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Abstract: Seeking an effective method for estimating the speed and length of a car is still a challenge
for engineers and scientists who work on intelligent transportation systems. This paper focuses on
a self-developed system equipped with four anisotropic magneto-resistive (AMR) sensors which
are placed on a road lane. The piezoelectric polyvinylidene fluoride (PVDF) sensors are also
mounted and used as a reference device. The methods applied in the research are well-known: the
fixed threshold-based method and the adaptive two-extreme-peak detection method. However, the
improved accuracy of estimating the length by using one of the methods, which is based on computing
the difference quotient of a time-discrete signal (representing the changes in the magnitude of the
magnetic field of the Earth), is observed. The obtained results, i.e., the speed and length of a vehicle,
are presented for various values of the increment ∆n used in numerical differentiation of magnetic
field magnitude data. The results were achieved in real traffic conditions after analyzing a data set
M = 290 of vehicle signatures. The accuracy was evaluated by calculating MAE (Mean Absolute
Error), RMSE (Root Mean Squared Error) for different classes of vehicles. The MAE is within the
range of 0.52 m–1.18 m when using the appropriate calibration factor. The results are dependent on
the distance between sensors, the speed of vehicle and the signal processing method applied.

Keywords: magnetic field; AMR sensors; piezoelectric PVDF sensors; vehicle speed detection; car
length estimation; signal differentiation; Mean Absolute Error

1. Introduction

In recent years many intelligent traffic systems have been created using data acquired from magnetic
field sensors [1,2], which exploit the magnetoresistance (MR) effect [2] or the magnetoimpedance (MI)
effect [3,4], inductive loops [5] or piezoelectric PVDF sensors [6] installed on a road lane.

By processing the measured data, not only the number of passing vehicles can be counted but
also their speed, length and even weight can be estimated [7,8].

In previous works [9–11], the authors focused on developing a stationary system which was
installed on a public road for measuring individual lengths and speeds and identification of vehicles. It
was a built-in system operating in normal traffic conditions, which calculated parameters in real-time.
Two anisotropic magneto-resistive sensors (AMR) were placed on the road lane at a distance of
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0.3 m [10]. The main aim of the research was focused on the signal processing, the metrological analysis
of measurement results as well as testing new algorithms aimed at reducing the calculation time of
speed and length of the passing vehicles. This calculated time was shorter than 60 ms for each analyzed
vehicle and the accuracy of estimating its speed and length was within the range of ±3 km/h.

A comparative analysis of the results of the determined individual speeds of vehicles traveling in
road traffic and the times of executing programs based on selected calculation methods was carried
out in previously published articles [9–11] as well. To determine the speed of vehicles, the method
of detecting the delay value of two signals, with respect to each other, of different computational
complexity was used. The results of a comparative analysis of many algorithms for determining the
speed of vehicles were developed, not only for signals with a large sample size but also for small
sample size sections [10]. Linear interpolation was proposed to be applied in order to increase the
resolution of the calculated speed results. On the basis of the assessment of the relative speed results
average errors (related to the values read from the radar), favorable calculation methods were selected
(ensuring satisfactory accuracy with a small number of samples of the processed signal).

In another work [11], the comparative measures RMSE (Root Mean Squared Error) and NRMSE
(Normalized Root Mean Squared Error) of a large set of speed results of individual vehicles obtained
by a selected calculation method and a reference method (a 60 fps video camera) were developed. Four
methods for detecting the delay value of two signals in relation to each other were implemented. A
signal processing algorithm was developed and selected speed estimation methods were compared.
The influence of changing the window width (i.e., number of samples) of the filter averaging the signals
on the current basis on the size of estimated speed errors at different set threshold values of signals was
investigated. The above mentioned results were obtained for two-sensor systems and it was assumed
that a vehicle was passing over the sensors at a constant speed, nor accelerating or slowing down or
performing steering maneuvers.

Currently, the authors propose a new solution with two-sensor pairs (Figure 1). The system
assures acquiring data with a minimum distance between sensors and is placed on a road lane. Some
variants of computations enable more accurate determination of speed and length of a traveling vehicle.
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Figure 1. Deployment of traffic monitoring system components on the road (note: used scale does not
keep ratio between distance in the figure and the corresponding distance on the sensors placed on the
road lane, IR – infrared).

The goal of the research, presented in this paper, is to apply and verify a modified method for
speed and length estimation which is based on a fixed or an adaptive thresholding of a signal. It relies
on calculating the difference quotient of a time-discrete signal. The initial task was to set up an optimal
value of the increment ∆n used in numeric differentiation of magnetic field magnitude data. Another
goal is to show the differences in speed and length estimation errors which depend on the geometrical
parameters of vehicles.
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2. The Design of a Traffic Monitoring System and Sources of Speed Estimation Error

The traffic monitoring system consists of hardware and software components that are placed
in different locations. The magnetic and piezoelectric sensors, their cables and a video camera with
infrared illuminator cannot be deployed at a large distance. The magnetic sensors S1–S4 should be
placed in the middle of the traffic lane under the surface of the roadway at the beginning of the
video camera zone. The general scheme of the traffic monitoring system components deployment is
presented in Figures 1 and 2.
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Figure 2. Deployment of traffic monitoring system components on the road (a,b) and a view from a
traffic monitoring camera (c).

2.1. Error Due to Discretization in Time

However, there are limitations in the realization of the scheme in Figure 1, i.e., the distance
between the magnetic sensors must be optimal. It is determined by several contradictory factors. The
larger the distance between the sensors, the more accurately the average speed of vehicle traveling
between them can be calculated (Figure 3a). The number of data points acquired during the total time
elapsed is defined by the following formula:

dp = fs
D
V

, (1)

where D—distance between two sensor nodes [m], V—average speed [m/s], f s—sampling
frequency [Hz].

Sampling frequency should be as high as possible. Errors resulting from the manufacturing
process, which cause error of D, should be minimum. The relative error E due to discretization depends
on the sampling frequency, which in this case is 2 kHz (sampling interval 0.5 ms). This error is most
significant when vehicles move at higher speeds. It is defined as:

E =
1
dp

100%. (2)

Obviously, increasing the distance between the sensors reduces the sampling discretization error.
This error does not exceed 1.2% when sensors are distant by 2 m even at 170 km/h (Figure 3b). However,
such a large distance causes a technical problem of situating the sensors at proper places, as their
geometric configuration affects the measurement accuracy.
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Figure 3. The number of data points acquired in the function of vehicle speed and corresponding
error due to discretization (at sampling frequency of 2 kHz): (a) the number of data points acquired at
different distances between sensor nodes; (b) relative error due to discretization at different distances
between sensor nodes.

2.2. Error Related to Vehicle Deceleration or Acceleration

The location of sensor nodes is an important determinant of the system performance properties [12].
A single-lane configuration and a slight intrusion in the road surface were assumed. The acceptable
distance between sensors is from 0.3 m to 1.0 m, because with a greater distance, there is a possibility of
additional errors due to a change in vehicle trajectories and accelerations. When the distance between
the sensors is approximately 2 m and higher, the speed of a decelerating or accelerating vehicles in
the sensor area will be unequal for the first magnetic sensor and the second one. These errors are less
significant for vehicles at higher speeds but it should be taken into account for relatively slow moving
vehicles. The average rate of acceleration of all the ordinary vehicles is between 1 m/s2 and 4 m/s2 [13].
Acceleration, considering real models, is varied and depends on a vehicle type and a gear number [14].
Therefore, in previous works [9–11], the obtained speed accuracy was determined within the range
of ±3 km/h and the comparison to existing systems showed it was sufficient, keeping in mind that
the distance between sensors was set to 0.3 m. Due to a low sampling frequency and a short distance
between sensors, the accelerating or decelerating effect will not be analyzed in the further sections of
this paper.

2.3. Trajectory Error

If the system sensors are deployed at a distance greater than 0.5 m, then there may be an error
resulting from vehicle maneuvering (Figure 4). In a situation when a vehicle slip angle α is 30◦, the
relative error of the estimated length is about 15%. When the cars move on trajectories whose directions
do not coincide with the longitudinal axis of the magnetic sensors due to the interaction between the
parts of the vehicle and the sensors, the magnetic signatures at the input and at the output of the system
may be different. An error occurs when the calculating time delays on the basis of such signatures.
The trajectory error may occur with improper sensors installation or due to potholes in a road surface
or unknown objects which cause drivers to change direction. They force drivers to turn the steering
wheel while entering the sensing area. When installing magnetic sensors in places where turning is
prohibited these errors can be reduced (but not eliminated). Magnetic sensors are currently mounted
on the longitudinal axis of the lane, but this does not mean that most cars move in the trajectory where
the longitudinal axis of the car coincides with the central axis of the lane. In every sensor mounting
location a vehicle trajectory survey should be performed to determine the optimum position of the
magnetic sensors in relation to the axis of the lane.
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2.4. Error of Time Delay Estimation

The magnetic flux density B (the magnitude of the magnetic field) is the number of magnetic lines
of force passing through a unit area of material.

The AMR sensor measures the incident magnetic field B in three geometrical axes providing three
corresponding components (Bx, By, Bz). The changes in the Earth magnetic field magnitude at two
sensor nodes, caused by a traveling vehicle, are expressed as follows:∣∣∣∣∣→B1

∣∣∣∣∣ = √
B2

1x + B2
1y + B2

1z= B1,
∣∣∣∣∣→B2

∣∣∣∣∣ = √
B2

2x + B2
2y + B2

2z= B2. (3)

For calculating vehicle speed, it is necessary to find the time delay between two curves (data points
from two AMR sensors).

The problem gets more complicated in practice as the received signal is corrupted with additive
random noise. The result deeply depends on the sample size [10] and preprocessing techniques of
signals (i.e., filtering, normalization). Therefore, two curves, B1 and B2, can be considered as signal s
with measurement errors eB1, eB2:

B1[n] = s[n] + eB1[n], (4)

B2[n] = s[n− nd] + eB2[n], (5)

where n—sample number, nd—sample delay.
It is commonly accepted, that for this purpose, cross-correlation is one of the most reliable

methods [9]. The averaged time delay in seconds is the output of the cross-correlation function. It is
given by the following formula:

∆t = nd · ts = argmax
l

f [l] · ts, (6)

f [l] =
N−1∑
n=0

B1[n] · B2[n− l], −(N − 1) < l < N − 1 , (7)

where nd—location of the highest peak of the cross-correlation function f (averaged sample delay),
ts—sampling period (1/fs), l—lag (a delay in samples), N—total number of samples in the time series.

The averaged sample delay corresponds to the average speed of a vehicle in the time interval
between passing sensors S1 and S2 or sensors S1 and S4 (Figure 1). The algorithm for estimating a
result variation in the presence of measurement errors is complicated. The analytical error estimation
is presented in article [15]. The use of cross-correlation with Fast Fourier Transform (FFT) interpolation,
parabolic fit interpolation or the FFT with Hilbert transform can diminish the error of the time delay
estimation [16]. Another technique is proposed in the further section of this paper.
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3. Methods to Estimate Vehicle Speed and Length

3.1. Speed Estimation Method

The method is based on calculating derivatives of two scalar functions with respect to time. In the
numerical analysis, if the samples are contained in one-dimensional (1D) arrays B1 and B2, then, the
difference quotients ∆B1 and ∆B2 can be estimated using the equation:

∆B1[n] =
B1[n + ∆n] − B1[n]

∆n
, ∆B2[n] =

B2[n + ∆n] − B2[n]
∆n

, (8)

where n—subsequent sample number in the computational algorithm, ∆n—increment in n.
As is shown in Figure 5, the difference quotient is used to calculate the slope of the secant line

between two points on the graph of functions B1 and B2.
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Figure 5. Finding the slope of the secant line of a magnetic field magnitude curve.

As opposed to previously published articles [9–11], it was decided to differentiate the change in
magnetic field magnitude signals (Figure 6). Then, the cross-correlation function (Figure 5) with inputs
∆B1 and ∆B2 instead of B1 and B2 was used. Signals B1 and B2 were previously affected by signal
smoothing with a low-pass filter (100 Hz). Furthermore, the increment ∆n plays a significant role in
the obtained result of the speed and its accuracy. It will be presented in Section 4.
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(Volkswagen Passat 2003, sample delay—23, speed—94 km/h).

3.2. Length Estimation Method

Estimating a vehicle length is based on two parameters: speed and length of the signal. Since the
magnetic signal magnitude rises gradually with an arriving vehicle, it is not a trivial task to accurately
identify the arrival and departure moments. Several different methods were tested, and finally, it
was chosen to calculate the derivative of a signal from a single sensor. The algorithm relies on the
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assumption that the first positive significant peak represents the vehicle front and the last negative
peak—its rear part. This method is presented in Figure 7. Firstly, the derivative signal is obtained and
normalized. Then, the peak finding algorithm is employed. It is crucial to identify the correct peak;
therefore, there are two rules: the peak must be above/below a certain threshold value, moreover, the
value and the location of the local maximum must be found in a set of data. The second rule enables
establishing the first/last peak just above the noise level. Furthermore, since one measurement node
consists of two magnetic sensors, it enables the calculation of vehicle length from two independent
signals and use those result as the average.
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Markers indicate the first and the last significant peaks which represent a vehicle arrival and departure,
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Figure 8 shows the full signal processing algorithm.
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Figure 8. Algorithm for estimating vehicle speed and length.

After detecting a vehicle, the threshold HT = −LT was calculated individually for every magnetic
signature based on the normalized signal ∆Bi. For this purpose, the highest peak of this signal was
found and its value was multiplied by a coefficient. This coefficient represents a percentage. The
results in Section 4 are presented for the threshold of 10%.
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4. Results

4.1. Speed Estimation Error

The methods mentioned in Section 3 were verified using a data set of the size of M = 290 vehicles.
The MAE (Mean Absolute Error) is an absolute difference of the reference speed Vr and the measured
speed Vp, expressed by the formula:

MAEp =
1
M

M∑
m=1

∣∣∣Vpm −Vrm
∣∣∣, (9)

where M—number of vehicles which equals 290, m—vehicle number in the data set.
It should be noted that Vr is a value obtained due to the use of PVDF piezoelectric sensors

(Roadtrax BL, Measurement Specialties Inc., Hampton, VA, USA) based on the time difference between
the front and rear axles. While Vp (for p = 1 . . . 5) is estimated by means of AMR sensors (LIS3MDL,
STMicroelectronics Inc., Santa Clara, CA, USA), which are placed at the distance D (Table 1).

Table 1. The reference speed and absolute speed differences for five pairs of sensors depicted in Figure 1.
Mean absolute errors for a data set of 290 vehicles of different classes.

Vehicle
Number

Reference
Speed Vr, km/h

p = 1 2 3 4 5

dV_P#1
D = 30 cm, km/h

dV_P#2
D = 30 cm, km/h

dV_S2-S3
D = 30 cm, km/h

dV_S1-S3
D = 60 cm, km/h

dV_S1-S4
D = 90 cm, km/h

1 87.0 0.5 0.5 0.5 0.5 0.6
2 94.3 3.9 3.9 3.9 0.4 1.0
3 90.7 3.2 0.7 3.2 1.2 0.7
4 63.7 1.7 3.8 1.7 1.7 1.7
5 61.8 0.1 0.1 1.8 0.8 0.5
6 103.4 0.5 4.7 4.7 2.0 1.2
7 82.7 3.7 0.4 3.7 2.0 1.5
8 88.2 1.8 1.8 1.8 1.8 0.5
9 85.7 4.3 2.6 4.3 4.3 0.7

10 88.0 2.1 1.6 2.1 2.1 0.8
. . . . . . . . . . . . . . . . . . . . .

290 97.2 1.0 1.0 10.8 3.3 1.0

mean Vr, km/h MAE1, km/h MAE2, km/h MAE3, km/h MAE4, km/h MAE5, km/h
83.2 2.5 2.2 4.6 2.4 1.7

The RMSE (Root Mean Squared Error) is defined as follows:

RMSEp =

√√√
1
M

M∑
m=1

(
Vpm −Vrm

)2
. (10)

Speed estimation is based on cross-correlation which is a measure of similarity of two series as
a function of the displacement of one relative to the other. In Figure 9, the MAE and the RMSE of
the estimated speed basing on the series of two AMR sensors distant from each other by D = 90 cm,
is presented.
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Figure 9. The MAE and the RMSE of the estimated speed and their variability due to increment ∆n.
The chart was created for M = 290.

As is shown in Table 1, the MAE depends on a pair of sensors location in the system as well as the
distance between them. The lowest value (MAE5) is for D = 90 cm. The lowest results are obtained
when calculations are based on the data from S2 and S3 sensors (MAE3). The lowest MAE occurs for
the increment ∆n = 14 samples. In Table 2 MAE values, which were calculated for three speed ranges
(45 km/h–74.99 km/h, 75 km/h–89.99 km/h, 90 km/h–130 km/h), are presented. Speed ranges are based
on the road traffic regulations in different countries for dense built-up areas, outside of dense built-up
areas, and on motorways. As it can be seen, the lowest MAE values are for vehicles at speeds within
the range of 45 km/h–74.99 km/h. The MAE is strictly dependent on the speed value.

Table 2. Mean absolute errors of vehicles for three speed ranges and for five different pairs of sensors
depicted in Figure 1.

Speed Range 45–74.99 km/h 75–89.99 km/h 90–130 km/h

MAE1, km/h 2.0 2.7 2.6
MAE2, km/h 1.9 2.3 2.4
MAE3, km/h 3.2 4.0 6.3
MAE4, km/h 1.8 2.2 3.1
MAE5, km/h 1.3 1.6 2.0

4.2. Length Estimation Error

Since the system contains four sensor nodes (Figure 1), a vehicle travel time over each AMR sensor
S1–S4 needed to be estimated. For each sensor the number of samples T1–T4 in Table 3 represents a
period of time between the first maximum and the last minimum of the derivative signal. It is depicted
in Figure 7 for sensor S1.
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Table 3. The measured values obtained from four AMR sensors and the geometrical parameters of
traveling vehicles.

T1
Samples

T2
Samples

T3
Samples

T4
Samples

V5
km/h

L1
m

L3
m

Vr
km/h

Lr
m

W
m

W/Lr
-

G
m

585 506 566 599 88.77 7.13 6.89 87.70 4.32 2.690 0.62 0.130
440 489 442 470 98.18 5.76 5.79 94.29 3.86 2.500 0.65 0.150
368 534 491 370 93.91 4.76 6.34 93.04 4.59 2.625 0.57 0.119
356 391 364 434 93.91 4.57 4.67 92.37 4.40 2.678 0.61 0.201
546 572 564 468 90.00 6.68 6.90 88.10 4.93 2.843 0.58 0.165
577 606 556 659 84.16 6.53 6.29 81.49 4.32 2.694 0.62 0.150
399 406 449 430 81.00 4.67 5.25 84.22 4.81 2.857 0.59 0.218
487 608 576 589 85.26 5.68 6.72 83.99 4.64 2.835 0.61 0.150
479 462 477 541 96.72 6.46 6.43 97.03 4.82 2.854 0.59 0.155
417 390 419 458 102.86 5.49 5.51 94.73 4.22 2.578 0.61 0.178

The speed V5 is calculated with the use of the cross-correlation method and the derivative data
points from sensors S1 and S4 (D = 90 cm). Lengths L1 and L3 are calculated according to (11). A
vehicle is identified by means of a video camera. Lr is a reference length, W is a vehicle wheelbase, G is
a ground clearance—all these parameters are based on the data from vehicle manufacturers. W/Lr is
the wheelbase to length ratio. Lengths L1 an L3 are defined in meters as follows:

L1 =
1000VrT1ts

3600
, L3 =

1000VrT3ts

3600
. (11)

As presented in Table 3, the differences in samples T1–T4 between markers, which indicate the first
significant peak and the last one, are quite large. Therefore, L1 and L3 are usually not equal. Lengths
and their errors were computed using T1 and T3 data from sensor nodes S1 and S3. However, it is
possible to obtain a result as their average or even the average of T1-T4. However, it would lengthen
the processing time of a vehicle. This is unwanted, especially for long vehicles travelling at slow
speeds. Errors based on S3 are larger than S1 (Figure 10). The MAE measures of L1 and L3 are defined
in the following way:

MAEL1 =
1
M

M∑
m=1

|L1m − Lrm|, MAEL3 =
1
M

M∑
m=1

|L3m − Lrm|. (12)
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Figure 10. The MAE and the RMSE of estimated lengths L1 and L3 and their dependence on the
increment ∆n when calculating the difference quotient from the change in magnetic field magnitude
data points. Calculations were based on the speed readings from PVDF sensors. The chart was made
for M = 290.
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When Vr speed was used in (11), the lowest value of MAE was for the increment ∆n = 10 samples
but the error differences, in comparison to ∆n = 14, 18, 22, were small.

When the speeds from AMR sensors data were used in (11) and the sensors were 60 cm or 90 cm
distant from each other, the obtained length errors were up to 8% lower in comparison to the 30 cm
distance (Figure 11). The highest MAE was about 1.9 m. Finally, the vehicles were divided into five
classes according to their length. It is difficult to find one unified vehicle classification in the world.
There are commonly used terms of vehicles market segments with or without the number of axles [17].
There are also legal classifications based on interior volume index or gross vehicle weight rating. We
decided to calculate the mean W/Lr ratio for every vehicle class and present it in Table 4. For the
longest vehicles, it is noticeably larger.
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Figure 11. The MAE of estimated lengths L1 and L3 and their dependence on the increment ∆n
when calculating a numerical derivative from the change in the magnetic field magnitude data points.
Calculations were based on the speed readings from AMR sensors. The chart was made for M = 290.
The error bars represent the 68% confidence interval of the mean absolute error (MAE).

Table 4. Vehicle classification according to their reference length Lr and determination of the mean
parameter W/Lr value.

class A B C D E

Lr ≥ 3.5 and
Lr < 4.5 m

Lr ≥ 4.5 and
Lr < 4.7 m

Lr ≥ 4.7 and
Lr < 5.2 m

Lr ≥ 5.2 and
Lr < 8.0 m Lr ≥ 8.0 m

max W/Lr 0.66 0.61 0.61 0.69 0.89
min W/Lr 0.57 0.56 0.56 0.54 0.53

mean W/Lr 0.61 0.59 0.58 0.62 0.71

In Table 5, the MAE values are presented for every class and for all classes together. Additionally,
for classes A, B, C, the influence of the ground clearance G with W/Lr is analyzed and special cases are
selected to highlight the differences.
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Table 5. The MAE of the estimated lengths L1 and L3 of all vehicles from a given class and the values of
these errors for two wheelbase to the length W/Lr ratio intervals (lower and upper than the mean) and
three ground clearance G intervals.

class A—city cars, small passenger cars, compact SUVs

Error (m) all W/Lr
all G

all W/Lr
G ≤ 0.13 m

all W/Lr
G ≥ 0.18 m

W/Lr < 0.61
all G

W/Lr < 0.61
G ≤ 0.13 m

MAEL1 1.14 1.16 1.37 1.31 1.22
MAEL3 1.49 1.66 1.39 1.62 1.83

class B—family cars, mid-size SUVs

Error (m) all W/Lr
all G

all W/Lr
G ≤ 0.13 m

all W/Lr
G ≥ 0.18 m

W/Lr ≥ 0.59
all G

W/Lr ≥ 0.59
G ≥ 0.18 m

MAEL1 1.30 1.20 1.74 1.65 1.87
MAEL3 1.58 1.15 2.10 1.52 2.23

class C—executive cars, luxury cars, large SUVs

Error (m) all W/Lr
all G

all W/Lr
G ≤ 0.13 m

all W/Lr
G ≥ 0.18 m

W/Lr ≥ 0.58
G ≤ 0.13 m

W/Lr ≥ 0.58
G ≥ 0.18 m

MAEL1 0.96 0.51 1.95 0.44 1.92
MAEL3 1.05 0.66 2.06 0.49 2.06

class D class E all classes of vehicles (A, B, C, D, E)

Error (m) all W/Lr
all G

all W/Lr
all G

all W/Lr
all G

W/L < 0.61
all G

W/Lr ≥ 0.61
all G

MAEL1 1.95 2.89 1.48 1.21 2.06
MAEL3 2.16 2.93 1.68 1.40 2.27

Class B, column 6—ANs: Volkswagen Sharan, Ford Galaxy, etc.; class C, column 5—sedans and wagons: BMW 5,
Mercedes-Benz E cl., VW Passat, etc.; class C, column 6—large SUVs: Volvo XC90, Porsche Cayenne, Mercedes-Benz
M cl., etc.; class D—large VANs, minibuses; class E—three or more axle vehicles, buses.

As is shown in Table 6, the adaptive method based on differentiating signals causes a minor
decrease of the MAE values compared to a fixed threshold-based method [6]. It is especially noticeable
for the vehicles with W/Lr ≥ 0.61. However, for the vehicles with W/Lr < 0.61, a fixed threshold
HT = 0.06 mT the MAE values are the lowest.

Table 6. The MAE of estimated lengths L1 and L3 of all vehicles—comparison of two methods.

all classes of vehicles (A, B, C, D, E)

Error (m) all W/Lr
all G

W/L < 0.61
all G

W/Lr ≥ 0.61
all G

fixed threshold-based method (signals not differentiated, HT = 0.03 mT)

MAEL1 1.76 1.54 2.17
MAEL3 1.75 1.55 2.13

fixed threshold-based method (signals not differentiated, HT = 0.06 mT)

MAEL1 1.43 1.00 2.44
MAEL3 1.42 0.95 2.57

adaptive two-extreme-peak detection method (signals differentiated, ∆n = 14, HT = 0.1 hdsp)

MAEL1 1.48 1.21 2.06
MAEL3 1.68 1.40 2.27

The data in the tables is presented without calibration correction factors. This means that these
error values can be reduced.
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4.3. Correction Factor of Estimated Length

All results obtained from formula (11) were multiplied by the appropriate correction factor Cf to
reduce MAE:

MAEL1 =
1
M

M∑
m=1

∣∣∣C f · L1m − Lrm
∣∣∣. (13)

The dependence of the threshold and the correction factor on the MAEL1 is presented in Figure 12.
These parameters need to be selected precisely.
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threshold HT as a percentage of the highest derivative signal peak. The MAE is presented for all classes
of vehicles M = 290, the signals were smoothed with a 100 Hz low-pass filter.

Minimum absolute error values were found for Cf = 0.78 and threshold HT = 0.1 hdsp (hdsp—the
highest derivative signal peak). As a result, about 50% error reduction was achieved (Table 7).

Table 7. The MAE of estimated lengths L1 and L3 of all vehicles after multiplying by Cf = 0.78.

all classes of vehicles (A, B, C, D, E)

Error (m) all W/Lr
all G

W/L < 0.61
all G

W/Lr ≥ 0.61
all G

adaptive two-extreme-peak detection method (signals differentiated, ∆n = 14, HT = 0.1 hdsp)

MAEL1 0.70 0.64 0.80
MAEL3 0.75 0.67 0.92

4.4. Summary

The speed estimation error depends on many factors. One of them is the signal processing
technique used. The variability of errors due to the increment ∆n when calculating difference quotients
is noticeable in Figure 9. Moreover, since the speed is calculated with the use of the cross-correlation
function, decreasing the sample size of the processed signals (number of data points) may lead to
higher error values. Another factor is the sensor deployment on a road lane. The MAE is the lowest
(1.7 km/h) for AMR sensors deployed at the largest distance of 90 cm (Table 1). The MAE is also the
lowest at the speed range of 45 km/h–74.99 km/h (Table 2). It is related to discretization, described in
Section 2.1.

The length of a vehicle (11) is estimated based on the time differences between markers (Figure 7)
and previously evaluated speed. Every normalized derivative curve contains many peaks, which
may be lower or higher. The most important activity which affects accuracy is to setup the adequate
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threshold. The best results are observed when the calculated length is based on the output data from
sensor S1 (Table 3). The errors of the estimated lengths L1 and L3 and their dependence on ∆n when
calculating numerical derivative from the change in the magnetic field magnitude data points are
presented in Figures 10 and 11. The MAE is the lowest when ∆n = 10 samples and D = 90 cm.

Finally, the vehicles were divided into 5 classes. The MAE of the estimated lengths of all vehicles
from a given class and the values of these errors for two wheelbase to the length W/Lr ratio intervals
(lower and upper than the mean for every class) and two ground clearance G intervals are presented in
Table 5. These values are from 0.44 m to 2.93 m. This range is from 0.52 m to 1.18 m when using the
appropriate calibration factor. The most significant difference is visible between Class C vehicles with
G ≤ 0.13 m (sedans and wagons) and G ≥ 0.18 m (large SUVs). The largest values are for the longest D
and E class vehicles in comparison with A, B, C class passenger cars. Differences of MAEL1 and MAEL3

for the same W/Lr and G sometimes even reach 40 cm.
The adaptive method based on differentiating signals causes a minor decrease of the MAE values

compared to a fixed threshold-based method. It should be noted that one of the most important
parameters is ∆n, which should be 14 samples for our data. The appropriate correction factor Cf is also
needed. There is almost no vehicle acceleration or deceleration effect on the MAE because the distance
between sensors is small (max. 90 cm). On the other hand, there is rather no possibility to enlarge the
sampling frequency. There are few digital three-axis sensors, i.e., LIS3MDL, HMC5983, LSM9DS1 and
other commercial off-the-shelf products [18] with fast output rate (ODR > 80 Hz) setting.

5. Conclusions

Effective traffic management schemes that improve traffic flow and utilization of road infrastructure
are very important at present times [19,20]. Magnetic sensors have advantages over other non-contact
based sensing techniques because the weather conditions do not affect the efficiency of vehicle
detection [21,22]. In the literature, the following features are indicated: the low price of detectors and
simplicity of their installation. It is possible to identify the type of vehicle (car, bus, truck) because they
differ in the degree of the interference field. Therefore, it seems to be necessary to create an intelligent
network of sensors that acquire the changes in the Earth magnetic field magnitude. In some literature
only one or two sensors are applied roadway or roadside [23,24]. They usually are used to measure
vehicle speed or to detect presence of a traveling vehicle using novel algorithms [25].

The presented system contains four AMR sensors to estimate the length of vehicles. The performed
research is a preliminary step before vehicle classification [26]. The piezoelectric sensors (PVDF) were
used as the reference system. Based on the data from PVDF sensors, we can know precisely the number
of vehicle axles and estimate wheelbases, i.e., the distance between the centers of the front and rear
axles. Magnetic sensors generate more information if it is necessary to discern cars of the same class,
e.g., between a sedan and an SUV. They both may have the same length and wheelbase, but height of
the peaks and their location in their magnetic signatures are usually different. Ultimately, we plan that
our system will work with AMR sensors only.

Errors of speed and length estimation presented in Tables 1, 2 and 5–7 are mostly the result of
the imperfect trajectory of a traveling vehicle over sensors, the different construction and geometry
of vehicles, the presence of ferromagnetic loads, which may be carried in trucks with trailers, the
discretization of the acquired data and the noise in signals. It is worth pointing out that the visual
identification of brand and model of a traveling vehicle is based on a video image and the manufacturer’s
data. The type of a vehicle and yawing are taken into account, but the vehicle load can change the
length evaluation process.

The MAE values of the estimated speed are from 1.3 to 6.3 km/h. They depend on the distance
between sensors, speed of vehicle and the filtering signals method used. As a comparison, the errors for
variously constructed systems with magnetic sensors placed on the road lane at a distance D = 6 m are
RMSE = 5.1 km/h, MAPE = 2.65% (MAPE - Mean Absolute Percentage Error) [27], and at a distance of
20 cm MAPE = 4.16% or 2.10% [28]. With regards to the system with induction loops, in publication [29],
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accuracy measures were given for four categories of vehicles: RMSE—from 2.5 km/h to 8.6 km/h,
MAPE—from 1.8% to 9%.

As we can see in Table 5, the lowest MAE of the estimated length occurred for C class sedans and
wagons (0.44 m). The MAE for the longest car is about 8.5% (5.2 m). The vehicle clearance G has its
influence on the result, e.g., if we compare MAE values in columns 5 and 6 of class C. The largest
relative MAE error is observed for class D, i.e., large VANs and minibuses. That means it equals to
25% with an average length of 7 m to 8 m. When the correction factor is used the relative error is
9.75%. The comparable error values are given in publication [30]; however, in our system the sampling
frequency is five times higher, the distance D is 10 times shorter and the number of sensor nodes is
eight times less.

With regards to designing a reliable transportation system, the AMR sensors are an alternative
choice to magneto-impedance sensors [19], other magnetic field sensors and inductive loops. They
are dedicated to measure small magnetic fields (a few mT). Due to their small size, low cost and low
detection limit (nT), they are suitable for communication systems and mobile applications [2]. They
can also be considered suitable to be installed in areas where inductive loops cannot be cut in the road
surface [12].

Author Contributions: Conceptualization: V.M., D.N. and D.M.; Methodology: D.A. and A.I.; Software: D.N.
and D.M.; Validation: A.I., D.A., A.V. and M.Z.; Visualization: V.M., A.I., D.M. and W.W.; Investigation: V.M.,
D.N., D.A., A.V. and M.Z.; Resources: M.Z.; Data Curation: D.N.; Writing—Original Draft Preparation: A.I., D.M.,
D.A. and M.C.; Writing—Review and Editing: A.I., D.A. and W.W.; Supervision: V.M.; Project Administration:
D.A.; Funding Acquisition: A.V. and M.Z.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Guerrero-Ibanez, J.; Zeadally, S.; Contreras-Castillo, J. Sensor Technologies for Intelligent Transportation
Systems. Sensors 2018, 18, 1212. [CrossRef] [PubMed]

2. Hott, M.; Hoeher, P.A.; Reinecke, S.F. Magnetic Communication Using High-Sensitivity Magnetic Field
Detectors. Sensors 2019, 19, 3415. [CrossRef] [PubMed]

3. Nishibe, Y.; Ohta, N. Thin Film Magnetic Field Sensor Utilizing Magneto Impedance Effect. R D Rev. Toyota
CRDL 2000, 35, 1–7. [CrossRef]

4. Nishibe, Y.; Ohta, N.; Tsukada, K.; Yamadera, H.; Nonomura, Y.; Mohri, K.; Uchiyama, T. Sensing of Passing
Vehicles Using a Lane Marker on a Road With Built-In Thin-Film MI Sensor and Power Source. IEEE Trans.
Veh. Technol. 2004, 53, 1827–1834. [CrossRef]

5. Belenguer, F.M.; Salcedo, A.M.; Ibanez, A.G.; Sánchez, V.M. Advantages offered by the double magnetic
loops versus the conventional single ones. PLoS ONE 2019, 14, e0211626. [CrossRef]

6. Hu, Y.; Kang, W.; Fang, Y.; Xie, L.; Qiu, L.; Jin, T. Piezoelectric Poly(vinylidene fluoride) (PVDF) Polymer-Based
Sensor for Wrist Motion Signal Detection. Appl. Sci. 2018, 8, 836. [CrossRef]

7. Burnos, P.; Rys, D. The Effect of Flexible Pavement Mechanics on the Accuracy of Axle Load Sensors in
Vehicle Weigh-in-Motion Systems. Sensors 2017, 17, 2053. [CrossRef]

8. Gajda, J.; Burnos, P.; Sroka, R. Accuracy Assessment of Weigh-in-Motion Systems for Vehicle’s Direct
Enforcement. IEEE Intell. Transp. Syst. Mag. 2018, 10, 88–94. [CrossRef]

9. Markevicius, V.; Navikas, D.; Idzkowski, A.; Valinevicius, A.; Zilys, M.; Andriukaitis, D. Vehicle Speed and
Length Estimation Using Data from Two Anisotropic Magneto-Resistive (AMR) Sensors. Sensors 2017, 17,
1778. [CrossRef]

10. Markevicius, V.; Navikas, D.; Idzkowski, A.; Andriukaitis, D.; Valinevicius, A.; Zilys, M. Practical Methods
for Vehicle Speed Estimation Using a Microprocessor-Embedded System with AMR Sensors. Sensors 2018, 7,
2225. [CrossRef]

11. Markevicius, V.; Navikas, D.; Idzkowski, A.; Valinevicius, A.; Zilys, M.; Janeliauskas, A.; Walendziuk, W.;
Andriukaitis, D. An Effective Method of Vehicle Speed Evaluation in Systems Using Anisotropic
Magneto-Resistive Sensors. IEEE Intell. Transp. Syst. Mag. 2019. [CrossRef]

http://dx.doi.org/10.3390/s18041212
http://www.ncbi.nlm.nih.gov/pubmed/29659524
http://dx.doi.org/10.3390/s19153415
http://www.ncbi.nlm.nih.gov/pubmed/31382659
http://dx.doi.org/10.1016/S0924-4247(99)00327-1
http://dx.doi.org/10.1109/TVT.2004.836889
http://dx.doi.org/10.1371/journal.pone.0211626
http://dx.doi.org/10.3390/app8050836
http://dx.doi.org/10.3390/s17092053
http://dx.doi.org/10.1109/MITS.2017.2776111
http://dx.doi.org/10.3390/s17081778
http://dx.doi.org/10.3390/s18072225
http://dx.doi.org/10.1109/MITS.2018.2889693


Sensors 2019, 19, 5234 16 of 16

12. Klein, L.A.; Mills, M.K.; Gibson, D.R.P. Traffic Detector Handbook: Third Edition-Volume I; Federal Highway
Administration: McLean, VA, USA, 2006.

13. Bozuyla, M.; Tola, A.T.; Murat, Y.S. A Novel Safe Merging Algorithm for Connected Vehicles Using NetLogo.
Elektron. Elektrotechnika 2018, 24, 3–7. [CrossRef]

14. Bokare, P.S.; Maurya, A.K. Acceleration-Deceleration Behaviour of Various Vehicle Types. Transp. Res.
Procedia 2017, 25, 4733–4749. [CrossRef]

15. Misra, R.; Bora, A.; Dewangan, G. Estimation of error on the cross-correlation, phase and time lag between
evenly sampled light curves. Astron. Comput. 2018, 23, 83–91. [CrossRef]

16. Tamim, N.S.M.; Ghani, F. Techniques for Optimization in Time Delay Estimation from Cross Correlation
Function. Int. J. Eng. Technol. IJET-IJENS 2010, 10, 69–75.

17. Hoeschen, B.; Erker, M.; Janson, B.; Medland, R. Best Practices Guidebook: Collecting Short Duration Manual
Vehicle Classifications Counts on High Volume Urban Facilities; Federal Highway Administration: Denver, CO,
USA, 2005.

18. Schulz, L.; Heinisch, P.; Richter, I. Calibration of Off-the-Shelf Anisotropic Magnetoresistance Magnetometers.
Sensors 2019, 8, 1850. [CrossRef]

19. Honkura, Y.; Yamamoto, M.; Hamada, N.; Shimode, A. Magneto-Sensitive Wire, Magneto-Impedance
Element and Magneto-Impedance Sensor. Eur. Pat. Appl. EP2276082A1, 2009.

20. Thakur, A.; Malekian, R. Fog Computing for Detecting Vehicular Congestion, an Internet of Vehicles Based
Approach: A Review. IEEE Intell. Transp. Syst. Mag. 2019, 11, 8–16. [CrossRef]

21. Bugdol, M.; Segiet, Z.; Krecichwost, M.; Kasperek, P. Vehicle detection system using magnetic sensors. Transp.
Probl. 2014, 9, 49–60.

22. Grzechca, D.; Rybka, P.; Paszek, K. Evaluation of the Accuracy of ADAS Module Readings Based on an
Analysis of the Transient Supply Current and Neural Network Application. Elektron. Elektrotechnika 2018, 24,
46–52. [CrossRef]

23. Sarcevic, P.; Pletl, S. False Detection Filtering Method for Magnetic Sensor-Based Vehicle Detection Systems.
In Proceedings of the 6th IEEE International Symposium on Intelligent Systems and Informatics, SISY 2018,
Subotica, Serbia, 13–15 September 2018; pp. 277–281. [CrossRef]

24. Xu, C.; Wang, Y.; Bao, X.; Li, F. Vehicle classification using an imbalanced dataset based on a single magnetic
sensor. Sensors 2018, 18, 1690. [CrossRef] [PubMed]

25. Dong, H.; Wang, X.; Zhang, C.; He, R.; Jia, L.; Qin, Y. Improved Robust Vehicle Detection and Identification
Based on Single Magnetic Sensor. IEEE Access 2018, 6, 5247–5255. [CrossRef]

26. Chen, X.; Kong, X.; Xu, M.; Sandrasegaran, K.; Zheng, J. Road Vehicle Detection and Classification Using
Magnetic Field Measurement. IEEE Access 2019, 7, 52622–52633. [CrossRef]

27. Balid, W.; Tafish, H.; Refai, H.H. Intelligent Vehicle Counting and Classification Sensor for Real-Time Traffic
Surveillance. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1784–1794. [CrossRef]

28. Kwon, Y.J.; Kim, D.H.; Choi, K.H. A single node vehicle detection system using an adaptive signal
adjustment technique. In Proceedings of the 20th International Symposium on Wireless Personal Multimedia
Communications (WPMC), Bali, Indonesia, 17–20 December 2017; pp. 349–353.

29. Mielczarek, M.; Gajda, J. Individual vehicle speed estimation on the base of magnetic profile analysis
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