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Abstract: Primary aluminum production is an uninterrupted and complex process that must operate
in a closed loop, hindering possibilities for experiments to improve production. In this sense, it
is important to have ways to simulate this process computationally without acting directly on the
plant, since such direct intervention could be dangerous, expensive, and time-consuming. This
problem is addressed in this paper by combining real data, the artificial neural network technique,
and clustering methods to create soft sensors to estimate the temperature, the aluminum fluoride
percentage in the electrolytic bath, and the level of metal of aluminum reduction cells (pots). An
innovative strategy is used to split the entire dataset by section and lifespan of pots with automatic
clustering for soft sensors. The soft sensors created by this methodology have small estimation mean
squared error with high generalization power. Results demonstrate the effectiveness and feasibility
of the proposed approach to soft sensors in the aluminum industry that may improve process control
and save resources.

Keywords: primary aluminum production; soft sensor; neural network; real data; estimation;
clustering methods

1. Introduction

Although pure aluminum (Al) is one of nature’s most abundant elements, it is extremely difficult
to extract, and extraction is not possible without the occurrence of some chemical reaction. Al is
always attached to some other chemical element in the form of salts or oxides, which makes separation
necessary. In the 1880s, the young students Charles Hall and Paul Héroult used electrolysis to separate
the Al of oxygen from alumina (Al2O3) grains into salts fluxes such as cryolite (Na3AlF6). This is the
Hall–Héroult process [1,2] by which the primary aluminum industries perform can obtain Al up to
99.9% purity. Basically, this is the separation of alumina into alumina and oxygen, but the process
also requires the participation of other elements such as flux salts, gases, and chemical additives to
maintain process stability, which makes the process more complex [1,3].
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For complex industrial processes, mathematical modeling is also a complex task, in such a way that
representing a process in a completely analytical way becomes impracticable. The use of approximate
and hybrid representations produces very satisfactory results, although they are not scalable from a
certain point [4]. As the scientific improvement of modeling and identification techniques [5], this task
has been dealt with more easily and in various areas of knowledge, although the great difficulty of
performing dynamic modeling of nonlinear processes remains.

This process of modeling and identification of dynamic nonlinear systems has advanced
considerably with the use of artificial intelligence and machine learning techniques, which have
been applied in the last few decades with excellent results [6–10]. The success of using these
“intelligent” paradigms in modeling dynamic systems is due to the little knowledge required to
perform modeling (only a reasonable amount of data is required) compared to other forms of analytical
modeling, and also because they are naturally nonlinear models. Among these “intelligent” techniques
used for nonlinear dynamic modeling [11,12], one of the most used is artificial neural networks. The
use of artificial intelligence in dynamic modeling based on data is sometimes referred to as soft sensors.

Soft sensors are computationally implemented, data-driven models that provide online estimates
of process variables that cannot be continuously and/or reliably measured online for technological
and/or economic reasons [4,13]. These techniques use process variables that are measured and recorded
reliably online using available physical sensors or offline through laboratory analysis results.

Data-driven soft sensors have wide success in the industry, because of its practicability, robustness,
and flexibility to be developed and applied to a wide range of processes, in addition to their
independence from a process mathematical model [14,15]. There are a number of methods for
implementing flexible data-driven sensors for industrial processes. Some of the most commonly
used linear methods are multi-statistic regression algorithms, such as principal component analysis
(PCA) [16–19] and partial least squares (PLS) [20–23]. These methods have more practical applications
because of their simplicity and can work with some invariance in time; however, they have some
disadvantages because they are prone to errors in the presence of data impurities (missing values and
outliers) and are inadequate to deal with nonlinearities.

Nonlinear processes are usually modeled with nonlinear structures such as artificial neural
networks (ANN) [24–28], neuro-fuzzy [29–31], Gaussian process regression support vectors [32–34],
and support vector machines [35–37]. The most common types of ANN are multi-layer perceptron
(MLP) and radial basis function networks (RBFN). The literature has shown that ANN is especially
suitable for implementation of soft sensors, and these have indeed been used [38–47]. More recently,
deep learning has been used to create soft sensors also successfully [48–51].

Due to the complexity of the primary aluminum production process, it is interesting to use
data-driven soft sensors to measure the most important variables of this process, since it is a nonlinear,
time-variant, and distributed-parameter dynamic process. Moreover, since the electrolytic process of
oxidized alumina reduction is very aggressive, it is not possible to have temperature measurements
in real time, since the chemical bath corrodes the thermocouple (usually a thermocouple can do 50
measurements every 24 h).

ANNs have been used as a powerful artificial intelligence technique to construct models based on
data in the Al industry [52–55]. In this way, ANNs are also widely used to implement soft sensors. In
the Al smelting process, ANN has been used in a minor way to simulate and model processes [56–58],
while in parallel other techniques like clustering help to identify pots with common behaviors to
enhance the knowledge derived from the data [59]. In major part, mathematical techniques have been
used to create models to emulate the Al production process [60–64].

An industrial Al plant has hundreds of pots working simultaneously, so this feature contributes to
make the production process more complex as a whole, often requiring many human interventions [3].
Methodologically, it is possible to apply neural modeling in one of the following approaches:

• A single ANN for all electrolysis pots; in this approach, the results are barely satisfactory, since it
is very difficult for ANN to capture the behavioral differences of all pots.
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• An ANN for each pot, which might be too complex and difficult to apply, since it is necessary to
tune hundreds of ANNs.

• One ANN for a certain cluster of pots, which present similar behaviors.

This paper describes the process of designing soft sensors using the third methodology, which
could present the best trade-off between complexity and quality of results. The engineering expertise is
useful for determining the key process variables to include, and the ANN technique helps in variable
indirect estimation within electrolytic bath furnace modeling using real data from an Al smelter plant.
This paper’s major contributions are as follows: clustering data by pots section; considering three
different phases of pots, based on lifespan division; and comparing and proposing neural network
estimators as soft sensors to replace manual measurements with automatic. The results show this is
possible, since the models generate estimations with small errors. It is important to highlight ANN
models created are dynamic, because delayed inputs were considered to estimate the current outputs.
Briefly, the flowchart of the proposed method is presented by Figure 1.
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The rest of this work is organized as follows. Section 2 describes the primary Al production
process and describes the layout of the Al smelter concerned in this paper. Section 3 addresses in detail
the design of the ANN-based estimation models. Results and discussions are presented in Section 4.
Finally, Section 5 provides the conclusions.

2. Brief Description of the Primary Aluminum Production Process

Softness, lightness, high thermal conductivity, and high recyclability are important properties of
Al. A wide variety of products are derived from this metal, which has helped it to become the most
frequently consumed nonferrous metal around the world [64]. The primary Al production process is
complex, due to the handling of variables from multiple disciplines, such as electrical, chemical, and
physical [65].

The raw material of Al is alumina. Direct Al extraction from alumina requires a temperature
over 2000 ◦C [66]. The machinery to maintain this high temperature is expensive, and so is the energy
waste under these requirements. From the late nineteenth century, the Hall–Héroult process has been
used as an alternative to produce Al, as it consumes less energy and requires a lower temperature
(about 960 ◦C) [1–3]. To reduce the heat, cryolite is used as an electrolytic bath and several chemical
components are added together with alumina [67].

This process is widely known as Al smelting, which uses electrolysis pots, also named pots or
reduction pots [68]. A pot (Figure 2) consists of a steel shell with a lining of fireclay brick for heat
insulation, which, in turn, is lined with carbon bricks to hold the molten electrolyte. Steel bars carry
the electric current through the insulating bricks into the carbon cathode floor of the pot. Carbon
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anode blocks are hooked onto steel rods and immersed in the electrolyte. Alumina molecules are
dissolved by the heat and decomposed into Al and oxygen (O) by electric current that flows through
the electrolyte [69]. In modern smelters, process-control computers connected to remote sensors
ensure optimal operation of electrolysis pots [70]. Electrolysis furnaces are organized within reduction
rooms—standard Al smelting uses around four reduction rooms and between 900 and 1200 pots in
total, depending on the smelter.
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Figure 2. Example of a pot and its parts.

According to the stoichiometric relation (Equation (1)), alumina is consumed in the production
process together with the solid carbon of the anodes. Theoretically, this consumption is 1.89 kg of
Al2O3 for each 1.00 kg of Al+, whereas 0.33 kg of carbon (C+) produces 1.22 kg of carbon dioxide
(CO2). In practice, typical values are 1.93 kg Al2O3 to 1.00 kg Al+ and between 0.40 and 0.45 kg of C+

to 1.00 kg Al+, with an emission of about 1.50 kg CO2 [69].

2Al2O3 (dissolved) + 3C+ (solid) => 4Al+ (liquid) + 3CO2 (gas). (1)

Several sensors monitor the entire process continuously, acquiring data from the entire plant. Data
are stored and organized in databases, which became a rich patrimony of the plants, as they keep the
historical information on each production pot. This data collection supports the building of automatic
decision-making systems and guides for the engineers [71–74]. Many control systems display the
data acquired in real time for the permanent monitoring of the process. Plant control systems for Al
smelting have two modes of operation [74,75]:

• Automatic control: Data are collected and processed by computers and/or microcontrollers, which
then drive a control action on the plant without direct human intervention. Examples: control of
electrical resistance of the pot by the anode–cathode distance (ACD) using pulse width modulation
(PWM) to drive the lifting/lowering of anodes; and the control of alumina to be added to the
electrolytic bath through mathematical models.

• Manual control: Data are collected through plant floor sensors or manually measured by process
operators, but the calculation of the output is performed by the process engineers, taking into
account mathematical models and their expertise. Examples: thermocouple to measure the
temperature of the pots (Figure 3), percentage of fluoride alumina in the bath (laboratory result),
metal level of the pot, replacement of anodes, and Al tapping from the pot.
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Figure 3. Pot temperature measurement: (a) human operator; and (b) thermocouple connected to
display the temperature value.

The experiments conducted in this paper were derived from a real Brazilian Al smelter, from
which real data were used to generate results. The pots are arranged in four reductions, each of which
has two rooms, and each room has 120 pots, resulting in 960 pots. Figure 4 shows the overall layout of
this factory.
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Electrically, Al reduction pots are connected in series. This connection allows the continuous
electric current (approximately 180 kA) to be the same in all pots. It should be noted that for a room
there are two lines of electricity, each line composed of two sections, which in turn contain 30 pots,
resulting in 32 different sections for the entire smelter. Figure 5 outlines the arrangement of the sections
for reduction I and the first room. This same organization is present in all rooms of the smelter
concerned and these pots’ disposition was used as clusters empirically; each cluster is a section.Sensors 2019, 19, x FOR PEER REVIEW 6 of 32 
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3. Design of Estimation Models

The full database has hundreds of thousands of samples and hundreds of process features
(variables) from 2006 to 2016. The following subsection depicts the preprocessing steps performed in
the original database in order to generate the datasets used in this work.

3.1. Data Extraction, Imputation, and Split

Data extraction considered the entire life of each pot, in other words a lifespan from 1 to 1500 days,
taking into account an average of five years of operation. Table 1 shows all variables available in the
database. Therefore, features selection considered Pearson correlation (R), between input and output,
to rank variables by degree of importance. It is important to know that some variables have a large
number of null values, so they were discarded. R is calculated as:

Rxy =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
, (2)

where n is sample size, xi and yi are the individual sample points indexed with i, and x and y are the
sample averages.

Table 1. All variables available in the database.

Abbreviation Complete Name Unit

%CaO Calcium Oxide Percentage %

%Fe2O3 Iron Oxide Percentage %

%MnO Manganese Dioxide Percentage %

%Na2O Sodium Oxide Percentage %

%P2O5 Phosphorus Pentoxide Percentage %

%SiO2 Silicon Oxide Percentage %

%TiO2 Titanium Dioxide Percentage %

%V2O5 Vanadium Pentoxide Percentage %

%ZnO Zinc Oxide Percentage %

<325 m <325 Mesh %

>100 m >100 Mesh %

>200 m >200 Mesh %
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Table 1. Cont.

Abbreviation Complete Name Unit

CR Friction Index %

CRF Thin Crust %

DA Apparent Density g/cm3

LOI1 Loss on ignition (300–1000 ◦C) %

LOI2 Loss on ignition (110–1000 ◦C) %

LOI3 Loss on ignition (110–300 ◦C) %

SE Specific Surface m2/g

%FE Iron Content in Metal ppm

%Ga Gallium Content %

%Mn Manganese Content %

%Na Sodium Content in Metal %

%Ni Nickel Content %

%P Metal Phosphorus Content ppm

%SI Silicon Content in Metal ppm

%TBase Percentage of Time on Base Feed %

%TChk Check Feed Time Percentage %

%TInic Percentage of Initial Feeding Time %

%TOthers Percentage of Time Other Feeding Modes %

%TOV Percentage of Feeding Over Time %

%TUN Percentage of Feeding Time Under %

%V_ Vanadium Content %

A%1 Feeding (Al2O3) %

ALF Aluminum Fluoride (% in Bath) %

ALF3A Amount of AlF3 Added kg/Misc

ALF3AB AlF3–Base Addition–Total kg/Misc

ALF3ABF AlF3–Base Addition–ABF kg/t Al

ALF3ABFC AlF3–Base Addition–Factor C kg/t Al

ALF3ABN AlF3–Base Addition–Na2O kg/t Al

ALF3ABT AlF3–Base Addition–Total kg/Misc

ALF3ABV AlF3–Base Addition–Life kg/Misc

ALF3Ac Amount of AlF3 Added–Correction kg/Misc

ALF3AE ALF3A–Extra Addition kg/Misc

ALF3Ah Amount of AlF3 Added–Historic kg/Misc

ALF3Am Amount of AlF3 Added–Maintenance kg/Misc

ALF3AR AlF3 Deviation Reference kg/Misc

ALF3ARB ALF3A–[Real–Base] kg/Misc

ALF3AS AlF3–Hopper Balance Correction kg/Misc

ALF3At Amount of AlF3 Added–Trend kg/Misc

ALF3ATS Hopper Balance kg/Misc

ALF3ATSAc Accumulated Hopper Balance kg/Misc
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Table 1. Cont.

Abbreviation Complete Name Unit

ALF3CA AlF3–% AlF3 Correction kg/Misc

ALF3CM AlF3 Quantity–Manual Correction kg/Misc

ALF3CT AlF3–Temperature Correction kg/Misc

ALF3DA AlF3 Added–Cumulative Deviation kg

ALF3DALI AlF3–Accumulated Deviation–Lower Limit kg

ALF3DALS AlF3–Accumulated Deviation–Upper Limit kg

ALF3LC AlF3–Limit Check Correction kg/Misc

ALFca Aluminum Fluoride for CA %

ALFcalc Calculated Aluminum Fluoride %

ALM Feeder Kg

CAF Calcium Fluoride (% in Bath) %

CAF2A Amount of CaF2 Added kg

CAF2CM CaF2 Quantity–Manual Correction kg

CAN Anode Coverage cm

CE Specific Energy Consumption kWh/kg Al

CoLiq Liquid Column cm

CQB-Efetiv Chemical Bath Control—Effectiveness %

DeltaR Resistance Delta uOhm

DeltaT Super Heat ◦C

DeltaT1 Super Heat ◦C

DeltaTM Super Heat Measured ◦C

DeltRCI DeltaR–Instability Calculation uOhm

DesAnodCAR Anode Descent in CAR un

DesAutAnod Automatic Anode Descent un

DifNME Metal Level (Real-Set) cm

DifRMR Rreal-Rset uOhm

DifRSO Rtarget-Rset uOhm

DRPTro Post-Trade Resistance Delta uOhm

EaEnergL Anode Effect (AE)–Net Energy Kwh/EA

EAN Unscheduled Anode Effect EA/d

EAP Scheduled Anode Effect ea/d

EaDurPol AE–Polarization Duration seg/Ea

EaDurPolTot AE–Total Duration of Polarization seg/F/Day

EaVBruta AE–Gross Voltage V/Ea

EaVLiq AE–Liquid Voltage V/Ea

EaVMax AE–Maximum Voltage V

EaVPol AE–Voltage Polarization V/Ea

ECO Current Efficiency %

FAB AlF3 Base Addition kg/Misc
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Table 1. Cont.

Abbreviation Complete Name Unit

FARB Addition (Real + Extra − Base) kg/Misc

IMx Current Intensity kA

IncCTAlim Increment–CTFeed uOhm

IncCTOsc Increment–CTOsc uOhm

IncOp Increment–Operation uOhm

IncOs Increment–Oscillation uOhm

IncTm Increment–Temperature uOhm

IncTr Increment–Anode Exchange uOhm

Na Sodium Content in Metal (PPM) ppm

NA2CO3A Added Amount of Na2CO3 kg

NA2CO3CM Na2CO3 Quantity–Manual Correction kg

NBA Bath Level cm

NBAA Bath Addition Kg

NBAc Bath Control Kg

NBAR Bath Removal Kg

NCicSEA SEA Cycle Number Ciclos/SEA

NEA Total Anode Effect ea/d

NEARecorr Total Recurrent Anode Effect EA/d

NME Metal Level cm

NOV Number of Overs un

NSA Number of Feed Shots un

NTR Number of Tracks -

NumOverUnder Number of Overs Followed by Unders un

PAN Anodic Loss uOhm

PCA Cathodic Loss mV

PCO Cathodic Loss (uOhms) mOhm

PHV Loss Rod Beam uOhm

PreEA Anode Pre-Effect ea/d

PrvEA Anode Effect Prediction ea/d

PUR Metal Purity (% Al) %

QALr Feed Quantity (Real) kg

QALt Feed Quantity (Theoretical) kg

QME Amount of Flushed Metal (Real) ton

RMR Real Resistance uOhm

RS Resistance Setpoint uOhm

RSO Target Resistance uOhm

SetNBA Bath Level Setpoint cm

SetNME Metal Level Setpoint cm

SILO Alf3 Silo Filling Control -

SIM Impossible Anode Effect Suppression %
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Table 1. Cont.

Abbreviation Complete Name Unit

SIMTot Impossible Total Anode Effect Suppression %

SPEA Anode Pre-Suppression ea/d

SPEAIM Impossible Anode Pre-Effect Suppression %

SubAnodCAR CAR Anode Rise un

SubAutAnod Automatic Anode Rise un

SWF Strong Oscillation %

SWT Total Oscillation %

TAS Suspended Feed Time min

TC1 Check Time min

TEA Anode Effect Time min

TMP Bath Temperature ◦C

TMPcat CA Bath Temperature ◦C

TMPLI Bath Temperature–Lower Limit ◦C

TMPLiq Liquid Temperature ◦C

TMPLS Bath Temperature–Upper Limit ◦C

TMT Track Time min

TOV Over Time min

TUN Under Time min

VIDA Pot Life days

WF Real Consumption of Oven kW

WFA Oven Target Consumption kW

AF Fresh Alum Silo Level %

af%F Adsorbed Fluoride (Fluorinated Alumina) %

af%F(Cor) Corrected plant fluoridation %

af%Na2O Sodium Oxide (Fluorinated Alumina) %

af%UM Moisture (Fluorinated Alumina) %

Af < 325 m <325 Mesh (Fluorinated Alumina) %

Af < 400 m <400 Mesh (Fluorinated Alumina) %

Af > 100 m >100 Mesh (Fluorinated Alumina) %

Af > 200 m >200 Mesh (Fluorinated Alumina) %

afDA Apparent Density (Fluorinated Alumina) g/cm3

afLOI1 L.O.I. (110–300 ◦C; AF) %

AluT Transported Alumina T

Na2Odif Sodium Oxide (Fluorinated
Alumina–Virgin) %

SPVZ Fresh Alumina Flow Setpoint T/h

VZ Fresh Alumina Flow T/h

af%UMx Moisture (Fluorinated Alumina) %

ALF LI Lower Limit ALF %

ALF LS ALF Upper Limit %
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Table 1. Cont.

Abbreviation Complete Name Unit

IA Target Current kA

IM Current Intensity kA

IMBB Booster Current Intensity kA

IMC Current Intensity (Pot) kA

IMRB Current Intensity kA

VL Line Voltage V

WL Actual Line Consumption MW

ECp Predicted Current Efficiency %

ECr Real Current Efficiency %

PRODReal Real Production t

Table 2 lists the most important inputs associated with output variables selected to create
the estimation models. Firstly, the inputs have been determined after a Pearson correlation study
(Equation (2)). After that, process engineers validated the feature selection to the model. It is important
to note that all input variables are delayed by one step, because neural models emulate a first order
dynamic system with delayed inputs to estimate the current output. The final selected dataset had
about 1,728,000 samples and eleven inputs and three outputs.

Table 2. Variables used for the modeling.

ID Type Variable Abbreviation Unit Delay R
w/TMP R w/ALF R

w/NME

1

Input

Gross Voltage VMR-1 V

1-step

−0.49 0.43 0.30
2 Gross Resistance RMR-1 uOhm −0.48 0.41 0.24
3 Bath Level NBA-1 cm 0.58 −0.41 −0.69

4 Calcium Fluoride
(% in the Bath) CAF-1 % −0.53 −0.49 0.37

5 Percentage of Sodium Oxide PNA2O-1 % −0.52 −0.67 0.31
6 Percent of Calcium Oxide PCAO-1 % −0.57 0.72 0.32
7 Amount of AlF3 Added ALF3A-1 kg/misc 0.40 −0.46 −0.30
8 Amount Fed (Real) QALR-1 kg −0.35 0.32 0.52
9 Temperature TMP-1 ◦C 0.88 −0.79 0.32

10 Aluminum Fluoride
(% in the Bath) ALF-1 % −0.78 0.94 0.25

11 Metal Level NME-1 cm −0.41 0.34 0.94
12

Output
Temperature TMP ◦C - - -

13 Aluminum Fluoride
(% in the Bath) ALF % - - - -

14 Metal Level NME cm - - -

Some variables, such as temperature, percentage of fluoride, and metal level, are collected
manually by physical sensors or through laboratory analysis, generating different sampling frequencies.
Other variables, for instance real resistance and raw voltage, are collected online via sensors without
human interference. Most of the variables are sampled on a daily basis; however, variables that are
collected manually have other sampling frequencies. This fact causes null data to be present between
measurements when combining variables from different samplings. Missing data were imputed by
calculating a linear interpolation between the previous and subsequent measurements, according
to the variable sampling. According to process engineers, linear interpolation fits well, because the
chemical process is slow and it has been validated before. Figure 6 shows an imputation example for
bath temperature. The soft sensors described in this work have the advantage of being capable of
estimating missing data after they have been properly trained.



Sensors 2019, 19, 5255 12 of 31

Sensors 2019, 19, x FOR PEER REVIEW 12 of 32 

 

 
Figure 6. Example of data imputation for bath temperature. 

Process engineers also agree there are three different types of behaviors produced by pots 
according to their lifespan: a lifespan of 1–100 days is considered a “starting point”; 101–1200 days as 
a “stationary regime”; and 1201–1500 days as the “shutdown point”. This lifespan division is the 
second method used to cluster the entire dataset (the first is clustering by section, explained before). 
These ranges may vary according to the pot, but they are the same on average. Figure 7 summarizes 
behaviors and the amount of data for each lifespan division. 

 

Figure 7. Description of each lifespan division. 

The different behaviors also may be verified when the dataset of each group is statistically 
analyzed. Figure 8 shows histograms of each input variable for each group. The ALF3A variable has 
zero values at the starting point, because it is not observed in this phase, so this variable may be 
discarded when models for this phase are created. The PNA2O variable at the starting point has a 
larger number of samples less than 0.4; in the stationary regime and shutdown point, the higher 
concentration of samples is more than 0.4. The behavior of input variables between stationary 
regime and shutdown point is similar. 

Complete dataset

Starting point

New parts

Cryolite in preparation

Too much instability

91,445 samples (7.08%)

Stationary regime

Stabilized parts

Cryolite formed

Very little instability

931,266 samples (72.10%)

Shutdown point

Old parts

Cryolite worn

Too much instability
268,889 samples (20.82%)

Figure 6. Example of data imputation for bath temperature.

Process engineers also agree there are three different types of behaviors produced by pots according
to their lifespan: a lifespan of 1–100 days is considered a “starting point”; 101–1200 days as a “stationary
regime”; and 1201–1500 days as the “shutdown point”. This lifespan division is the second method
used to cluster the entire dataset (the first is clustering by section, explained before). These ranges may
vary according to the pot, but they are the same on average. Figure 7 summarizes behaviors and the
amount of data for each lifespan division.
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Figure 7. Description of each lifespan division.

The different behaviors also may be verified when the dataset of each group is statistically
analyzed. Figure 8 shows histograms of each input variable for each group. The ALF3A variable
has zero values at the starting point, because it is not observed in this phase, so this variable may
be discarded when models for this phase are created. The PNA2O variable at the starting point has
a larger number of samples less than 0.4; in the stationary regime and shutdown point, the higher
concentration of samples is more than 0.4. The behavior of input variables between stationary regime
and shutdown point is similar.
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Analyzing the output variables histogram for each behavior (Figure 9), it is possible to observe
that the TMP variable at the starting and shutdown points had a range of values greater than the
stationary regime, ratifying the instability thesis. Another behavior verified was about the NME
variable: at the starting point it had a large accumulation of samples at 24, but in the stationary and
shutdown phases the accumulation was 25. The ALF variable at the starting point had a larger sample
concentration less than 10; in the other two phases the concentration was greater than 10.
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Besides histograms, the difference in TMP variation can be observed in the three phases by
Figure 10. In starting point, the mean is equals 970.5 ◦C, because the pot must be reheated; in stationary
regime, the mean decreases to 963.7 ◦C, the standard mean of the plant; and in shutdown point, it
also decreases to 958.8 ◦C, since the pot is being cooled to turn off. TMP was chosen to perform this
analysis, because it is one of the most monitored process variables.
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Figure 10. Bath temperature variation of the pot 5.

The following subsection shows the steps performed in the original database in order to generate
the resulting models.

3.2. Strategy for Modeling

Data clustered by each section and by each lifespan division were used to build models to
estimate TMP, ALF, and NME using the ANN technique. It is important to know that each ANN
model has only one of three outputs and two different training algorithms were used to create them:
Levenberg−Marquardt (LM) and back propagation (BP). Besides, three strategies were used for
each technique:

1. Consider 70% of the data from each cluster to train, 15% to validate, and 15% to test the models.
2. Consider data from all pots of one entire section to train the models, except for one pot of the

respective section to test the model. This was applied to section clustering and lifespan division.
3. Dataset standardization was done using the z-score method.

The z-score generates a standardized dataset with average equal to 0 and standard deviation
equal to 1 and it is expressed by:

z =
x− µ
σ

, (3)

where x is the value to be standardized, µ is the average of the variable, and σ is the standard deviation
of the variable.

Table 3 shows the division of the complete dataset for the modeling process: for each lifespan
division or all datasets and two different learning algorithms. Moreover, three strategies were used for
each technique, 32 different pot sections, whole dataset, and three outputs, resulting in 594 different
models, initially.
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Table 3. Complete modeling process.

Lifespan Division Training Algorithm Number of Models

Starting point ANN-LM 32 sections × 3 outputs = 96
All dataset × 3 outputs = 3

ANN-BP 32 sections × 3 outputs = 96
All dataset × 3 outputs = 3

Stationary regime ANN-LM 32 sections × 3 outputs = 96
All dataset × 3 outputs = 3

ANN-BP 32 sections × 3 outputs = 96
All dataset × 3 outputs = 3

Shutdown point ANN-LM 32 sections × 3 outputs = 96
All dataset × 3 outputs = 3

ANN-BP 32 sections × 3 outputs = 96
All dataset × 3 outputs = 3

TOTAL
576 models (clustered data)

18 models (all dataset)
594 models

Each model was trained ten times, because the initial weights of the neural network and the
division of training and validation data are random, according to a Gaussian probability density
function. In total, 5760 neural networks were created considering clustered data, whereas 2880 models
use the LM algorithm and 2880 use the BP algorithm. The pseudocode (Algorithm 1) summarizes the
entire modeling process.
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The mean squared error (MSE) and the R between target and estimated values were considered as
quality metrics of the models. MSE is defined as:

MSE =
1
n

∑n

i=1
(yi − ŷi)

2, (4)

where n is the number of samples, and yi and ŷi are the target and estimated values by the
model, respectively.

3.3. Parameter Learning for ANN Models

It is important to mention that there were empirical attempts to define the number of neurons in
the hidden layer and transfer functions in the hidden and output layers. Empirical attempts considering
2, 4, 8, 16, 32, 64, and 128 neurons in the hidden layer were done and alternating the transfer function
resulted in a small variation in training, validating, and testing MSE of 0.5%. Therefore, it was decided
to generate simpler models according to the parameters explained in Table 4.

Table 4. Artificial neural network (ANN) model details.

Parameter Value Justification

Number of hidden layers 1

Empirical attempts.Number of neurons in the hidden layer 2
Transfer function in the hidden layer Symmetric Sigmoid
Transfer function in the output layer Linear

Learning algorithms

LM

To build models faster, because this
algorithm considers an approximation of
Newton’s method, which uses an array of
second-order derivatives and a first-order
derivative matrix (Jacobian matrix). On the
other hand, it uses more memory to
calculate optimal weights [76,77].

BP

To create models based on the most
traditional learning algorithm: descendent
gradient. It is slower than LM, but it uses
less memory [78,79].

It is important to mention that the models were generated using MATLAB® version R2018a
(The MathWorks Inc., Natick, MA, USA) on a computer equipped with a processor by Intel® Core™
i7-3537U, CPU 2.00 GHz, 8 GB RAM, SSD (Solid State Disk).

4. Results and Discussion

After running the experiments, this section shows and discusses the results. Figure 11 shows the
time spent in each set of experiments by lifespan division and the training algorithm. Once there were
32 different sections, three different outputs and ten experiments were done, so each point represents
the training of 960 different models. All experiments consumed over two and a half hours in total,
where the LM algorithm was almost twice as fast as the BP.

Figure 12 exemplifies the evolution of training, validating and testing of neural networks creation
process for TMP output, considering starting point data. It is possible to verify LM converges
faster and it is more accurate than BP. This same behavior was identified for the other outputs and
lifespan divisions.
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Since the reduction pot always operates with the closed loop control, the available data are closed
loop. In other words, the estimation of the variables made by the soft sensors is in a closed loop.
Thus, the estimates obtained show bias deviations and inherent error in the frequency domain [72–76].
Since the reduction pot cannot operate in an open loop, these errors will be inherent in the estimates
obtained, but are sufficiently useful for control [73,76]. Therefore, it is possible that data are affected by
the change of the controller transfer function.

Figure 13 shows MSE and R values for 2880 models considering all pots in starting, stationary and
shutdown phases, ANN-LM, the three output variables, and normalized data. Most models present
low MSE values and high R values (the blue line is the average). Therefore, the contribution is to prove
that the modeling strategy described worked properly.
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Figure 14 shows MSE and R values for the other 2880 models, considering all the characteristics
and pots previously mentioned, but the ANN-BP training algorithm. It is noted that MSE and R values
were bigger on average and had more variants than those of ANN-LM. It is interesting to note high
variance in the results of each section.

Figure 15 shows MSE and R values for models created by all data for ANN-LM and ANN-BP. It
was possible to verify higher MSE and lower R (on average) when compared to previous models.
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Table 5 outlines MSE and R average (avg) and standard deviation (std) global values, besides
minimum and maximum MSE and R values in all 5760 models. It is possible to verify that the LM
algorithm generates more accurate models in all cases. The quality of the estimation is much better
when LM is considered; it may be check analyzing the high values of BP’s avg and std.

Table 5. Compendium of MSE and R global values considering all models.

Lifespan
Division

ANN Training
Algorithm

Output
Variable

MSEglobal Rglobal
MIN and

MAX MSE
MIN and MAX

R

Starting
point

LM

TMP avg: 0.182
std: 0.001

avg: 0.903
std: 0.0006 0.031; 0.639 0.623; 0.986

ALF avg: 0.124
std: 0.002

avg: 0.935
std: 0.0009 0.015; 0.899 0.568; 0.993

NME avg: 0.110
std: 0.0008

avg: 0.927
std: 0.0005 0.001; 0.496 0.727; 0.997

BP

TMP avg: 31.833
std: 13.102

avg: 0.618
std: 0.013 0.053; 424.58 2.5 × 10−5; 0.973

ALF avg: 28.133
std: 22.021

avg: 0.675
std: 0.017 0.029; 460.52 0.0002; 0.988

NME avg: 69.322
std: 23.053

avg: 0.333
std: 0.011 0.005; 668.16 8.6 × 10−6; 0.971

Stationary
regime

LM

TMP avg: 0.196
std: 0.0001

avg: 0.896
std: 8.5 × 10−5 0.093; 0.326 0.821; 0.952

ALF avg: 0.105
std: 5.5 × 10−5

avg: 0.945
std: 3.0 × 10−5 0.041; 0.205 0.891; 0.979

NME avg: 0.129
std: 7.9 × 10−5

avg: 0.932
std: 3.6 × 10−5 0.002; 0.299 0.839; 0.982

BP

TMP avg: 12.45
std: 12.84

avg: 0.731
std: 0.042 0.109; 310.31 0.0002; 0.943

ALF avg: 4.84
std: 11.96

avg: 0.817
std: 0.041 0.057; 234.28 0.0005; 0.970

NME avg: 41.15
std: 39.82

avg: 0.526
std: 0.015 0.015; 946.94 7.7 × 10−5; 0.972

Shutdown
point

LM

TMP avg: 0.213
std: 0.0004

avg: 0.886
std: 0.0003 0.018; 0.503 0.705; 0.991

ALF avg: 0.112
std: 0.0003

avg: 0.941
std: 0.0001 0.010; 0.283 0.850; 0.996

NME avg: 0.184
std: 0.0003

avg: 0.897
std: 0.0001 0.001; 0.462 0.742; 0.998

BP

TMP avg: 11.36
std: 17.93

avg: 0.730
std: 0.033 0.047; 342.54 0.0008; 0.976

ALF avg: 14.34
std: 27.38

avg: 0.742
std: 0.025 0.017; 634.69 5.1 × 10−5; 0.991

NME avg: 11.36
std: 17.93

avg: 0.581
std: 0.015 0.006; 725.00 2.3 × 10−5; 0.990

All data

LM

TMP avg: 0.80
std: 0.25

avg: 0.70
std: 0.26 0.241; 0.990 0.061; 0.890

ALF avg: 0.83
std: 0.15

avg: 0.82
std: 0.03 0.534; 0.945 0.772; 0.909

NME avg: 0.50
std: 0.32

avg: 0.83
std: 0.08 0.131; 0.969 0.730; 0.932

BP

TMP avg: 1.07
std: 0.04

avg: 0.30
std: 0.18 1.020; 1.160 0.084; 0.585

ALF avg: 0.88
std: 0.08

avg: 0.79
std: 0.06 0.756; 0.996 0.612; 0.833

NME avg: 2.75
std: 0.23

avg: 0.30
std: 0.22 2.359; 3.252 0.061; 0.649

Comparative graphs between target values and estimated by the models were generated after
the creation of estimating models and selection of the best ones. Once there were 32 models for three
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different lifespan divisions, models based on all data, three outputs (TMP, ALF, and NME), and two
ANN learning algorithms, then it was necessary to select only one pot to visualize this similarity (pot 5).

Figure 16 displays comparisons for ANN-LM-based models considering non-standardized data.
It verified that the models based on lifespan division (red line) estimate very well the dynamics of the
process for all output variables. Models based on all data had not learned to estimate the values (green
line), especially the ALF output. Next to the graphs, there were the respective MSE and R values.
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Figure 16. Comparison between target and estimated values for ANN-LM-based models and by
clustered and all data: (a) starting point; (b) stationary regime; and (c) shutdown point.

Figure 17 shows comparisons for ANN-BP-based models. Estimated values also follow target
values, but the accuracy is lower than the ANN-LM-based models for the most variables. When models
based on all data are analyzed, it is possible to verify that they have not learned using the neural
network parameters cited above.
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Figure 17. Comparison between target and estimated values for ANN-BP-based models and by lifespan
division: (a) starting point; (b) stationary regime; and (c) shutdown point.

Table 6 displays the MSE and R values for comparisons between target and estimated values
for ANN-LM, ANN-BP-based models and by clustered and all data plotted on the graphs in
Figures 16 and 17. It proves the advantage of using the proposed method. It is important to remember
that data used to perform these comparisons were not used in the neural net creation process.
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Table 6. MSE and R values by training algorithm, lifespan division, and data type.

ANN Training Algorithm Lifespan Division Data Type MSE R

LM

Starting point

Clustered
TMP: 9.939
ALF: 0.083
NME: 0.014

TMP: 0.977
ALF: 0.996
NME: 0.999

All data
TMP: 73.18
ALF: 5.39
NME: 0.54

TMP: 0.809
ALF: 0.867
NME: 0.913

Stationary regime

Clustered
TMP: 14.37
ALF: 0.179
NME: 0.007

TMP: 0.941
ALF: 0.989
NME: 0.999

All data
TMP: 53.12
ALF: 6.92
NME: 1.00

TMP: 0.874
ALF: 0.733
NME:0.905

Shutdown point

Clustered
TMP: 15.669
ALF: 0.1652
NME: 0.018

TMP: 0.940
ALF: 0.991
NME: 0.998

All data
TMP: 48.58
ALF: 6.92
NME: 0.83

TMP: 0.888
ALF: 0.757
NME: 0.839

BP

Starting point

Clustered
TMP: 10.96
ALF: 0.077
NME: 0.012

TMP: 0.975
ALF: 0.996
NME: 0.999

All data
TMP: 139.13

ALF: 5.19
NME: 3.17

TMP: −0.760
ALF: 0.779
NME: 0.818

Stationary regime

Clustered
TMP: 14.06
ALF: 0.177
NME: 0.010

TMP: 0.942
ALF: 0.989
NME: 0.999

All data
TMP: 141.94

ALF: 6.57
NME: 3.51

TMP: −0.663
ALF: 0.782
NME:0.775

Shutdown point

Clustered
TMP: 16.624
ALF: 0.158
NME: 0.020

TMP: 0.935
ALF: 0.992
NME: 0.998

All data
TMP: 137.31

ALF: 6.60
NME: 3.53

TMP: −0.542
ALF: 0.863
NME: 0.831

Another results evaluation was performed analyzing residual plot in all phases, considering the
best clustered based model. Figure 18 shows that the most TMP points are between −5 ◦C and 5 ◦C, the
most ALF points are between −1% and 1%, and NME points are between −0.5 cm and 0.5 cm. These
error variances are perfectly acceptable by process engineer. Red lines display the std ranges.
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5. Conclusions

In this work, the results of an innovative approach to create soft sensors to estimate TMP, ALF, and
NME variables of primary Al production were presented. After testing different neural net topologies
and considering two different training algorithms, training and testing 5940 different models, the best
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model of each output variable was selected and it was possible to ensure that these models generate
high generalization power and very small errors that are fully tolerated by process engineers. In all
cases, models based on section clustering and lifespan division performed more accurate estimates
compared to models that do not use clustering. LM has helped to create neural networks more accurate
than the BP algorithm. Besides, LM is faster for training the models.

TMP, ALF, and NME variables are the most important to control the proper functioning of the
pots. The lifespan and section dataset clustering contributed to creating more specialized models
in the behaviors of the respective clusters of pots, reducing errors and increasing the precision of
the estimating soft sensors. ANNs have been chosen because they can generate models with a high
power of generalization and they have the capability to learn the nonlinearity of the process using
experimental plant data.

MATLAB® was used to develop the models, but a computer system will be created to implement
the integration of soft sensors with data acquired in real time, making it possible for engineers to
virtually estimate the behavior of the pots, rather than make manual or laboratory measurements. It is
planned to use these soft sensors to control the pots.
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