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Abstract: Quantum Cloud Computing is the technology which has the capability to shape the
future of computing. In “Platform as a Service (PaaS)” type of cloud computing, the development
environment is delivered as a service. In this paper, a multi-user broadcast protocol in network is
developed with the mode of one master and N slaves together with a sequence of single photons.
It can be applied to a multi-node network, in which a single photon sequence can be sent to all the
slave nodes simultaneously. In broadcast communication networks, these single photons encode
classical information directly through noisy quantum communication channels. The results show
that this protocol can realize the secret key generation and sharing of multiple nodes. The protocol
we propose is also proved to be unconditionally secure in theory, which indicates its feasibility in
theoretical application.

Keywords: Quantum Cloud Platform; phase-covariant cloning; Quantum Cloning Machine; multi-user
broadcast; Platform as a Service

1. Introduction

The interest in quantum cloud computing (see [1]) has really taken off in the past few years, but,
in the future, quantum computers will be quite expensive in nature and will not be available to every
one. To solve this problem, a basic idea of cloud computing, which migrates the processing power
from customer’s computer to remote Internet servers, is put forward. One of the service models on
quantum cloud computing, “Platform as a Service” [2] is proposed for supporting online development
environment. Multi-user broadcast, similar to multicast, can be used on cloud platform to communicate
between router and users.

Multicast has many applications such as access to business information dissemination, distributed
databases, distance teleconferencing, and network learning. Multi-user broadcast protocol can increase
quantum network efficiency and conserve its resources. A sender, Alice, wants to send some confidential
information to receivers, Bob brothers. They must multicast communicating messages, on the basis
of high enough confidentiality and legitimacy of information. As an applied system, its safety is very
important.

A simple communication mode is one to one, such as the BB84 protocol [3]. Multiparty
communication [4–6] has drawn much attention. Matsumoto [7] proposed a quantum-key-distribution
protocol that could enable three parties to agree at once on a shared common random bit string in the
presence of an eavesdropper without the use of entanglement, which might not be directly applied
to the one-to-many multicast communication. Yan [8] proposed a quantum secret sharing protocol
between multiparty m members in Group 1 and multiparty n members in Group 2 using a sequence
of single photons. Another extension of the theory of various Quantum Cloning Machines (QCM)
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protocols [9–14] has been designed and their applications and implementations have been studied,
both theoretically and experimentally. The research of quantum cloning and deep application are
continuously developing. In our research, we use optimal one to M phase-covariant QCM to implement
multi-user broadcast protocol. Theoretically, these QCM, which provide the most dangerous and
efficient attack for the BB84 protocol, can be used to multicast message in an optimal fidelity.

The rest of this paper is organized as follows. We show a summary of relevant results concerning
multicast addresses and quantum cloning in Section 2. In Section 3, we present multi-user broadcast
protocol based on quantum cloning. In Section 4, we analyze optimal fidelity, throughput efficiency
and security. Finally, we present our conclusions.

2. Overview

2.1. Multicast Addresses

There are one source and a group of destinations in multicast communication protocol. Figure 1
shows the simple multicast communication network, which depicts a set of quantum network nodes.
The node of quantum network is a source sub of quantum data that must be delivered to a group G1 of
quantum network nodes, F1, F2, ..., Fi, ..., FM, respectively. There is more than one quantum network
node, but the group does not contain all possible quantum network nodes. This relationship is one
to many.

Figure 1. The simple multicast communication network.

The multicast address is a destination address for a group of quantum network nodes that have
joined a multicast group, which is a great help to classical communication of quantum network
communication protocol. A packet that uses a multicast address as a destination can reach all members
of the group unless there are some filtering restrictions by the quantum network node. It only discusses
the multicast addresses in the network layer, in particular the multicast addresses used in the IPv4
protocol. Multicast addresses for IPv6 can hardly even be touched. In TCP/IP protocol suites, Class D
IP addresses are used as multicast addresses. The range of Class D addresses is 224.0.0.0–239.255.255.255,
include 28 variable bits, 228 (more than 268 million) multicast groups. Quantum network nodes may be
permanent or transient. The former refers to the fact that the group has a permanently assigned address,
rather than that members are permanently assigned to the group. The latter refers to the groups which
do not have a permanent assignment to unreserved address.

2.2. Phase-Covariant Quantum Cloning

The no-cloning theorem [15] states that it is impossible to build a quantum copying machine
that would perfectly copy arbitrary quantum states. However, we can try to clone a quantum state
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approximately with the optimal fidelity, or instead, we can try to clone it perfectly with the largest
probability. Thus, various quantum cloning machines have been designed for different quantum
information protocols. Some well-known quantum cloning machines include universal quantum
cloning machine, phase-covariant cloning machine, the asymmetric quantum cloning machine, and the
probabilistic quantum cloning machine. For instance, a cloning machine that achieves equal fidelity
for every state is called a universal quantum cloning machine (UQCM). This problem is equivalent
to distributing information to different receivers, and it is natural to require the performance is the
same for every input state, since we do not have any specific information about the input state ahead.
According to no-cloning theorem, it is expected that the original input state will be destroyed and
become as one of the output copies. Because of the different types of copies, there are symmetric and
asymmetric UQCMs. In the past years, much progress has been made in studying quantum cloning
machines and their applications and implementations, both theoretically and experimentally. More
details about quantum cloning are proposed in [16–18].

Here, we mainly discuss the phase-covariant quantum cloning, which has developed on the basis
of universal quantum cloning and can produce equally good copies for all input states that lie on the
equator of the Bloch sphere. The quantum state

|ψ〉 = 1√
2
(|0〉+ eiϕ |1〉), (1)

where ϕ ∈ [0, 2π) is an arbitrary phase parameter, is often used as the input qubit of the phase-covariant
QCM. For instance, the optimal 1→ 2 phase-covariant cloning transformation takes the form [19]

|0〉A |0〉B |0〉C →
√

1
2
(|0〉B |00〉AC + |1〉B |χ〉AC) = |φ0〉ABC ,

|1〉A |0〉B |0〉C →
√

1
2
(|1〉B |11〉AC + |0〉B |χ〉AC) = |φ1〉ABC , (2)

where |χ〉 = 1/
√

2(|10〉+ |01〉), A is the initial state of the cloning machine, B is an ancilla state of the
system, and C is the blank state. The optimal fidelity of phase-covariant QCM is F = 1/2 + 1/

√
8 ≈

0.85, which is higher than the fidelity (F ≈ 0.83) of UQCM.
Then, considering the optimal 1→ M phase-covariant QCM, one of the cloning transformations is

|ψ〉 ⊗
(
|R〉⊗M−1

)
⊗ |M〉

U1,M→ |ψ〉⊗M ⊗ |M(ψ)〉, (3)

where |ψ〉 is the state of Hilbert space H, |R〉 is a blank state, and |M〉 is the state of auxiliary system
(ancilla). The U1,M is described by the following unitary operator[20]:

|φ0〉AC = U1,M |0〉 ⊗ |R〉 =
M−1

∑
j=0

αj|(M− j)0, j1〉 ⊗ |Rj〉,

|φ1〉AC = U1,M |1〉 ⊗ |R〉 =
M−1

∑
j=0

αM−1−j|(M− 1− j)0, (j + 1)1〉 ⊗ |Rj〉,
(4)

in which αj =
√

2(M− j)/M(M + 1), |R〉 is the initial state of the copy machine and the M− 1 blank
copies, and

∣∣Rj
〉
≡ |(M− 1− j)0, 1j〉 are orthogonal normalized internal states of the QCM. With the

help of an ancilla qubit, the optimal fidelity of 1 → M phase-covariant QCM for equatorial qubits
takes the form[18]

F1,M =

{
1/2 +

√
M(M + 2)/4M, M is even,

1/2 + (M + 1)/4M, M is odd,
(5)

which is the decreasing function for M and is better than the fidelity of UQCM via numerical computation.
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3. Multi-User Broadcast Protocol Based on QCM

3.1. Neighbor Quantum Node Discovery Process

The quantum multicast router starts to discover its neighbors with probe packet messages, which
contain the important informations: a list of addresses for neighbors from which the originating router
has received probe packet messages, a generation ID used to detect changes in status of neighbors, and
so on. After receiving the probe packet messages, the quantum multicast router records the address of
the original router and the interface of received messages.

3.2. Neighbor Quantum Node Pruning Process

Probe packet messages are also used as keepalives when a neighbor has been discovered, and
then the neighbor node send messages to the quantum multicast router within strict time intervals.
If the quantum multicast router does not receive messages from this node after several probes within
a specified period of time, the neighbor node will be declared dead. We call this step a neighbor
quantum node pruning process, and this node is considered undependable at this time. For example,
the pruning process of neighbor node FM−1 is shown in Figure 2. The quantum multicast router
must store the states of all nodes after each pruning process. If necessary, nodes and the router need
to repeatedly send and receive messages in this process as many times as possible to complete the
pruning process of quantum nodes.

Figure 2. Pruning process of an undependable neighbor quantum node.

3.3. Group Routing Tables Building Process

The quantum multicast router needs to collect members’ information and share it with other
multicast routers, and then construct group routing table containing group members’ information.
The graph of quantum nodes and links is called tree, so the quantum multicast router can be regarded
as the root node. All other nodes Fi(i = 1, 2, · · · , M) can only be reached from the root node through a
single path. Multicast communication means that a sender sends messages to a group of recipients
who are members of the same group. Since a copy of the message is sent by the sender and then copied
and forwarded by the router, each multicast router needs to know the list of groups.

The group routing tables carry four core data: the quantum nodes identity, the list of links,
a sequence number, and the age. The quantum nodes identity and the list of links are needed to make
the quantum topology. The sequence number distinguishes new routing tables from old ones. The age
prevents old routing tables from remaining in the domain for a long time. When the topology of
a domain changes, any quantum nodes in the domain are quickly notified by the router to update
their topology.
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3.4. Multicast Date Packet Communication on Quantum Cloning Process

We apply the phase-covariant cloning machine to multicast communication (in Figure 3). For each
input single photons, we use a unitary transformation matrix A to prepare the input state on the
equator of the Bloch sphere:

A =
1√
2

(
1 e−iϕ

eiϕ −1

)
. (6)

The quantum multicast router encodes these strings as a block of (4n + δ), and sends |Ψ0〉 =
∑4n+δ

i=0 |ψi〉 to Fi(i = 1, 2, · · · , M) by quantum cloning via the quantum communication channel.
For simplicity, we assume that the quantum channel is noiseless. The quantum multicast router
transmits |Ψ0〉 through quantum channel to construct QCM.

Figure 3. Multicast quantum cloning process.

The quantum multicast router acts on an input state |ψ〉 as follows:

4n+δ

∑
i=0

U1,M |ψi〉 ⊗ |R〉 =
4n+δ

∑
i=0

M−1

∑
j=0

αM−1−j|(M− 1− j)ψi, (j + 1)ψ⊥i 〉 ⊗ |Rj (ψi)〉

=
4n+δ

∑
i=0

M−1

∑
j=0

αM−1−j|(M− 1− j)ψi, (j + 1)ψ⊥i 〉 ⊗ |(M− 1− j)ψ∗i , (j + 1) (ψ∗i )
⊥〉,

(7)

where |Rj (ψi)〉 represents the internal state of QCM with |Rj (ψi)〉⊥|Rk (ψi)〉 for all j 6= k, and the
equatorial qubits take the forms

|ψi〉 =
1√
2
(|0〉+ eiϕ |1〉),

|ψ∗i 〉 =
1√
2
(|0〉+ e−iϕ |1〉),∣∣∣ψ⊥i 〉 =

1√
2
(e−iϕ |0〉 − |1〉),∣∣∣(ψ∗i )⊥〉 =

1√
2
(eiϕ |0〉 − |1〉).

(8)

Quantum correlation is the key concept for the quantum computation, quantum processing, and
quantum information. Entanglement is a special case of quantum correlation. It is a property of
correlations between two or more quantum systems. This nonlocal nature of entanglement has also
been identified as an essential resource for many novel tasks. The preparation of entangled states in
different physical systems has been widely studied and constitutes an essential step in many quantum
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information processing and transmission tasks [21–23]. For Alice and M Bob brothers, we assume that
they all share a multi-particle entangled state |Ω〉, and a choice of |Ω〉 with these properties in the
following M-qubit state:

|Ω〉 = 1√
2
(|0〉 ⊗ |φ0〉AC + |1〉 ⊗ |φ1〉AC), (9)

where |φ0〉AC and |φ1〉AC are the optimal cloning states given by Equation (4), and |Ω〉 turns into

|Ω〉 = 1√
2
(|0〉

M−1
∑

j=0
αj|(M− j)0, j1〉 ⊗ |(M− 1− j)0, j1〉+ |1〉

M−1
∑

j=0
αj |j0, (M− j)1〉 ⊗ |j0, (M− 1− j)1〉). (10)

The tenser product of |Ω〉 with the equator qubits |Ψ0〉 held by the (2M + 4n + δ + 1)-qubit state
of Alice. Alice performs a joint measurement of the system |Ψ0〉 ⊗ |Ω〉 by using Bell measurement [24],
where the four Bell states are defined as usual as the following

|φ±〉 =
1√
2
(|00〉 ± |11〉) ,

|ψ±〉 =
1√
2
(|01〉 ± |10〉) .

(11)

Once one of the Bell states is obtained, we can recover the correct state by exploiting the
symmetries of states |φ0〉AC and |φ1〉AC under the unitary transformation. Consider three Pauli
matrices; the unitary transformation can be expressed as

σ0 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
. (12)

The quantum multicast router measures Bell state of A, and the router and each nodes can
transmit qubit BC in the following four forms as ∑4n+δ

i=0 (|0〉 ± eiϕ |1〉)/
√

2 or ∑4n+δ
i=0 (|1〉 ± eiϕ |0〉)/

√
2.

When ∑4n+δ
i=0 (|1〉 ± eiϕ |0〉)/

√
2 is obtained, the unitary transformation is σx(σxσz) corresponding

to the symbol “+”(“–”) in the equations. When ∑4n+δ
i=0 (|0〉 ± eiϕ |1〉)/

√
2 is obtained, the unitary

transformation is σ0(σz) corresponding to the symbol “+”(“–”). After these operations, the secret key is
transmitted to the server, and the quantum multicast router and each node releases part of the quantum
information. If the test is correct, the communication station (STA) is a legitimate user. Otherwise,
there must be illegal eavesdroppers, which we discuss in the next section. In this process, quantum
multicast router transmits classical information through Ethernet addresses. The main problem below
is to change the three right-most bytes of the multicast IP address to hexadecimal. If the left-most
number is greater than or equal to 8, subtract 8 from the left-most number. After the system gets
the result, add the result to the starting Ethernet multicast address. Thus, the multicast date packet
communication on quantum cloning process has completed successfully.

3.5. Selective Repeating Process

In this protocol model, the multicast router node acts as a key management system and
authenticates the communication users in communication. The multicast router manages the security
key for the communication users and authenticates the identity of users by arbitrating the quantum
signature using the shared quantum state [25]. In the process of communication, the multicast router
node conducts authentication occasionally to prevent the user from being attacked.

Ideally, we assume that each photon emission is perfect. If the information transmission fails
due to channel loss or eavesdropping, the multicast router will return a negative acknowledgment
(NAK) to the nodes. After receiving the NAK, the node will start the selective repeating process, thus
ensuring the security and reliability of the communication. The strings are transmitted continuously
as a block of (4n + δ), the quantum multicast router resends (or repeats) only those codewords that are
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negatively acknowledged. Since the strings must be delivered to the user in correct order, a buffer must
be provided at the receiver to store the error-free qubits of received qubits after error detection. When
the first negatively acknowledged strings are successfully received, the receiver releases the error-free
qubits in consecutive order until the next erroneously received qubits are encountered. Sufficient
qubits receiver buffers must be provided, otherwise the qubits buffers may overflow and quantum
data may be lost.

4. Analysis

4.1. Analysis of Quantum Bit Error Rate and Secure Key Rate

The Quantum Bit Error Rate (QBER) is defined as the number of wrong bits to the total number
of received bits and is normally in the order of a few percent. In the following, we use it expressed as a
function of rates:

QBER ≈ Rerror

Rsi f t
, (13)

where the sifted key corresponds to the cases in which Alice and Bob made compatible choices of
bases, hence its rate is half that of the raw key. In a practical quantum key distribution system, e.g. the
BB84 protocol, after attenuation and sifting, the sifted key generation rate is given by [26]

Rsi f t =
1
2

q · frep · µ · tlink · η. (14)

where the factor q (q ≤ 1, typically 1 or 1
2 ) must be introduced for some phase-coding setups in order

to correct for noninterfering path combinations, frep is the pulse rate, µ is the mean number of photon
per pulse, tlink is the probability of a photon to arrive at the analyzer, and η is the probability of the
photon being detected.

The secure key rate in our protocol is the quantum communication rate of the whole system. This
depends on the rate of key distribution when each root node communicates with its children, that is
the rate of the sifted key generation.

4.2. Analysis of Optimal Fidelity

The fidelity is widely used within the quantum computation and quantum information
community, and we discuss the quantum multi-user broadcast protocol for the “Platform as a
Service” model. In our study, the algorithm discussed above is sufficient to complete each step
of the computation with higher fidelity than 1→ M phase-covariant QCM by Equation (5).

The quantum multicast router obtains measurement outcome for |Ψ0〉out, and publicly announces
the results. S1, S2, ..., Si, ..., SN(N < M) carry out the unitary transformation σ separately on
their qubits. The final states of qubits for Si(i = 1, 2, · · · , N) equal to the original state |Ψ0〉 =

1√
2
(|0〉+ eiϕ |1〉). We now wish that the optimal phase-covariant cloning machine can be achieved. Let

us see fidelity, which is found to take the form

F =
1
2
[1 + η(1, N)] =

{
1/2 +

√
N(N + 2)/4N, N is even,

1/2 + (N + 1)/4N, N is odd,
(15)

where

η(1, N) =
N−1

∑
j=0

αjαN−1−j
Cj

N−1√
Cj

NCj+1
N

. (16)
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4.3. Analysis of Throughput Efficiency

Next, we discuss the throughput efficiency which is defined as the ratio of the average number of
information digits successfully accepted by the receiver per unit of time to the total number of digits
that could be transmitted per unit of time. Suppose the simple case of the communication protocol,
and the sender continuously sends codewords to the receiver and only resends those negatively
acknowledged codewords. First, three probabilities are defined: Pc, Pd, and Pe, where Pc + Pd + Pe = 1.
Pc is the probability of receiving no error message, Pd is the probability of receiving detectable error
pattern, and Pe is the probability of receiving undetectable error pattern. Then, the probability of
receiving vector being accepted by the receiver is P = Pc + Pe.

The average number of retransmissions (including original transmissions) for a codeword to be
successfully received by the receiver is

tAV = 1 · P + 2 · P · (1− P) + · · ·+ l · P · (1− P)l−1 + · · · = 1
P

(17)

Finally, the throughput of sending n codewords successfully is T =
n

tAV
= nP. Thus, the

throughput efficiency depends on the channel error rate only.

4.4. Analysis of Security under Typical Attack

The Security of this broadcast protocol depends on every process of communication between one
source and a group of destinations. The protocol is divided into five parts as neighbor quantum node
discovery process, neighbor quantum node pruning process, group routing tables building process,
multicast date packet communication on quantum cloning process, and selective repeating process.
Conventional data communication is used in processing classical information, and cleartext can be
transferred through quantum channel. There is no information revealed. As for the vector attack,
according to quantum no-cloning theorem, the attacker cannot accurately copy quantum nodes for
DOS attack. If the attacker generates illegal users to prevent information transmission, it will be found
in the authentication process by the key management system and the illegal communication will be
terminated.

4.4.1. Attack via Direct Measurement

One can analyze the security of multicast data packet communication via direct measurement.
Fi(i = 1, 2, · · · , M) receives the random (4n + δ) qubits, who measures each qubits in the basis σx

or σz at random. Si(i = 1, 2, · · · , N) receives ε(|Ψ0〉 〈Ψ0|), where ε describes the quantum operation
due to the combined effect of the channel and eavesdropper’s (Eve) actions. Si(i = 1, 2, · · · , N) then
publicly announces this fact. For now, each of the N + 1 nodes has its own states described by separate
density matrices. Note that, at this point, since S0 did not reveal b, Eve has no knowledge of what
basis she should have measured to eavesdrop in the communication. At best, she can only guess.
If her guess were wrong, then she would have disturbed the state received by Si(i = 1, 2, · · · , N).
Moreover, whereas in reality the noise ε may be partially due to the environment in addition to Eve’s
eavesdropping, it does not help Eve to have complete control over the channel. Thus, Eve is entirely
responsible for ε.

When the quantum multicast router first receives a multicast packet from S1, the packet check
is performed, using the routing table to verify that the packet arrived on the right interface for the
packet’s source. If the packet arrived on any other interface, drop it.
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4.4.2. Attack via Ancilla Particle

We suppose Eve intercepts the particle sent by Alice, which will be entangled with an ancilla
|e〉 prepared by Eve. The unitary transformation that is implemented on Alice’s particle E does not
change the state of single photons [27].

E⊗ |0e〉 = a |0e00〉+ b |1e01〉 ,

E⊗ |1e〉 = b′ |0e00〉+ a′ |1e01〉 ,

E⊗ |+e〉 = 1
2
[|+〉 (a |e00〉+ b |e01〉+ b′ |e10〉+ a′ |e11〉) + |−〉 (a |e00〉 − b |e01〉+ b′ |e10〉 − a′ |e11〉],

E⊗ |−e〉 = 1
2
[|+〉 (a |e00〉+ b |e01〉 − b′ |e10〉 − a′ |e11〉) + |−〉 (a |e00〉 − b |e01〉 − b′ |e10〉+ a′ |e11〉],

(18)

where the unitary transformation E can be written as

E =

(
a b′

b a′

)
, (19)

where |a|2 = |a′|2, |b|2 = |b′|2, and |a|2 + |b|2 = 1. Thus, the probability of Eve being detected is

Pe = |b|2 = 1− |a|2 =
∣∣b′∣∣2 = 1−

∣∣a′∣∣2 , (20)

the eavesdropping brings a certain amount of error rate, and it must be detected.
According to the information theory, the amount of maximum accessible information in quantum

system is limited by Holevo limit:

χ(ψ) = S(ψ)−∑
i

piS(ψi), (21)

where S(ψ) is the von Neumann entropy of state ψ, ψ = ∑i piψi, and ψi is a state prepared in
probability pi. If communicating parties prepare states |0〉, |1〉, |+〉 and |−〉, then the information
entropy H(p) = −∑i pilog2 pi = 2. Thus the von Neumann entropy of Eve [27] is S(ψ′) = 0 < H(P).
It seems that Eve cannot obtain the complete information of photons in our protocol.

5. Conclusions

We describe a multi-user broadcast protocol in network for the one-to-many multicast
communication network including the master and N slave mode using a sequence of single photons.
This protocol might be useful in practice because it guarantees multicast information robustness. In the
one-to-many multicast communication mode, S0 creates (4n+ δ) random bits and multicasts information
to Si(i = 1, 2, · · · , N). S0 and Si publicly announce the selection of the random measurement basis. There
are at least 2n bits left, and if not, the protocol will be aborted. Meanwhile, the Calderbank–Shor–Steane
(CSS) coding theory can be employed for correcting the errors introduced by the noisy communication
channel. Therefore, the N + 1 nodes compute the related information, and finally obtains the correct key.
The commercial success of quantum key distribution for the generation of a private shared secret key
motivates this investigation. The protocol is also proved to be unconditionally secure in theory, which
indicates its feasibility in theoretical application. For future study, it may be significant to investigate the
performance of our protocol for encoding secret classical messages.

In our proposed protocol, the photon is the carrier of information. Quantum information is encoded
in the flying photon bit, and the transmit power is related to the performance of the transmitter module.
In practical quantum communication, the transmission distance is limited due to the imperfection of
the transmitter module and the detection module, which is a general problem in all practical quantum
communication systems.
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This protocol mainly establishes the quantum multi-user communication model without considering
channel noise. In the practical noisy channel, we can use the quantum error-correction code to correct
the error generated in the transmission process. Commonly used quantum error-correction codes are
Quantum Stabilizer Code (QSC) and Quantum Low-Density Party-Check Code (QLDPC) [28].

One thing to point out is that we concentrate only on closed systems where the decoherence and
dissipations are neglected. It is well-known that in open quantum systems the Hamilton operator is
non-Hermitian [29,30]. The dynamical behavior of open quantum systems plays a key role in many
applications of quantum mechanics, such as the environment-induced decay of quantum coherence,
relaxation in many-body systems, and applications in condensed matter theory, quantum transport,
quantum chemistry, and quantum information. If the decoherence and dissipation of the open systems
are considered, the protocol based on quantum error correction coding needs to be studied in the
future in more detail.
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