain experts
like VTS operators.

In this paper, we propose a prototype architecture designed to extract contextual information
from the sensor stream data of vessels as well as pilot and port management information systems.
Our paper also presents a machine learning-based method to extract expert knowledge from the work
histories of operators. Machine learning is a set of techniques that can automatically extract patterns
or regularities from a collection of data. The proposed method learns from work history data and
constructs a decision tree concerning the information to be displayed in the recognized context.

The remainder of the paper is organized as follows: Section 2 provides background information
and related work on maritime monitoring services, collision risk assessment, and operator information
overload. Section 3 describes the proposed system architecture, the parallel distributed processing
method for context recognition (which requires heavy computation), the context extraction method,
and the knowledge extraction method for handling information overload. Section 4 explains our
experimental settings and results, and Section 5 summarizes our conclusions.

2. Background and Related Work

2.1. Maritime Monitoring Service

There have been some web-based vessel monitoring service websites [6] that allow to track vessels
worldwide. They provide some pieces of such basic information about vessels as vessel status and
collision risk index. Their web interface facilitates the operations of zooming-in and zooming-out of
the view, in which zooming-in makes detailed information displayed on the screen and zooming-out
causes only abstract information to be displayed on the screen. The amount and kind of information
items are limited which are to be displayed on their screen. They have no such serious issues of
information overload as in VTS monitoring service systems.

Maritime traffic service systems, such as VTS systems, conventionally use the symbol shown in
Figure 2 to indicate the navigation state of a vessel. The center coordinate of such a symbol indicates the
location of the GPS sensor position of the target vessel. The stretched line segment indicates the vessels’
speed vectors extending in the direction of her course of ground (COG), and the last line segment
indicates the vessel’s rate of turn. Additional information about the ship, such as ship information,
navigational status, pilot embarkation, risk of collision, and regulation violations, is tagged below the
symbol [7]. Some information is available directly from the system whereas other items, such as the
risk of collision and pilot embarkation estimations, must be calculated at the demand of users.
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Figure 2. Symbol annotation used in ECDIS.

When all available information is displayed, an ECDIS screen appears messy and crowded, and
users can become fatigued when searching for and discriminating between the required information.
“Information overload” refers to conditions wherein excessive information items are displayed.
Information overload reduces job satisfaction and worker productivity and may cause serious damage,
including loss of life, if operators make errors such as overlooking potential accidents.

Figure 1 illustrates a case of information overload as well as a case where information is easier to
understand. If an information system is in a “friendly” state, it is good for user service. However, if
the system is in a state of information overload, users must manage the complexity and information
surpluses by turning off displays of unnecessary information. If the entities displayed are not dynamic,
this type of manual manipulation is not difficult. However, in a monitoring system, entities constantly
appear and disappear. Therefore, manual adjustment becomes challenging for operators and may lead
to significant problems.

To control the display of information items, Kim and Lee [8] proposed a context-aware rule-based
method. Their method is supposed to build manually such rules by asking the VTS operators
questionnaires. The performance of this method, therefore, strongly relies on the quality of the
questionnaires made and the VTS operators’ expertise who answer the questionnaires.

This paper proposes an adaptive information visualization method for mitigating information
overload by automatically adding or removing information items from a display screen for vessel
traffic control. The proposed method uses a machine learning technique for automatically extracting
from expert work histories (i.e., VTS operator work logs) the knowledge of controlling the display of
information items. It also has an architecture for recognizing the operational contexts from stream
sensor data.

2.2. Collision Risk Evaluation

In maritime monitoring services, VTS operators focus heavily on the safety of vessels and facilities
in areas under their charge, such as harbors and coastal waters. Because of the nature of vessel
dynamics, vessels rarely change course drastically. Thus, if the near-future trajectories of two vessels
are evaluated, it is possible to estimate their collision risk by computing the distance at the closet point
of approach (DCPA) and the time to the closest point of approach (TCPA). The DCPA is the distance
between vessels that make their closest approach. The TCPA is the amount of remaining time until
two vessels reach their closest point. Figure 3 represents evaluation of ship collision risk using DCPA
and TCPA.
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TCPA and DCPA are computed using the following Formula [9].

TCPA =
−[∆y(vtsinθt − vosinθo) + ∆x(vtcosθt − vocosθo)]

(vtsinθt − vosinθo)
2
− (vtcosθt − vocosθo)

2 (1)

DCPA =

√
[∆y + (vtsinθt − vosinθo) × TCPA]2+

[∆x + (vtcosθt − vocosθo) × TCPA]2
(2)

here, the own vessel and the target vessel position coordinates are denoted by (xo, yo) and (xt, yt)
respectively. vo and vt are the own and target vessel speeds, respectively. θo and θt are the own and
target vessel courses, respectively.

Most maritime monitoring information systems provide functionality of computing collision risks
between selected vessels. Several methods have been proposed for evaluating a measure called the
collision risk index, such as DCPA, TCPA and relative bearing change. A widely used collision index is
the encounter risk indicator Fst, which is defined with respect to the CPA and TCPA as follows [10]:

Fst = e−|CPA|
·e−6TCPA (3)

Two vessels located within a certain range of a crossing region are called encountering vessels.
The encounter risk indicator simply combines the CPA and TCPA as shown in (3), which yields a value
in the interval [0,1].

Mou et al. [11] developed a dynamic risk model using the CPA, TCPA, and encounter angle
between vessels. Kim et al. [12] introduced a logistic regression method for evaluating near-miss
collisions. Hasegawa [13] proposed a fuzzy logic-based method combining data from the DCPA and
TCPA with fuzzy rules to estimate the collision risk index. Hammer et al. [14] developed a collision risk
estimation method reflecting the relative distance and relative angular velocity of one vessel to another.

Generally, monitoring information systems do not compute the collision risks of all possible pairs
of vessels because of the real-time constraints of having to display the given states of traffic. Moreover,
even though monitoring systems can compute such indexes, it is too messy to display all computed
pairwise indexes on a screen.

2.3. Information Overload

When the magnitude of inputs becomes too large for users to process, information overload occurs.
The management of information overload is crucial in both monitoring services and process-based
service domains where appropriate human involvement is required [15,16]. Various countermeasures
are available for mitigating information overload with respect to operator burden, including task and
process parameters, organizational design, and information technology applications. Countermeasures
pertaining to the operators include training programs for augmenting information literacy, systematic
priority management training, and training to improve information screening skills [17]. Task and
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process parameter-based countermeasures include the standardization of operating procedures, the
establishment of decision models in specific decision processes, and the regulation of information flow
rates. Organizational design-based countermeasures include the organization of lateral relationships
for backups, the reduction of individuals’ divergence through socialization, and the engagement of
additional workers. Information technology applications-based countermeasures include the provision
of information by pushing rather than pulling technologies, the automatic prioritization of information
using mechanisms like voting, expert committees, and the provision of intelligent user interfaces that
inform users of important problems and associated candidate solutions.

The adaptive information visualization addressed in this paper belongs to the category of
information technology applications-based countermeasures. Intelligent information provision can
reduce information overload and can lessen human errors and improve productivity. From an
information technology perspective, a fundamental countermeasure for mitigating information
overload is filtering out information items that are not required at a given time. Rather than
paying attention only to relevant information, operators working under information overload expend
effort to identify and ignore irrelevant items. Therefore, information systems, especially those used
for monitoring work, should suppress unnecessary information. Decisions about whether specific
information is needed at a specific moment are made by operators who are overloaded with information.
Therefore, an important source for acquiring filtering knowledge is data from the work histories of
operators using information systems. It is promising to apply a machine learning algorithm to extract
knowledge about filtering operations from a collection of work histories. The proposed method uses a
machine learning algorithm to extract this knowledge, with the goal of selecting which information
should be displayed. A decision tree algorithm is used to build this filtered knowledge.

3. Adaptive Information Visualization Method for Maritime Traffic Stream Data

3.1. Architecture of Adaptive Information Visualization System

Monitoring service systems should mitigate information overload to enhance worker satisfaction
and performance. A useful approach for filtering out irrelevant information is to simulate the behavior
of expert users to mitigate information overload. Using the work histories of expert users as a data
source, machine learning algorithms can extract expert decision knowledge. Expert users analyze
situations and make decisions based on the results. The results of these situational analyses can be
denoted based on context. Expert users recognize context and, accordingly, make decisions based
on expertise.

In the maritime monitoring service system, we use an approach similar to that taken by experts.
Figure 4 shows the system architecture of adaptive information visualization in maritime traffic
monitoring. The architecture consists of three layers: a sensor data layer, a context module layer, and
an information item selection layer.
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The sensor data layer indicates the location of data sources such as automatic identification
system (AIS), trajectory data, pilot information management data, and port information management
data. VTS operators use these datasets to make decisions about which information to display on their
monitoring screens. The AIS is an automated vessel tracking system that displays other vessels in
the vicinity. To facilitate AIS services, vessels periodically broadcast their information, including ship
name, call sign, longitude, latitude, course, speed, direction, rate of turn, time, ship type, ship length,
and ship width, to other vessels nearby. The following is an example of an AIS message:

!AIVDM,1,1,,A,16ShEK0P0795K6TC9sh=Q?wn0HRt,0*23

AIS messages like the above are parsed and their constituents are coded by other vessels AIS
systems. Such messages are generated every three seconds to three minutes, depending on the vessel
speed and course changes [18]. VTS stations receive all AIS messages in their areas of coverage and
keep track of vessels to control maritime traffic.

Pilot information management data consists of the pilot embarkation and disembarkation
schedules, pilotage passage, ship information, and pilotage stage. Maritime pilots are professional
sailors who maneuver vessels through congested and dangerous waters such as the water near harbors.
The pilotage areas of vessels are important in maritime traffic control.

Port information management data are records of the movements of ships and cargo in and out of
ports. Using these data, stakeholders can monitor vessels and cargo operations in a port in real time.
The governing body of a port can use this dataset to compute usage fees for a port and its facilities. A
statistical analysis of the dataset allows for the extraction of statistics concerning port operations, such
as vessel entries and departures, usage of port facilities, and cargo volume. This dataset is a valuable
source for examining efficient port operations.

The context module layer consists of the following context extraction modules: ship information,
navigation status, pilot embarkation, compliance with regulations, and collision risk index. Contextual
information usually consists of the results of raw data processing. Ship information comprises
information on the ship type, tonnage, depth, and length. The navigation status of a ship is obtained
by analyzing its position, speed, and direction as well as its port information management data. The
pilot embarkation status is obtained by analyzing pilot information management data. The state of
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regulation violations is determined by reviewing maritime regulations publications and comparing
those regulations against a vessel’s position. The collision risk index is computed by the techniques
described in Section 2.2. This contextual information corresponds to context recognition by an expert
as the proposed method extracts such information that supports decision making.

The top layer is the information item selection knowledge base, which is used to select the
information items that will be displayed. This filtering is done to manage information overload
and effectively provide necessary information to users. The knowledge base was constructed using
machine learning to simulate the decision logic of experienced VTS operators. To this end, raw data
regarding VTS operator decisions were recorded, and the former was transformed into contextual data
using context extraction methods. Therefore, the training data consisted of contextual information and
associated VTS display information control by VTS operator decisions.

3.2. Parallel and Distributed Evaluation of Collision Risk and Estimating Pilot Embarkation

In maritime traffic control, the safety of vessels is evaluated by collision risk indexes, as shown in
Equation (3). The collision risk index is calculated by pairwise comparisons of the own and target
vessels’ DCPA and TCPA data, which means near-future closest encounter situation. These calculations
may require massive amounts of computation as the number of candidate pairs increases quadratically
with the number of vessels [19]. In monitoring services, these computations should be accomplished in
real time [20]. The monitoring system should be scalable in terms of the monitored vessels and areas.

When evaluating collision risks for pairs of vessels, some pairs do not have to be examined because
the likelihood of collision is very small. For selecting candidate pairs, we investigated indexing data
structures like the R tree [21], PPR tree [22], and R * tree [23]. These data structures are efficient for
entities that are stationary or nearly stationary, but the management cost is high in maritime traffic
monitoring services in which vessels keep moving for a majority of their time. Thus, the proposed
method does not use such tree-based indexing structures, and instead uses a grid-based indexing
structure, as shown in Figure 5.
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The grid-based indexing structure is organized according to Geohash [24], which hierarchically
divides the globe into a grid and encodes each grid cell with a string. A grid can be considered to
be a longitude–latitude rectangle, and a z-order traversal covers the globe at each resolution. The
neighboring blocks of a grid can be determined from its Geohash value. As the length of the Geohash
string increases, the resolution becomes finer. The levels of resolution range from 1–12, with higher
levels indicating smaller regions. At level 8, a grid covers a region of size 38.2 × 19.1 m, which is
small enough to specify the location of a vessel. Thus, a level 8 Geohash is sufficient for encoding the
longitude–latitude locations of vessels. To assess collision risk, the proposed method divides the globe
into level 5 Geohash grids, each of size ≤4.89 × 4.89 km. When the collision risk of a vessel in a level of
the Geohash grid (i.e., the target data area) is evaluated, other vessels are at the same level of the grid
or an adjacent level, as shown in Figure 5b (i.e., the data search area). When a vessel is located near the
boarders of a grid block, the collision risk index module searches for data in the data search area as
shown in Figure 5b. Once some vessels are found in the data search area, the pairwise collision risk for
all vessels in the area are additionally evaluated.

For scalability against time constraints in monitoring services, the proposed method uses a parallel
distributed processing architecture to assess the risk of collision and estimate pilot embarkation, as
shown in Figure 6. Each grid block can be processed on a different computing server; however, servers
can treat multiple blocks because they possess sufficient resources to handle them. AIS messages are
collected at shore base stations, such as VTS stations. The collected messages are distributed to their
corresponding computing servers because each grid block is assigned to a specific server earlier on.
The data is distributed by a block distributor that delivers each AIS message to the corresponding
server. For example, when an AIS message is received from a level 6 grid, it is delivered to the server
for the level 5 grid.
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AIS messages have a timestamp and are periodically generated by each vessel. The monitoring
system assessed collision risks at fixed intervals, typically every six seconds. During this time, some
vessels may not send AIS messages [25]. Therefore, each time an AIS message is received, the existing
AIS message for the same vessel is replaced by a new one. In Figure 6, a windowing and filtering
module handles such data manipulations. A parallel collision risk evaluation and pilot embarkation
estimation module computes the collision risk index for possible encounters of vessel pairs. This index
is a value in the interval [0,1]. For each vessel, the module also extracts relevant pilot embarkation
information, such as harbor pilot embarkation and disembarkation times, pilotage areas, assistant
tugs, and pilot names. The modules are executed in parallel and independently. This allows the time
constraints to be maintained by increasing the number of servers and distributing the operations
over them. The outcomes of the modules are sent to a collision risk context aggregator and a pilot
embarkation estimation aggregator. The collision risk context aggregator collects and maintains
collision risk indexes from the distributed computing servers, and the pilot embarkation estimation
aggregator collects corresponding information from servers.

3.3. Contextual Information Extraction

The proposed system architecture for adaptive visualization contains the context extraction layer
shown in Figure 7. The collision risk context module is constructed using the methods explained
in Section 3.2. Context modules for ship information, navigation status context, pilot embarkation
context, and state of regulation violations have been developed based on the knowledge of maritime
traffic control.
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Figure 7. Context extraction modules for decision making.

The ship information context module is responsible for extracting call signs from AIS messages.
The module also extracts ship type, tonnage, ship depth, and ship length from the port information
management system.

The navigation status context module classifies the navigation status of a vessel into one of the
following states: “inbound,” “outbound,” “shifting,” “area passing,” “abnormal status,” or “drifting.”
Figure 8 shows the classification knowledge expressed in a decision tree built with the help of domain
experts, i.e., VTS operators.
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The pilot embarkation context module classifies the pilotage context of a vessel into one of the
following states: “pilot board on arrival,” “pilot delayed,” “pilot exception,” “pilot onboard,” or “pilot
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disembarkation.” This classification knowledge has been extracted by knowledge engineering from
domain experts.

Regulation violation state context is determined by checking published regulations against a
vessel’s current state. Its state belongs to one of the following categories: “normal state,” “over
speed,” “entering prohibited area,” “navigation rule violation,” and “navigation rule violation with
over speed.”

3.4. Machine Learning-Based Knowledge Extraction for Information Overload Handling

In maritime traffic monitoring services, VTS operators suffer from information overload induced
by the number of information items tagged for each vessel [26]. Table 1 presents the information items
displayed on the screen of a maritime traffic control system. In conventional information systems, VTS
operators manually choose to display each item of information.

Table 1. Items of the information displayed in a maritime traffic control system.

Category Information Items to Be Displayed

Ship status Position, ship name, course, speed, rate of turn (ROT), ship type, ship length, ship
width, tonnage, draught, nationality, call sign, MMSI, contact number

Destination Last port, next port, next pier, last pier, estimated arrival time, cargo quantity, agent
information

Collision risk index Collision index, distance, relative bearing, DCPA, TCPA, CPA
Pilot Information Pilot embarkation time, pilot disembarkation time, pilot station, assist tug, pilot name

Regulation violation Regulation violation information

To automatically turn information items on or off on a monitoring screen, we use a machine
learning algorithm that extracts knowledge from a training dataset. Human operators determine the
recognized contexts, as explained in Section 3.3. We collected work histories of VTS operators by
logging their actions concerning display items, along with the associated AIS data, pilot data, and
port management data. In the experiments, the collected raw data have the following structure: the
data above <Displayed Items> is the raw data, and the data below <Displayed Items> indicates the
displayed items according to operator decisions.
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Because operators make decisions based on recognized contexts, we transformed the raw data
into contextual data using the context extraction modules described in Section 3.3.
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To extract knowledge concerning decisions regarding which items of information to display, we
applied the decision tree algorithm C4.5 [27], which extracts a decision tree from a collection of datasets.
The decision tree algorithm organizes a tree-structured classification that concisely and accurately
describes the training data. The algorithm tries to choose attributes that maximize information gain I
(D, a) which is the difference between the average entropy avgE(D, a) of the partitioned results by the
given attribute a and the entropy E(D) of data prior to the partition:

I(D, a) = E(D) − avgE(D, a) (4)

This algorithm is applied to each vessel individually whenever the contextual data changes. Even
if the contextual data of a vessel data remains unchanged, the proposed method is executed at intervals
set by the user (for instance, 10 s in a navigation situation and 30 s in an anchoring situation). Figure 8
shows a snippet of knowledge relating to turning the items of information on a screen on or off to
reduce information overload, as constructed by the C4.5 algorithm.

4. Experiments

To test the proposed method, we applied it to a dataset for the harbor at Yeosu in the Korean
peninsula, as shown in Figure 9. We developed a dataset formulated over six months, containing
4.3 billion AIS messages from vessels visiting the harbor. Five months of data were used for training,
with the remainder used for testing. Using the test dataset, we evaluated the extent to which the
automatic information overload management system matched decisions made by VTS operators. The
collision risk evaluation and pilot embarkation estimation modules were developed to be executed
in a distributed manner. In the experiment, the area considered was relatively small. Therefore,
six processes were executed and communicated via socket communication over two servers. These
processes worked smoothly within the designed time constraints. We classified the vessels into three
categories: inbound vessels for harbor, outbound vessels for harbor, and other vessels like pilot boats,
tug boats, fishing boats which stay in the VTS monitoring area. In order to collect VTS information
control log, we developed the prototype system as shown in Figure 10.
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(c) The control panel used by the operator to adjust the displayed items.

Table 2 presents our experimental results. In the experiments, the numbers of information items
displayed by VTS operators were used as the reference, and they were compared to the numbers
of information items displayed using a previous method (a rule-based information provisioning
model) [8] and the numbers of information items displayed using the proposed machine learning-based
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model. The performance of the proposed method was measured by the relative difference ratio (RDR)
defined as follows:

RDR =
NIM−NIV

NIV
× 100 (5)

here NIM indicates the number of information items displayed by the model and NIV is the number
of information items displayed by the VTS operators. The objective of this work is to reduce the
information overload of VTS operators by selecting automatically the information items to be displayed
as if VTS operators do. The smaller the absolute value of RDR, the better the performance of the model.

Table 2. Result of experiments.

Information
Category

Monitoring Group
Number of

Information Items
Displayed by VTS

Operators

Number of Information Items Displayed by the
Models (RDR)

Rule-Based Information
Provisioning Model [8] Proposed Method

Vessel Status
Inbound Vessel 25,875 24,502 (H5.3%) 24,731 (H4.4%)

Outbound Vessel 27,164 26,340 (H3.0%) 26,684 (H1.8%)
Other Vessel 18,635 10,414 (H44.1%) 13,667 (H26.7%)

Destination
Inbound Vessel 4934 3779 (H23.4%) 4648 (H5.8%)

Outbound Vessel 4555 3631 (H20.3%) 4122 (H9.5%)

Collision Risk
Index

Inbound Vessel 2524 2421 (H4.1%) 2402 (H4.8%)
Outbound Vessel 2423 2345 (H3.2%) 2310 (H4.7%)

Other Vessel 5148 2341 (H54.5%) 3651 (H29.1%)

Pilot Information
Pilot Boarding 4876 2793 (H42.7%) 3187 (H34.6%)

Pilot Discharging 2190 1898 (H13.3%) 1872 (H14.5%)

Regulation
Violations

Over speed 1267 1208 (H4.7%) 1247 (H1.6%)
Violations of

Navigation Rules 954 655 (H31.3%) 926 (H2.9%)

Total 100,545 82,327 (H18.1%) 89,447 (H11.0%)

Analysis of Vessel Status Information Selection: VTS operators hide most information items on their
display when a vessel arrives at the harbor. They show up important information items on their
display when a vessel starts out outbound navigation from the harbor. Both the rule-based information
provisioning system (RIPS) and the trained model by the proposed method (TM) detect the arrivals
and the departures of vessels by their GPS data and speed. Both methods showed good performance
for inbound and outbound vessels. TM is quite good as much as VTS operators. For the vessels of
the other vessels category, their traffic patterns are not stationary because their speeds and courses
are affected by their tasks and neighboring traffic conditions. This makes it difficult to extract the
solid patterns for the other vessels category. TM did not display about 26.7% of the information items
selected by VTS operators whereas RIPS did not display about 44.1% of them. It means that TM has
made an improvement of 17.4% point over RIPS.

Analysis of Destination Information Selection: For the inbound vessels, TM outperformed RIPS by 17.8%
point. For the outbound vessels, TM outperforms RIPS by 10.8% point. The vessels in the other vessels
category have no destination information item in their AIS data. Hence there are no experiment results
for the category in Table 2.

Analysis of Collision Risk Index: For the inbound vessels, RIPS displayed 4.1% point less information
items than VTS operators whereas TM displayed 4.8% point less information items than VTS operators.
For the outbound vessels, both RIPS and TM displayed a smaller number of information items than
VTS operators by 3.2% point and 4.7% point, respectively. On the other hand, for the other vessels
category, both methods showed much lesser number of information items than VTS operators while
TM made 25.4% point improvement over RIPS. Vessels in the category move in the monitoring area in
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a somewhat unexpected manner. This makes it hard to construct manually the rules for displaying
information items and for the employed machine learning technique to find sufficiently reliable rules.

Analysis of Pilot Information Selection: VTS operators pay more attention to pilot boarding area rather
than pilot discharging area because pilots board on the vessels from a pilot boat on the pilot boarding
area. Due to complicated traffic patterns in the pilot boarding area, the VTS operators display many
information items whereas both RIPS and TM have missed considerable amount of information items
by 42.7% point and 34.6% point, respectively. Both methods seem not to be sufficiently excellent to
capture the knowledge of VTS operators. For pilot discharging area, the performance of RIPS was
better than that of TM. By the way, VTS operators usually pay less attention to pilot discharging
area than pilot boarding area. It is more important to increase the performance for pilot boarding
information items rather than that for pilot discharging ones.

Analysis of Regulation Violations Information Selection: For the over speed situations, it is clear what VTS
operators look at. Both RIPS and TM showed good performance. For the navigation rules violations
situations, however, there are various factors for VTS operators to take into account depending on the
vessel encounter situations. TM showed big improvement over RIPS on the navigation rules violations
situation by 28.4% point.

For the test data of size 82.327, the TM model constructed by the proposed method showed
the performance of RDR 11.0%, while RIPS showed the performance of RDR 18.1%. RIPS was
constructed by questionnaire-based knowledge engineering for VTS operators. The experiments
showed that the proposed machine learning-based method outperforms the questionnaire-based
knowledge engineering approach in the VTS information overload problem.

Even though the proposed method enables to get an improved model over the knowledge
engineering approach, there is still some margin for improvement. While our method builds a single
decision tree model, there have been reports that an ensemble of such decision trees may make an
additional improvement. We expect such ensemble-based approach to build an improvement model. In
the experiments, we used a training dataset of 5 months, and hence, it is expected model improvement
can be achieved by using a training dataset over a longer period. The proposed method trains a
model with a training dataset of a specific VTS monitoring area. Therefore, the trained model might as
well reflect regional factors such as passage characteristics, vessel traffic, geographic characteristics,
and so on. It means that a trained model for a VTS monitoring area may not work well for other
VTS monitoring area. This machine learning approach requires to build its own model for each VTS
monitoring area with its training dataset.

5. Conclusions

Information overload is a critical concern in traffic monitoring services, where conditions can
change rapidly. The manual control of information overload sometimes requires extra work to extract
information that helps decision making. Monitoring systems must provide services in real time. This
additional filtering work distracts operators from their primary task of ensuring the safety of vessels
at sea.

In this study, we propose a system architecture for the adaptive visualization of monitoring
services, which will automatically mitigate information overload on operators. The architecture
consists of three layers. The bottom layer is the data source layer, which collects relevant data from
multiple sources. The middle layer is the context extraction layer, which performs complicated
operations to extract information supporting decision making. In monitoring services with strict
time constraints, a parallel distributed processing architecture for Geohash-based partitions over the
monitoring area can be successfully applied through scalability. We demonstrated the applicability of
the proposed method within a maritime traffic control system. The top layer is the decision-making
layer, which selects information items for display based on the states of all entities in the control area at



Sensors 2019, 19, 5273 18 of 19

the time. Information overload in monitoring services is handled by operators. A promising strategy
for selecting which information to display is to mimic procedures adopted by field experts.

The proposed system architecture for adaptive visualization can be applied to any monitoring
service system with moving entities. The distributed parallel processing strategy for extracting
intermediate results is particularly useful when a monitoring system has strict time constraints.
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