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Abstract: Power amplifier (PA) nonlinearity is typically unique at the radio frequency (RF) front-end
for particular emitters. It can play a crucial role in the application of specific emitter identification
(SEI). In this paper, under the Multi-Input Multi-Output (MIMO) multipath communication scenario,
two data-aided approaches are proposed to identify multi-antenna emitters using PA nonlinearity.
Built upon a memoryless polynomial model, the first approach formulates a linear least square (LLS)
problem and presents the closed-form solution of nonlinear coefficients in a MIMO system by means
of singular value decomposition (SVD) operation. Another alternative approach estimates nonlinear
coefficients of each individual PA through nonlinear least square (NLS) solved by the regularized
Gauss–Newton iterative scheme. Moreover, there are some practical discussions of our proposed
approaches about the mismatch of the order of PA model and the rank-deficient condition. Finally,
the average misclassification rate is derived based on the minimum error probability (MEP) criterion,
and the proposed approaches are validated to be effective through extensively numerical simulations.

Keywords: specific emitter identification; multiple antennas; power amplifier nonlinearity; nonlinear
least square

1. Introduction

Specific emitter identification (SEI) is committed to distinguish individual radiation sources by
using essential radio frequency fingerprint (RFF) features extracted from different emitters. It can
be applied to military communication [1], physical layer authentication [2], and enhancement of the
security in wireless network, such as very high frequency (VHF) radio networks, Wi-Fi networks,
cognitive radios, cellular networks [3], and so on.

In general, based on different states of signals, the identifiable RFF features for SEI are usually
extracted from the transient signal or the steady-state signal. The transient signal, actually the turn-on
signal, carries unique and unintentional information that is advantageous to emitter identification,
and the features underlying are mainly extracted from the instantaneous amplitude, phase, frequency,
and energy envelope [4–6]. Nevertheless, it is difficult to capture the transient signal since the duration
time is often too short to use. As for the steady-state signal, many researchers focus on extracting
the distinguishable features that are generated by hardware imperfection of the components inside
the radiation source through advanced signal processing techniques. On one hand, the statistical
characteristics of the original RF signal, such as the high order spectrum, have been used as the
features to identify different emitters [7,8]. On the other hand, the Time-Frequency Analysis (TFA)
methods [9,10], Wavelet Transform (WT) [11,12], and Hilbert–Huang Transform (HHT) [13,14] are
successively applied to extract the transform domain characteristics from the received RF signals.
However, these methods have little knowledge of impairments inside the individual emitter, and the
performance can be easily affected by the wireless channels. Hence, there are many additional works
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in literature to model the characteristic of hardware imperfection of the internal component such
as digital to analog converter (DAC) [15], modulator [16,17], and power amplifier (PA) [18–21], etc.,
and to extract the unique RF front-end feature for a particular emitter. This paper concentrates on the
extraction of PA nonlinear features to identify communication emitters with multiple antennas under
Multiple-Input Multiple-Output (MIMO) multipath channels.

It is well known that the MIMO transmission scheme can improve the spectral efficiency by
introducing additional spatial diversity. In practice, transceivers with multiple transmit and receive
antennas have shown their powerful merits and served as the major mechanism for current and future
wireless communication systems. Meanwhile, due to the increasing number of antennas for MIMO
emitters, there will be more diverse PA nonlinearities available at the RF front end for SEI. A lot
of research efforts have been afforded to analyze the nonlinearity incurred by PAs with the Saleh
model [22], polynomial model [23], and Volterra model [24], etc. in MIMO systems, whereas they
are mainly devoted to implementing predistortion or PA linearization. However, to the authors’ best
knowledge, there are few open results of SEI in MIMO communication systems. In [21], Li uses a
modified artificial bee colony (ABC) algorithm to estimate the coefficients of the Hammerstein model,
a simplified version of the Volterra model, in a MIMO system. However, the impact of wireless
propagation channels is not considered, and the ABC algorithm also appears complicated to obtain
the optimal solution in the context of SEI. Recently, in [25,26], an estimation of signal parameters
via rotational invariance technique (ESPRIT)-based approach, which takes advantage of the multiple
antennas at the receiver to separate the RFF from wireless channel, is proposed for RFF estimation
in orthogonal frequency division multiplexing (OFDM) systems, whereas it is only suitable for a
Single-Input Multiple-Output (SIMO) system rather than the MIMO one. In [19,20], a memoryless
polynomial model is used to characterize the nonlinearity of PA, and a data-aided iterative algorithm
is proposed to estimate nonlinear coefficients of the PA model for SEI from the observations in both
MIMO and single-input single-output (SISO) scenarios.

Treating the fact that all PAs of a multiple-antenna emitter are independent from each other and
following a memoryless polynomial model, in this paper, we propose two data-aided solutions that are
different from the idea of [19,20] in the MIMO multipath scenario. Given received signals, we extend
the method in [27] to the MIMO multipath scenario; a closed-form solution of the nonlinear coefficients
is thus obtained by combining the linear least square (LLS) and singular value decomposition (SVD)
methods. An alternative but more effective approach is also presented through solving a nonlinear least
square (NLS) problem with independent variables consisting of both channel coefficients and nonlinear
coefficients of the PA model. Furthermore, we explicitly provide deep discussion on the parameter
estimate bias for the general case of unknown order of the PA model. In particular, it is proved
in this paper that the rank-deficient property of both the NLS and LLS problems are in association
with the amplitude level of the training sequence. The average misclassification rate based on the
minimum error probability (MEP) criterion is theoretically derived, and we finally verify the proposed
approaches via extensive numerical simulations.

The rest of the paper is organized as follows. In Section 2, we introduce the memoryless nonlinear
model of PA in the MIMO multipath system. In Section 3, we present the linear and nonlinear
frameworks for SEI, respectively. Then, the practical discussions for the proposed approaches and
the misclassification rate are separately given in Sections 4 and 5. In Section 6, numerical results are
presented to demonstrate the effectiveness. Section 7 summarizes the paper.

2. Preliminaries and Problem Formulation

This paper mainly considers the scenario that K communication emitters equipped with multiple
antennas are identified through a multiple-antenna receiver in the MIMO multipath environment.
Since constant modulus modulation schemes such as phase-shift keying (PSK) may generally introduce
less nonlinear distortion, we thus consider how to extract the underlying PA nonlinearity of each
emitter from the received signal, with the help of a quadrature amplitude modulation (QAM) training
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sequence. In other words, PA nonlinearity is treated as a unique RFF of the emitter to fulfill the
identification task, and we assume QAM is used by emitters when communicating with the receiver.

2.1. Memoryless Nonlinear PA Modeling

Generally, the memoryless polynomial model is simple in expression and can describe the
intermodulation distortion of an RF PA well, such as PA9440 amplifier [28], in the narrowband
communication system. More specifically, the polynomial coefficients are corresponding to the
intermodulation coefficient such as third-order interception point (IP3) and fifth-order interception
point (IP5). In this work, we choose the memoryless polynomial model to characterize the nonlinear
behavior of all PA units in a multi-antenna emitter; then, the relationship between baseband equivalent
input and output of the PA [20] at jth antenna branch can be written as

xj(n) =
(P+1)/2

∑
p=1

α2p−1,j ·
(
sj(n)

)p ·
(

s∗j (n)
)p−1

, (1)

where P denotes the max order of the PA model and can be configured as P = 3, 5, 7, . . . . At the RF
front-end of emitters, the frequency components that resulted from the even terms in the model can be
removed by the bandpass filter, thus the even terms are ignored in Equation (1). sj(n) is the baseband
equivalent input of the nonlinear system, denoting the nth QAM symbol transmitted over the jth
antenna. The superscript “*” is the conjugate operator. α2p−1,j denotes the normalized (2p− 1)th order
PA coefficient of the jth antenna and without loss of generality, we set α1,j = 1 hereafter. xj(n) stands
for the response of the nonlinear system.

In this paper, we suppose that each emitter is equipped with J antennas. Therefore, the normalized
discrete-time baseband equivalent form of the nonlinear distortion model for the multi-antenna system
can be expressed as


x1(n)
x2(n)

...
xJ(n)

 =


s̄1(n)
s̄2(n)

...
s̄J(n)

+
(P+1)/2

∑
p=2


α2p−1,1 0 . . . 0

0 α2p−1,2 . . .
...

...
...

. . . 0
0 . . . 0 α2p−1,J




(s̄1(n))

p ·
(
s̄∗1(n)

)p−1

(s̄2(n))
p · (s̄∗2(n))

p−1

...(
s̄J(n)

)p ·
(

s̄∗J (n)
)p−1

, (2)

where s̄j(n) is the normalized version of sj(n).

2.2. MIMO Multipath Channel

The propagation channel considered in this paper is a linear discrete MIMO system with J transmit
antennas and R receive antennas. Given the length of the training sequence N, the signal received at
the antenna r can be represented by

yr = hr1 ⊗ x1 + hr2 ⊗ x2 + · · ·+ hrJ ⊗ xJ + vr, (3)

where ⊗ denotes the convolution operation. xj is the nonlinear distortion signal transmitted over the
jth antenna, hrj represents the channel impulse response between the jth transmit antenna to the rth
receive antenna and remains time-invariant during the data receiving process, and vr is the zero-mean
additive white Gaussian noise received at the antenna r. Thus, we can unfold Equation (3) naturally in
the form of

yr = X(1)hr1 + X(2)hr2 + · · ·+ X(J)hrJ + vr, (4)

where the order of the channel is L, X(j)∈ C(N+L−1)×L is a Toeplitz matrix populated by xj in Equation
(3). Note that the nonlinear coefficients are cross-coupled with channel coefficients in Equation (4);
therefore, the major target arising in this paper is to get the accurate estimations of the separate
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nonlinear coefficient {α2p−1,j} via the received signal {yr} with the aid of training sequences in MIMO
multipath scenarios, before we can identify a specific emitter.

3. The Proposed Estimation Approaches

As mentioned above, it has been reported in [19,20] that the nonlinear coefficients of PAs can be
estimated with two stages. The first stage establishes the initial estimation of channel coefficients and
nonlinear coefficients through some well-designed training sequences sorted by amplitude. Then,
an iterative method is applied at the second stage to eliminate the estimate bias. In [27], a PA parameter
estimator combined the best linear unbiased estimation (BLUE) and singular value decomposition
(SVD) is proposed for the SISO system. Since the method in [27] can get a closed-form solution of the
PA nonlinear coefficients and has no constraint on the ordering of the amplitude of training symbols,
which is more practical compared to the one in [19], we extend it to the MIMO multi-path scenarios
and mark it as linear method in MIMO (LMM). Furthermore, we propose an alternative method to
extract PA parameters in a nonlinear least square (NLS) manner. It should be noted that both LMM
and NLS approaches can be degraded into SISO systems.

3.1. The LMM Approach

Note that, in [27], if the product terms of the channel coefficients and the nonlinear coefficients
are substituted by some new integrated variables, we can obtain a set of linear equations with regard
to the new variables, thus the product terms can be readily solved by LLS. Then, the only thing left to
us is to extract α2p−1,j from the solution.

According to Equation (4), we first vectorize signals received by all R antennas into vector
yvec, i.e., yvec =

[
yT

1 , yT
2 , . . . , yT

R
]T∈ CR(N+L−1), where the superscript “T” is the transpose operator.

In addition, the signal at the receiver side now is

yvec = Dshα + vvec, (5)

where vvec is the corresponding reshaped noise vector. hα∈ CRJL(P+1)/2 is the integrated vector
composed of all independent variables and can be represented as:

hα =
[
u1,0

T , . . . , u1,L−1
T
∣∣∣. . .

∣∣∣uR,0
T , . . . , uR,L−1

T
]T

, (6)

with
ur,lh = Wr,lh αvec, (7)

αj =
[
1, α3,j, α5,j, . . . , αP,j

]T , (8)

αvec =
[
α1

T , α2
T , . . . , αJ

T
]T

, (9)

Wr,lh = blkdiag
(
hr1(lh)Iα, hr2(lh)Iα, . . . , hrJ(lh)Iα

)
, (10)

in which lh = 0, . . . , L − 1, Iα∈ C(P+1)/2×(P+1)/2 is a unit matrix and blkdiag(·) is the block
diagonalization function. In addition, Ds is defined by

Ds = blkdiag

ds, ds, . . . , ds︸ ︷︷ ︸
R

 , (11)

with ds∈ C(N+L−1)×JL(P+1)/2 being constructed by the known training sequence. To elaborate the
process, we provide a numerical example in Appendix A.
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Consequently, the least square (LS) estimation of hα in Equation (5) is

ĥα = D†
s yvec, (12)

where the superscript “†” denotes the pseudo-inverse operation. It is worth noting that, compared
to the BLUE method in [27], the least square solution of Equation (12) has no requirement on the
estimation of noise power. Obviously, the condition of a unique solution to Equation (12) is natural
that Ds is full column rank and N ≥ JL(P + 1)/2− L + 1 is satisfied.

Afterwards, we define

Q = [û1,0, . . . , û1,L−1 |. . . |ûR,0, . . . , ûR,L−1 ] (13)

and further perform SVD on the matrix Q∈ CJ(P+1)/2×RL to get a closed-form estimation of the PA
parameters in the MIMO system. Since the normalized first-order nonlinear coefficients are assumed
equal to 1, the execution steps of PA nonlinear coefficients estimator can be summarized as:

(1) Reshape the observations according to Equation (5), and estimate hα according to Equation (12).
(2) Reshape the ĥα into the matrix Q, then perform SVD on Qj = Uj∑jV

H
j , where Qj is a submatrix

consisting of the ((j− 1)(P + 1)/2 + 1)th to (j(P + 1)/2)th rows of the matrix Q.
(3) Estimate the nonlinear coefficients of jth transmitting antenna as follows:

α̂j =
1

U(1,1)
j

U(:,1)
j , (14)

where U(:,1)
j and U(1,1)

j are the first column and first element of Uj, respectively.

3.2. The NLS Approach

Bearing in mind the received signal in Equation (4) for MIMO multipath transmission system,
we can now further expand the expression with a series of nonlinear equations due to the existence of
product term of the nonlinear coefficient α2p−1,j and the channel coefficient hrj(lh). As a consequence,
the problem of nonlinear coefficients estimation can thus be alternatively transformed into a NLS
optimization one when introducing a training sequence with length N.

In order to get a more robust solution, we choose to solve a constrained NLS optimization problem
with q = RJL + J (P− 1) /2 independent variables, and the cost function can be given by:

min
z

Gγ(z) = min
z

1
2
‖g(z)‖2

2 +
1
2
‖γz‖2

2 , (15)

where ‖·‖2 denotes 2-norm. z∈ Cq is the vector consisting of the independent variables and can be
described as z =

[
zT

h , zT
α

]T , in which zα and zh are respectively as

zα =
[
α3,1, . . . , αP,1, . . . , α3,J , . . . , αP,J

]T (16)

zh =
[
H1

T , H2
T , . . . , HR

T
]T

, (17)

with
Hr =

[
hr1(0), . . . , hrJ(0), . . . , hr1(L− 1), . . . , hrJ(L− 1)

]T . (18)

‖γz‖2
2

/
2 is the regularization. g(z)∈ CR(N+L−1) denotes the residual function: Cq→ CR(N+L−1)

with R(N + L− 1) ≥ q, that is,

g(z) =
[
∆y1

T , ∆y2
T , . . . , ∆yR

T
]T

, (19)
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with
∆yr = yr −

(
X(1)hr1 + X(2)hr2 + · · ·+ X(J)hrJ

)
. (20)

According to [29], the regularized Gauss–Newton iterative method is introduced here to figure
out z, i.e.,

zi+1 = zi + ∆zi (21)

with

∆zi = −
(
(J(zi))

HJ(zi) + γ2Iq

)−1
[

J(zi)

γIq

]H [
g(zi)

γzi

]
. (22)

The superscript “H” denotes conjugate transposition, and Iq is a q× q unit matrix. J(z) is the
Jacobian matrix of g(z), that is, the first-order derivative of g(z) with respect to z.

In general, given the Jacobian matrix J(z) with full column rank, one can apply the regularized
Gauss–Newton method in Equation (21) to optimize problem Equation (15) and can eventually
obtain the optimal solution zopt. In addition, the appropriate regularization factor γ can improve
the condition number of the inverse matrix in Equation (22), which guarantees the robustness of the
NLS optimization.

4. Practical Discussions on the Proposed Approaches

As mentioned in Section 3, we can get a closed-form solution for the problem of nonlinear
coefficient estimation through the LMM approach. Alternatively, an iterative NLS approach can also
be applicable to extract PA parameters from observations. However, in practice, there are two main
factors that affect the accuracy of our proposed algorithms. The first factor is the case where the order
of PA model is mismatched between the transmitting and receiving ends. The second one is the case
where the matrix Ds and the Jacobian matrix J(z) are rank-deficient. In the next Sections 4.1 and
4.2, we first theoretically analyze the impact of the mismatched model. After that, we present the
rank-deficient condition of the Ds and J(z) matrix in Section 4.3.

4.1. Overdetermined Order of the PA Model

In this subsection, we consider the impact of the overdetermined order of the PA model
on the estimation accuracy of the nonlinear coefficients. Assume that all the PAs of an emitter
actually have the same model order as P. If we obtain an overdetermined order of the PA
model beforehand, e.g., P0 with (P0 > P), the expected observation of yvec = D(1,...,P)

s h(1,...,P)
α +

vvec may be formulated as yvec = D(1,...,P0)
s h(1,...,P0)

α + vvec instead. Since D(1,...,P)
s h(1,...,P)

α equals(
D(1,...,P0)

s h(1,...,P0)
α −D(P+2,...,P0)

s h(P+2,...,P0)
α

)
, the estimation of hα can thus be expressed as follows:

ĥα =
(

D(1,...,P0)
s

)†
yvec

=
(

D(1,...,P0)
s

)† (
D(1,...,P)

s h(1,...,P)
α + vvec

)
= h(1,...,P0)

α −
(

D(1,...,P0)
s

)† (
D(P+2,...,P0)

s h(P+2,...,P0)
α

)
+
(

D(1,...,P0)
s

)†
vvec,

(23)

where D(a,...,b)
s denotes a matrix Ds that is populated by the ath to the bth order versions of training

sequence, and h(a,...,b)
α denotes a vector hα that is populated by the corresponding ath to the bth order

nonlinear coefficients. Some numerical examples for the construction process are also provided in
Appendix A.

Note that the (P + 2)th to the P0th order the nonlinear coefficients and h(P+2,...,P0)
α should be

all zeros in this case, then, we have ĥα = h(1,...,P0)
α +

(
D(1,...,P0)

s

)†
vvec, which is equivalent to the

unbiased estimation of the h(1,...,P)
α , and the additive white noise has no effect on the unbiasedness of
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the estimation results. Therefore, we can conclude that, if the order of the PA model is overdetermined,
the estimation of the nonlinear coefficients obtained by the LMM approach is still unbiased.

4.2. Underdetermined Order of the PA Model

In the sequel, we attempt to analyze the case that the order of the PA model is underdetermined,
i.e., P0 is lower than the actual P. It is easy to understand that D(1,...,P)

s h(1,...,P)
α now equals(

D(1,...,P0)
s h(1,...,P0)

α + D(P0+2,...,P)
s h(P0+2,...,P)

α

)
, so that the estimation of hα can be written as:

ĥα = h(1,...,P0)
α +

(
D(1,...,P0)

s

)† (
D(P0+2,...,P)

s h(P0+2,...,P)
α

)
+
(

D(1,...,P0)
s

)†
vvec. (24)

Attention must be paid to non-zero h(P0+2,...,P)
α in Equation (24) due to the non-zero nonlinear

PA coefficients through the (P0 + 2)th to the Pth order. The resulting ĥα is a biased estimation w.r.t.

h(1,...,P)
α and the estimate bias equals

(
D(1,...,P0)

s

)† (
D(P0+2,...,P)

s h(P0+2,...,P)
α

)
.

Furthermore, if we define a guess as:

Guess 1. If the training squences are discrete amplitude communication symbols such as PSK and QAM, then(
D(1,...,P0)

s

)†
D(P0+2,...,P)

s = blkdiag(c, c, . . . , c︸ ︷︷ ︸
RJL

), (25)

where c∈ Cm×n is a constant matrix with m = P0+1
2 and n = P−P0

2 .

Then, the estimate bias of the nonlinear PA coefficients can be given as the following Proposition 1.

Proposition 1. If Guess 1 holds true, the estimate bias of the nonlinear PA coefficients obtained by SVD
according to Equation (14) is shown as

∆α3,j =
(c21αP0+2,j + · · ·+ c2nαP,j)− (c11αP0+2,j + · · ·+ c1nαP,j)α3,j

1 + (c11αP0+2,j + · · ·+ c1nαP,j)
(26a)

... (26b)

∆αP0,j =
(cm1αP0+2,j + · · ·+ cmnαP,j)− (cm1αP0+2,j + · · ·+ cmnαP,j)αP0,j

1 + (c11αP0+2,j + · · ·+ c1nαP,j)
. (26c)

Proof of Proposition 1. See Appendix B.

Therefore, we can conclude that, when the order of the PA model is underdetermined, the bias
term of each nonlinear coefficient is related to training sequence and the higher-order nonlinear
coefficients. In addition, the high-order nonlinear coefficients (i.e., αP0+2,j to αP,j) are still unknown.

4.3. Rank Deficiency Condition of the Proposed Approaches

As mentioned earlier, it is impossible to determine a unique solution for the LLS problem
in Equation (12) when the matrix Ds is rank-deficient. In addition, for the NLS problem in Equation
(15), it is also hard for the regularized Gauss–Newton method in Equation (21) to find the global
optimal solution when the Jacobian matrix J(z) is rank-deficient at every z. However, since QAM is
employed by all emitters, the training sequence has only a limited level of amplitude. We find that
the rank attributes of Ds and J(z) are both associated with the maximum order of the PA model. The
specific relationship can be revealed by Proposition 2 as follows.



Sensors 2019, 19, 5233 8 of 27

Proposition 2. Given QAM symbols with M modulus values as the training sequence and the maximum P
order of the PA model, the matrix Ds is rank-deficient and the Jacobian matrix J(z) is also rank-deficient at every
z, if M < (P + 1)/2.

Proof of Proposition 2. See Appendix C.

According to the Proposition 2, the Ds and J(z) are full rank as long as the amplitude type of signal
is sufficient. Therefore, our proposed approach can be applied in some single-carrier communication
systems with higher order QAM modulation such as 16-QAM, 64-QAM and 256-QAM, which have 3,
9, and 32 different modulus values, respectively. Actually, it appears that our proposed approaches are
readily suitable for other popular wireless communication systems, such as MIMO-OFDM systems,
where there will be no rank-deficient problem of Ds and J(z) in nature since the amplitude of the
transmitted signal is generally continuous. Moreover, it is not necessary to estimate the channel order
in a MIMO-OFDM system due to its ability to resist multipath effects, which will make the proposed
approach more practical.

5. Error Rate Analysis For Classification

In this paper, we apply a minimum error probability (MEP) criterion [30] based on Bayesian
theory to classify different emitters, and the RFF feature of each emitter is composed of the estimated
nonlinear coefficients and can be expressed as follows:

a =
[
a3

T , a5
T , . . . , aP

T
]T

, (27)

with
ap = [Re(α̂p,1), . . . , Re(α̂p,J), Im(α̂p,1), . . . , Im(α̂p,J)]

T , (28)

where p = 3, 5, . . . , P.
Here, we take the case where there are two emitters as an example to give the derivation of the

decision criteria, and the binary hypothesis test model can be considered as{ C1 : a = m1 + vα, (29a)

C2 : a = m2 + vα, (29b)

where Ci denotes the category i, i = 1, 2; vα is composed of the residual additive Gaussian noise in
the estimations of the nonlinear coefficients and we assume that each element of vα obeys a Gaussian
distribution with a zero mean and a variance of δ2; m1∈ CJ(P−1) and m2∈ CJ(P−1) are respectively the
mean vectors of the estimated feature vector a for the two emitters, which can be obtained from the
samples collected offline. Thus, the decision rule can be derived based on MEP criterion as follows:

(m2 −m1)
Ta >

m2
Tm2 −m1

Tm1

2
, a ∈ C2, (30a)

(m2 −m1)
Ta <

m2
Tm2 −m1

Tm1

2
, a ∈ C1, (30b)

where the test statistic is ats = (m2 −m1)
Ta and the decision threshold is thr = (m2

Tm2 −m1
Tm1)

/
2.

For simplicity, if we assume that the variables in a are independent of each other, then the test
statistic ats ∼ N

(
mts, δ2

ts
)
, for the i-th emitter, the mean is as m(i)

ts = (m2 −m1)
Tmi, i = 1, 2, and the

variance is as δ2
ts =

J(P−1)
∑

k=1
δ2β2

k with βk being the k-th element of (m2 −m1). As a result, with the
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assumption of equally probable hypotheses, the average misclassification rate based on MEP criterion
can be derived as

P̄e =
1
2 [Pr( ats > thr|C1) + Pr( ats < thr|C2)]

= Φ
(
− (m2−m1)

T(m2−m1)
2δts

)
= Φ

(
−
√
(m2−m1)

T(m2−m1)

2δ

)
,

(31)

where Φ(x) =
∫ x
−∞

1√
2π

e−x2/2dx and Φ(−x) = 1−Φ(x). When x increases, Φ(−x) decreases.
As for the case where the estimations of the nonlinear coefficients are unbiased, the mean values

of the RFF feature for the two emitters are readily as

mi = [mi
(3)T

, mi
(5)T

, . . . , mi
(P)T

]T (32)

with
mi

(p) = [Re(α(i)p,1), . . . , Re(α(i)p,J), Im(α
(i)
p,1), . . . , Im(α

(i)
p,J)]

T , (33)

where α
(i)
p,j is the nonlinear coefficient of the i-th emitter. However, for the case of biased estimations,

m̃i = mi + ∆mi, where
∆mi = [∆mi

(3)T
, ∆mi

(5)T
, . . . , ∆mi

(P)T
]T (34)

with
∆mi

(p) = [Re([∆α
(i)
p,1, . . . , ∆α

(i)
p,J ]), Im([∆α

(i)
p,1, . . . , ∆α

(i)
p,J ])]

T (35)

being the mean of the biases with i = 1, 2 in the estimation of RF fingerprint features. Therefore,
according to Equation (31), the average misclassification rate for this case can be obtained by:

P̄e = Φ

− (m̃2−m̃1)
T(m̃2−m̃1)

2

√
J(P−1)

∑
k=1

δ2 β̃2
k


= Φ

(
−
√

θ1+θ2+θ3
2δ

)
,

(36)

where ∆βk is the k-th element of (∆m2 − ∆m1) and
θ1 = (m2 −m1)

T(m2 −m1) (37a)

θ2 = 2(m2 −m1)
T(∆m2 − ∆m1) (37b)

θ3 = (∆m2 − ∆m1)
T(∆m2 − ∆m1). (37c)

Therefore, we can conclude as follows:

(1) The P̄e decreases as the variance of the additive noise decrease.
(2) The P̄e decreases as the difference between the mean values of the RF fingerprint feature for

the two emitters increases, which indicates that the PA parameters of each emitter should be
designed to be as different as possible in a bid to achieve better performance.

(3) According to Equation (31), as for a fixed P, more nonlinear coefficients are used as features

will make the
√
(m2 −m1)

T(m2 −m1) larger, which obviously leads to better classification
performance.

(4) According to Equation (36), when there are biases in the estimations, the additional terms θ2 and
θ3 may cause P̄e to decrease compared to the case where there is no bias.

More generally, as for K (K > 2) emitters, with the assumption of equally probable hypotheses,
the average misclassification rate based on MEP criterion can be represented as

P̄e = 1− P̄c = 1− 1
K
[Pr (D1 |C1 ) + Pr (D2 |C2 ) + · · ·+ Pr (DK |CK )] , (38)
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where P̄c is the average correct classification rate; Dk(k = 1, 2, . . . , K) indicates the discriminant domain
of the kth class and it shows as Equation (39)

(mk −m1)
Ta >

(
mT

k mk −mT
1 m1

)/
2

...

(mk −mk−1)
Ta >

(
mT

k mk −mT
k−1mk−1

)/
2

(mk −mk+1)
Ta >

(
mT

k mk −mT
k+1mk+1

)/
2

...
(mk −mK)

Ta >
(
mT

k mk −mT
KmK

)/
2.

(39)

Therefore, the Pr (Dk |Ck ) can be obtained by solving the multiple integrals in Equation (40)

Pr (Dk |Ck )

=
∫ +∞

mT
k mk−mT

KmK
2

· · ·
∫ +∞

mT
k mk−mT

1 m1
2

f (w1) . . . f (wk−1) f (wk+1) . . . f (wK)dw1 . . . dwk−1dwk+1 . . . dwK , (40)

where f (wi) =
1√

2πδwi
exp(− (wi−(mk−mi)

Tmk)
2

2δ2
wi

) with wi = (mk −mi)
Ta (i = 1, 2, , K and i 6= k), and δwi

is a standard deviation similar to the δts in Equation (31).

6. Numerical Results

6.1. Simulation Setting

In the following simulations, if not specified, we use a 2 × 2 MIMO channel with Rayleigh
multipath fading model, and the number of paths L is set to 2. The training sequences are QAM symbols
with N = 35 for proper complexity and performance trade-off. The regularization factor γ is set to
0.05 for the trade-off between the variance and bias in the estimation of NLS approach. The complex
nonlinear coefficients lead to AM–AM and AM–PM distortion, where the AM–AM distortion is mainly
caused by the IP3 and IP5, and higher order intermodulation distortion is usually ignored [28,31].
Generally, the actual communication system has specific requirements for the out-of-band spectral
emission level of RF signals. Therefore, for the rationality of PA parameters in reality, we select the PA
parameters that AM–AM characteristic obeys the method in [28,31] and the AM–PM is obtained by
slightly adjusting the phase of the parameter in [20]. The nonlinear PA coefficients are displayed in
Table 1, and it has been verified that the out-of-band emission level of the amplified signals is about
40 dBr, which meets the requirement of general agreement.

Table 1. Nonlinear coefficients of the separate PA for each RF chain.

α3,1 α3,2 α5,1 α5,2

Emitter1 0.0210− 0.0365i 0.0290− 0.0503i −0.0099− 0.0011i −0.0158− 0.0018i
Emitter2 0.0182 + 0.0028i 0.0131 + 0.0020i 0.0014− 0.0008i 0.0009− 0.0005i
Emitter3 0.0780− 0.0488i 0.0566− 0.0354i −0.0111− 0.0384i −0.0070− 0.0242i
Emitter4 0.0270− 0.0247i 0.0196− 0.0179i 0.0001− 0.0063i 0.0000− 0.0040i
Emitter5 0.0241 + 0.0393i 0.0174 + 0.0285i 0.0023− 0.0097i 0.0014− 0.0061i
Emitter6 0.0514− 0.0520i 0.0372− 0.0377i 0.0112− 0.0226i 0.0070− 0.0143i
Emitter7 0.0129− 0.0167i 0.0102− 0.0132i −0.0006− 0.0024i −0.0004− 0.0015i
Emitter8 0.0246 + 0.0226i 0.0195 + 0.0179i 0.0011− 0.0062i 0.0007− 0.0039i
Emitter9 0.0335 + 0.0410i 0.0266 + 0.0326i 0.0081− 0.0137i 0.0051− 0.0086i

Emitter10 0.0256− 0.0069i 0.0204− 0.0055i 0.0022− 0.0033i 0.0014− 0.0021i
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In all experiments, we use the Normalized Mean Squared Error (NMSE) to evaluate the estimation
accuracy of the nonlinear coefficients, i.e.,

errα = 10log10

(
E

{
‖αest − αtrue‖2

2

‖αtrue‖2
2

})
, (41)

where αtrue = [α3,1, α3,2, α5,1, α5,2, . . . , αP,1, αP,2]
T , αest is the estimation of the αtrue, and E{·} denotes

the Mathematical Expectation.

6.2. Simulation Results

6.2.1. The Impact of SNR

Note that Liu’s algorithm in [19] assumes all PAs in one emitter are the same. To facilitate the
comparison of the proposed approaches with Liu’s algorithm, we extend Liu’s algorithm to be suitable
for our MIMO scenario. For brevity, we use the name Modified Liu Algorithm (MLA) to represent
the modified version in the following. Here, we set P to 5, and the training sequence is 16-QAM
symbols. At first, we give comparisons among the MLA, LMM, and NLS in Figures 1 and 2, where the
third-order and fifth-order coefficients are combined as a classification feature, from which one can see
that the performance of the LMM and NLS are apparently better than that of MLA, especially at low
signal to noise ratio (SNR) regime. One possible reason lies in that when P equals 5 and the training
sequence is composed of 16-QAM symbols, the Ds and J(z) are both full column rank, whereas the
matrix populated by the training sequence for the initial estimation of MLA method is rank-deficient
regardless of how long the training sequence is. In addition, we notice that the NLS approach also
performs better than the LMM one, which is because the introduction of regularization during the
process of optimization. Furthermore, in order to explore the impact of iterations on performance
of NLS approach, when SNR is 25 dB, we give some results in Figures 3 and 4 to demonstrate the
convergence speed of NLS approach, where 19 iterations are needed to obtain the optimal solution.
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Figure 1. The comparison of the estimation accuracy among the MLA, LMM, and NLS.
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Figure 2. The comparison of the average misclassification rate among the MLA, LMM, and NLS.
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Figure 3. The impact of iterations on the estimation accuracy for the NLS approach.

0 20 40 60 80 100

Iterations of NLS approach

10-3

10-2

10-1

100

A
ve

ra
ge

 m
is

sc
la

ss
ifi

ca
tio

n 
ra

te

LMM with 3th & 5th order

Figure 4. The impact of iterations on the average misclassification rate for the NLS approach.
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In Figure 5, we fit a PA with P = 5, when third-order and fifth-order coefficients are combined as a
classification feature, the classification performance is better than when only the third-order coefficient
is used. This confirms the analysis that, for a fixed P, features with more nonlinear coefficients can
effectively improve classification performance in Section 5. In the next simulations, if not specified,
we use the estimated third-order and fifth-order coefficients together as classification features.
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Figure 5. The impact of SNR on the average misclassification rate for two emitters.

Moreover, in Figures 6 and 7, we present results of the proposed approaches under a 4× 4 MIMO
scenario; as you can see, more RF channels bring more nonlinear coefficients, which is beneficial
to improve classification performance. Here, for convenience, we take the nonlinear coefficients
of Emitter2 and Emitter4 in Table 1 as those of the first 4-antenna emitter, and take the nonlinear
coefficients of Emitter3 and Emitter6 in Table 1 as those of the second 4-antenna emitter.
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Figure 6. The impact of SNR on the estimation accuracy under a 4× 4 MIMO scenario.
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Figure 7. The impact of SNR on the average misclassification rate under a 4× 4 MIMO scenario.

6.2.2. Identification for Multiple Emitters

In this simulation, we test the performance of proposed methods under the multi-user case. Here,
we set the maximum order of PAs in individual emitters to 5, and 16-QAM symbols are used as
the training sequence. The detailed nonlinear coefficients of each emitter are displayed in Table 1.
The results are shown in Figures 8 and 9, where the SNR is set to 25 dB, and each method is performed
by 1000 Monte Carlo simulations.

As we can see from the Figure 8 and Figure 9, our proposed approaches are also robust and
applicable to the multi-user case, and average misclassification rates of them are both increased as
the number of emitters increased. Obviously, the greater the difference in nonlinear characteristics
between emitters, the higher the resolution of the proposed approaches. In this simulation, as far as
the nonlinear coefficients in Table 1 are concerned, the proposed approaches can resolve up to seven
emitters at most.
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Figure 8. The impact of the number of emitters on the estimation accuracy for multiple transmitters.
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Figure 9. The impact of the number of emitters on the average misclassification rate for multiple
transmitters.

6.2.3. The Confirmation of Practical Discussions

Hereafter, we set the number of emitters to 2 (i.e., emitter1 and emitter2), the maximum order
of the PA model P to 5. The first to fifth order parameters are selected from Table 1. When we use
a PA model with P0 = 3 to fit the nonlinearity of the emitters, the results of Figure 10 confirm the
conclusion in the Section 4.2 that the underdetermined order of the PA model indeed leads to the biases
in the estimations of PA parameters. However, the results in Figure 11 show that the classification
performance can be improved by using the biased estimations as features, which reveals that the biases
in Equation (36) can make the difference between the classification features of emitters larger. Where
the training sequence is 16-QAM symbols, the estimated third-order are used as classification features,
and the legends “Well-estimated LMM(NLS)” in Figures 10 and 11 denote that results obtained from a
well-determined order of PA model with P0 = P = 3.
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Figure 10. The impact of SNR on the estimation accuracy for a mismatched PA model.
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Figure 11. The impact of SNR on the average misclassification rate for a mismatched PA model.

Then, according to the Proposition 2, when we use a PA model with P0 = P = 5 to fit the
nonlinearity of emitters, if 4-QAM, which is a constant modulus modulation, is adopted by each
emitter, then it is clear that the Ds and J(z) are both rank-deficient, and there is no unique solution in
this case. Here, we compare the estimation accuracy of when taking 4-QAM and 16-QAM symbols as
training sequence; the results are shown in Figure 12, which obviously corroborates the correctness of
Proposition 2.
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Figure 12. The impact of SNR on the estimation accuracy for rank-deficient approaches.

6.3. Experimental Results

In this subsection, we design a preliminary verification experiment to explore the effectiveness of
our proposed approaches in reality. Due to the limitation of single-channel acquisition, we limit the
proposed approaches in the SISO-OFDM system and validate them in a 802.11.g-based wireless local
area network (WLAN) that is very common in real life. Therefore, we build an experiment platform,
which is shown in Figure 13, to collect the measured router data. In this platform, we first use a LeCroy
WaveMaster 813Zi-A Oscilloscope (Chestnut Ridge, NY, USA) equipped with a single antenna to
acquire the RF signals from three TL-WR740 routers communicating with a smart phone on the 2.412
GHz channel, respectively. In this experiment, we use the extended NLS approach as an example to
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estimate nonlinear coefficients of each router, here we use the “wlan toolbox” in MATLAB R2019a
(MathWorks, Natick, Massachusetts, USA) to perform pre-processing such as timing, synchronization,
and de-frequency offset on the acquired RF signals. Since the nonlinearity of PA mainly caused by IP3,
we set P = 3. Finally, a MEP-based classifier is used to identify the individual router. Note that the
memoryless polynomial model may not be able to describe the nonlinearity of the PA in a broadband
WLAN system, whereas Table 2 indicates that, according to the estimated PA coefficients in Figure 14,
the mean is far greater than the variance for each router, thus the three routers are identifiable based
on the extended NLS approach. Moreover, the average misclassification rates of the three routers
are all 0. Therefore, we can conclude that the mismath of PA model does not affect classification
performance. In addition, we also compare the power spectral density among measured data and
simulated data for three routers in Figures 15–17, respectively, where the legend “Measured baseband
OFDM symbols” denotes downconverted acquired RF signals, the legend “Amplified simulated
baseband OFDM symbols” denotes simulated baseband OFDM signals amplified by the PA with
measured nonlinear coefficients, and the legend “Raw simulated baseband OFDM symbols” denotes
raw simulated baseband OFDM signals, all of their power being normalized. In order to explain the
results in Figures 15–17, we calculate the NMSE between the PSDs of “Amplified simulated baseband
OFDM symbols” and that of “Measured baseband OFDM symbols” for each router, and the NMSEs
of three routers are, respectively, −7.6472, −7.5301 and −7.3589dB, which reveal that the PSD of the
signal reconstructed by using the estimated PA coefficient can well fit that of the measured signal.

Smart phone

Pre-processing MATLAB R2019a

TL-WR740

router

LeCroy WaveMaster 

813Zi-A Oscilloscope

SampleRate: 10GS/s

Figure 13. The 802.11.g-based experiment platform.
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Figure 14. The scatter plot of the estimated 3rd order coefficients for three routers.
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Figure 15. Comparison of power spectral density between measured data and simulated data for
router 1.
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Figure 16. Comparison of power spectral density between measured data and simulated data for
router 2.
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Figure 17. Comparison of power spectral density between measured data and simulated data for
router 3.
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Table 2. The mean and variance of the estimated nonlinear coefficients in Figure 14 for the three routers.

Router1 Router2 Router3

Mean 0.0522− 0.0013i 0.0579 + 0.0008i 0.0441− 0.0000i
Variance 7.1501e−6 2.6937e−6 3.9458e−6

7. Conclusions

This paper investigates the SEI scheme for multiple-antenna communication emitters, using
PA nonlinearity as RFF features with the assumption that all PAs of a multiple-antenna emitter are
independent from each other. Both the LMM and the NLS approaches are proposed to estimate the
nonlinear coefficients in association with the memoryless polynomial PA model, where a closed-form
solution can be obtained by the LMM approach, and the alternative NLS approach achieves better
performance by adopting a regularized Newton–Gauss scheme. Practical discussion on the PA model
mismatch is presented, and some theoretical results about the estimate bias and rank-deficient condition
are provided to guide the design and implementation of the SEI over MIMO channels. In addition,
an error rate analysis is also introduced for the MEP classifier. Simulation results demonstrate that
the proposed approaches outperform the other existing schemes, especially in the rank-deficient
case, and are effective to deal with SEI in MIMO communication systems. Moreover, the proposed
approaches are verified to be effective on a 802.11.g-based experiment platform.
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Appendix A

In this appendix, we give a simplified example for the composition of the matrix in the proposed
LMM approach. Here, the parameters are assigned as R = 2, J = 2, L = 2 and P = 7. Therefore,
the matrix ds should be as

ds =

[
dtemp 01×8

01×8 dtemp

]
, (A1)

where 01×8 is a 1× 8 zero vector, dtemp = [G1, G2], and Gj∈ CN×(P+1)/2, j = 1, 2, is as follows:

Gj =


s̄j(0) . . .

∣∣s̄j(0)
∣∣P−1 s̄j(0)

s̄j(1) . . .
∣∣s̄j(1)

∣∣P−1 s̄j(1)
...

. . .
...

s̄j(N − 1) . . .
∣∣s̄j(N − 1)

∣∣P−1 s̄j(N − 1)

 . (A2)

Then, Ds is
Ds = blkdiag (ds, ds) , (A3)

which is actually the same as D(1,3,5,7)
s .
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As for the case where the order of the PA order is overdetermined, note that the parameters are
assigned as R = 2, J = 2, L = 2 and P = 5, whereas P0 equals 7, then D(1,...,P0)

s is equivalent to the
matrix D(1,3,5,7)

s in Equation (A3). D(1,...,P)
s and D(P+2,...,P0)

s are respectively written as
D(1,3,5)

s = blkdiag
(

d(1,3,5)
s , d(1,3,5)

s

)
, (A4a)

D(7)
s = blkdiag

(
d(7)

s , d(7)
s

)
, (A4b)

where 
d(1,3,5)

s =
[
e(1)10 , e(2)10 , e(1)01 , e(2)01

]
, (A5a)

d(7)
s =

[
f(1)10 , f(2)10 , f(1)01 , f(2)01

]
, (A5b)

and e(j)
10 , e(j)

01 , f(j)
10 , and f(j)

01 (j = 1, 2) are respectively expressed by:

e(j)
10 =



s̄j(0) . . .
∣∣s̄j(0)

∣∣4 s̄j(0)
s̄j(1) . . .

∣∣s̄j(1)
∣∣4 s̄j(1)

...
. . .

...
s̄j(N − 1) . . .

∣∣s̄j(N − 1)
∣∣4 s̄j(N − 1)

0 . . . 0


, (A6)

e(j)
01 =



0 . . . 0
s̄j(0) . . .

∣∣s̄j(0)
∣∣4 s̄j(0)

s̄j(1) . . .
∣∣s̄j(1)

∣∣4 s̄j(1)
...

. . .
...

s̄j(N − 1) . . .
∣∣s̄j(N − 1)

∣∣4 s̄j(N − 1)


, (A7)

f(j)
10 =



∣∣s̄j(0)
∣∣6 s̄j(0)∣∣s̄j(1)
∣∣6 s̄j(1)
...∣∣s̄j(N − 1)
∣∣6 s̄j(N − 1)
0


(A8)

f(j)
01 =



0∣∣s̄j(0)
∣∣6 s̄j(0)∣∣s̄j(1)
∣∣6 s̄j(1)
...∣∣s̄j(N − 1)
∣∣6 s̄j(N − 1)


. (A9)

Similarly, as for the case that the order of the PA model is underdetermined, be aware that the
parameters are assigned as R = 2, J = 2, L = 2 and P = 7, whereas P0 equals 5, then D(1,...,P)

s is
equivalent to the matrix D(1,3,5,7)

s in Equation (A3). D(1,...,P0)
s and D(P0+2,...,P)

s are equivalent to the
matrix D(1,3,5)

s and D(7)
s in Equation (A4a) and Equation (A4b), respectively.
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The examples for h(1,3,5)
α and h(7)

α are shown as
h(1,3,5)

α =

[(
w(3)

1,0 α
(1,3,5)
vec

)T
,
(

w(3)
1,1 α

(1,3,5)
vec

)T
,
(

w(3)
2,0 α

(1,3,5)
vec

)T
,
(

w(3)
2,1 α

(1,3,5)
vec

)T
]T

(A10a)

h(7)
α =

[(
w(1)

1,0 α
(7)
vec

)T
,
(

w(1)
1,1 α

(7)
vec

)T
,
(

w(1)
2,0 α

(7)
vec

)T
,
(

w(1)
2,1 α

(7)
vec

)T
]T

(A10b)

and 

w(1)
r,lh

= diag (hr1(lh), hr2(lh)) (A11a)

w(3)
r,lh

= blkdiag (hr1(lh)I3, hr2(lh)I3) (A11b)

α
(1,3,5)
vec = [1, α3,1, α5,1, 1, α3,2, α5,2]

T (A11c)

α
(7)
vec = [α7,1, α7,2]

T , (A11d)

where diag(·) denotes a diagonal function, I3 is a 3× 3 unit matrix, r = 1, 2 and lh = 0, 1.

Appendix B

In this appendix, we first give the basis of Guess 1.

Proof. At first, we discuss the case where the parameters are set to be J = 1, L = 2 and P = 7,
respectively. As mentioned in Appendix A, d(1,3,5)

s and d(7)
s can be expressed as block matrices

as follows: 
d(1,3,5)

s =
[
e(1)10 , e(1)01

]
, (A12a)

d(7)
s =

[
f(1)10 , f(1)01

]
. (A12b)

We thus have (
d(1,3,5)

s

)†
d(7)

s

=



(

e(1)10

)H(
e(1)01

)H

 [e(1)10 , e(1)01

]
−1 

(
e(1)10

)H(
e(1)01

)H

 [f(1)10 , f(1)01

]

=

[
A V

VH A

]−1 [
E F1

F2 E

]
,

(A13)

where 

A =
(

e(1)10

)H
e(1)10 =

(
e(1)01

)H
e(1)01 , (A14a)

V =
(

e(1)10

)H
e(1)01 , (A14b)

E =
(

e(1)10

)H
f(1)10 =

(
e(1)01

)H
f(1)01 , (A14c)

F1 =
(

e(1)10

)H
f(1)01 , (A14d)

F2 =
(

e(1)01

)H
f(1)10 , (A14e)
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with (·)−1 being the inverse of a matrix. Then, according to the mathematic formula for the inverse of
the block matrix, we get [

A V
VH A

]−1

=

[
Π1 −Π1VA−1

−Π2VHA−1 Π2

]
, (A15)

with
Π1 = (A−VA−1VH)

−1
, (A16)

Π2 = (A−VHA−1V)
−1

. (A17)

Therefore, if we guess that {
F1 = VA−1E, (A18a)

F2 = VHA−1E, (A18b)

which is actually valid for 16-QAM symbols in practice, then the matrix
(

d(1,3,5)
s

)†
d(7)

s is a block
diagonal matrix. As a result, for arbitrary J and L, we can guess that

(
D(1,...,P0)

s

)†
D(P0+2,...,P)

s = blkdiag

c, . . . , c, c︸ ︷︷ ︸
RJL

 . (A19)

Next, we give the proof of Proposition 1.

Proof. When the order of the PA model is underdetermined (i.e., P0 < P), according to Equation (24),
ignoring the white noise term, if the Guess 1 holds true, then the jth submatrix of Q in Equation (13)
can be expanded into

Qj

= Qj
(1,...,P0) + Qj

(P0+2,...,P)

=
[

h1j(0)(α
(1,...,P0)
j + λj), . . . , hRj(L− 1)(α(1,...,P0)

j + λj)
]

,
(A20)

where Qj
(a,...,b) and αj

(a,...,b) denote the Qj and αj that are populated by the ath to the bth order PA
parameters, respectively. λj∈ Cm is populated by the (P0 + 2)th to the Pth order PA parameters and the
matrix c in Equation (A19), whose ith (i = 1, 2, . . . , m) element is as λj(i) = ci1αP0+2,j + · · ·+ cinαP,j.

Since the Qj is a matrix with rank 1, the first left singular vector U(:,1)
j of Qj obtained by SVD is

equivalent to the eigenvector corresponding to the non-zero eigenvalue of the matrix QjQj
H . Thus,

the U(:,1)
j of Equation (A20) can be computed by the eigenvalue decomposition (EVD) of QjQj

H , which
is as

U(:,1)
j =

[
1 + λj(1), α3,j + λj(2), . . . , αP0,j + λj(m)

]T , (A21)

then, according to Equation (14), we have biased α̂j as

α̂j =

[
1,

α3,j + λj(2)
1 + λj(1)

, . . . ,
αP0,j + λj(m)

1 + λj(1)

]T

. (A22)

Eventually, we can obtain the biases as shown in Equations (26a)–(26c).
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Appendix C

In this appendix, we give the proof for Proposition 2.
At first, we prove that, when the training sequence, consisting of QAM symbols, has M different

modulus values and the maximum order of the PA model is P, if M < (P + 1)/2, then the matrix Ds is
rank deficient.

Proof. At first, we consider a matrix B∈ ClB×cB , which is

B =


1 b1 b2

1 . . . bcB−1
1

1 b2 b2
2 . . . bcB−1

2
...

...
...

. . .
...

1 blB b2
lB

. . . bcB−1
lB

 . (A23)

When lB = cB, B is actually a Vandermonde matrix and its determinant can be expressed as

det(B) = ∏
1≤k<i≤cB

(bi − bk). (A24)

Therefore, if the level of the amplitude of bi (i = 1, . . . , lB) is less than cB, then det(B) equals 0 and
B is definitely singular.

When lB > cB, if the level of the amplitude of bi (i = 1, . . . , lB) is less than cB, then any cB × cB
sub-matrix of B is a singular Vandermonde matrix, that is, any cB × cB sub-matrix of B is column linear
correlation, then B is also column linear correlation, which means B is a column rank-deficient matrix.

Now, we consider the matrix Gj∈N×(P+1)/2 in Equation (A2), here j = 1, . . . , J, and it can be
rewritten by

Gj = G(1)
j G(2)

j

= G(1)
j


1

∣∣s̄j(0)
∣∣2 . . .

∣∣s̄j(0)
∣∣P−1

1
∣∣s̄j(1)

∣∣2 . . .
∣∣s̄j(1)

∣∣P−1

...
...

. . .
...

1
∣∣s̄j(N − 1)

∣∣2 . . .
∣∣s̄j(N − 1)

∣∣P−1

 , (A25)

where G(1)
j = diag(s̄j(0), s̄j(1), . . . , s̄j(N − 1)) is a reversible diagonal matrix. In addition, G(2)

j is

equivalent to the matrix B when we set bi =
∣∣s̄j(i− 1)

∣∣2, i = 1, 2, . . . , N. Since the training sequence is
composed of QAM symbols that have only M different moduli values, then any P+1

2 ×
P+1

2 sub-matrix

of G(2)
j is a singular Vandermonde matrix when M < (P + 1)/2. Thus, Gj is column rank-deficient,

and, according to Appendix A, dtemp =
[
G1, G2, . . . , GJ

]
is also column rank-deficient. Eventually,

ds and Ds are both column rank-deficient due to the linear correlation among their column vectors.
However, when M ≥ (P+ 1)/2, as long as N is large enough, then at least one of P+1

2 ×
P+1

2 sub-matrix

of the G(2)
j is a non-singular Vandermonde matrix. Thus, the G(2)

j is a column full-rank matrix, and Ds

is also a column full-rank matrix.

Next, we prove that when the training sequence, QAM symbols, has M different modulus values
and the maximum order of the PA model is P, if M < (P + 1)/2, then the matrix J(z) is rank-deficient
at every z.
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Proof. When the number of transmit antennas is J, then the Jacobian matrix J(z) can be computed
from g(z) in Equation (15) as

J(z) =


κ 0 . . . 0 χ1

0 κ
...

... χ2
...

...
. . . 0

...
0 . . . 0 κ χR

 (A26)

with
κ =

[
O(0), . . . ,O(L−1)

]
, (A27)

χr =
[
W r

(0) + · · ·+W r
(L−1)

]
, (A28)

whereO(lh) andW r
(lh) (lh = 0, 1, . . . , L− 1) are respectively shown as

O(lh) = [O(lh)
1 , O(lh)

2 , . . . , O(lh)
J ], (A29)

W r
(lh) = [W(lh)

r1 , W(lh)
r2 , . . . , W(lh)

rJ ]. (A30)

Note that O(lh)
j and W(lh)

rj (lh = 0, 1, . . . , L− 1) are

O(lh)
j = Λlh

0, . . . , 0︸ ︷︷ ︸
lh

, ϕ
(
s̄j(0)

)
, . . . , ϕ

(
s̄j(N − 1)

)
, 0, . . . , 0︸ ︷︷ ︸

L−1−lh


T

, (A31)

W(lh)
rj = hrj(lh)Λlh

 0lh×(P−1)/2
ψs

0(L−1−lh)×(P−1)/2

 , (A32)

respectively, and

ϕ
(
s̄j(n)

)
= 1 + α3,j

∣∣s̄j(n)
∣∣2 + α5,j

∣∣s̄j(n)
∣∣4 + · · ·+ αP,j

∣∣s̄j(n)
∣∣P−1, (A33)

Λlh = diag

1, . . . , 1︸ ︷︷ ︸
lh

, s̄j(0), . . . , s̄j(N − 1), 1, . . . , 1︸ ︷︷ ︸
L−1−lh

 , (A34)

ψs =


∣∣s̄j(0)

∣∣2 ∣∣s̄j(0)
∣∣4 . . .

∣∣s̄j(0)
∣∣P−1∣∣s̄j(1)

∣∣2 ∣∣s̄j(1)
∣∣4 . . .

∣∣s̄j(1)
∣∣P−1

...
...

. . .
...∣∣s̄j(N − 1)

∣∣2 ∣∣s̄j(N − 1)
∣∣4 . . .

∣∣s̄j(N − 1)
∣∣P−1

 . (A35)

If we define a matrix J r as

J r =
[
O(0), . . . ,O(L−1),W r

(0) + · · ·+W r
(L−1)

]
, (A36)

then, as for Θj, a sub-matrix of J r, composed of the elements corresponding to the jth transmit
antenna, which is

Θj = [O(0)
j , O(1)

j , . . . , O(L−1)
j , W(0)

rj + W(1)
rj + · · ·+ W(L−1)

rj ]. (A37)
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Similar to the discussion of the matrix B in Equation (A23), as for the matrix Ω,

Ω =


ϕ
(
s̄j(0)

)
h1j(lh)

∣∣s̄j(0)
∣∣2 . . . h1j(lh)

∣∣s̄j(0)
∣∣P−1

ϕ
(
s̄j(1)

)
h1j(lh)

∣∣s̄j(1)
∣∣2 . . . h1j(lh)

∣∣s̄j(1)
∣∣P−1

...
...

. . .
...

ϕ
(
s̄j(N − 1)

)
h1j(lh)

∣∣s̄j(N − 1)
∣∣2 . . . h1j(lh)

∣∣s̄j(N − 1)
∣∣P−1

 (A38)

when the training sequence is composed of QAM symbols that have only M different moduli values
and N ≥ (P + 1)/2, if M < (P + 1)/2, then there are at least (P + 1)/2−M + 1 identical row vectors
in any P+1

2 ×
P+1

2 sub-matrix of Ω, which means that any P+1
2 ×

P+1
2 sub-matrix of Ω is a singular

matrix, and the column vectors of it are also considered to be linear correlation. As a result, Ω is also
column linear correlation, that is, the Ω is a column rank-deficient matrix.

Since the matrix Ω has been proved to be a column rank-deficient matrix, the matrix [O(lh)
j , W(lh)

rj ]

is obviously column rank-deficient, and there must be a set of coefficients
{

η1, η2, . . . , η(P+1)/2

}
that

are not all equal to 0. Consequently, the following formula holds

η1O(lh)
j +

(P−1)/2

∑
cW=1

ηcW+1W(lh)
rj (:, cW) = 0, (A39)

where W(lh)
rj (:, cW) denotes the cW-th column of the matrix W(lh)

rj .

Therefore, for the matrix Θj, there are also a set of coefficients

η1, η1, . . . , η1︸ ︷︷ ︸
L

, η2, . . . , η(P+1)/2


that are not all equal to 0 to make the following expression valid, i.e.,

η1

L−1

∑
lh=0

O(lh)
j +

(P−1)/2

∑
cW=1

ηcW+1ΓcW = 0 (A40)

with

ΓcW =
L−1

∑
lh=0

W(lh)
rj (:, cW). (A41)

Then, we can conclude that the matrix Θj is rank-deficient and the matrix
[
Θ1, Θ2, . . . , ΘJ

]
is

also rank-deficient. Thus, the Jacobian matrix J r is also rank-deficient because J r is the elementary
column transformation of the matrix

[
Θ1, Θ2, . . . , ΘJ

]
and the elementary column transformation

does not change the rank of the matrix. Eventually, the the Jacobian matrix J(z) in Equation (A26) is
rank-deficient.

References

1. Rehman, S.U.; Sowerby, K.W.; Coghill, C. Radio-frequency fingerprinting for mitigating primary user
emulation attack in low-end cognitive radios. IET Commun. 2014, 8, 1274–1284. [CrossRef]

2. Suski II, W.C.; Temple, M.A.; Mendenhall, M.J. Radio frequency fingerprinting commercial communication
devices to enhance electronic security. Int. J. Electron. Secur. Digit. Forensics 2008, 1, 301–322.

3. Ureten, O.; Serinken, N. Wireless security through RF fingerprinting. Can. J. Electr. Comput. Eng. 2007,
32, 27–33. [CrossRef]

4. Ureten, O.; Serinken, N. Bayesian detection of Wi-Fi transmitter RF fingerprints. Electron. Lett. 2005,
41, 373–374. [CrossRef]

5. Choe, H.C.; Poole, C.E.; Andrea, M.Y. Novel identification of intercepted signals from unknown radio
transmitters. In Proceedings of the Wavelet Applications II, Orlando, FL, USA, 6 April 1995; Volume 2491,
pp. 504–518.

http://dx.doi.org/10.1049/iet-com.2013.0568
http://dx.doi.org/10.1109/CJECE.2007.364330
http://dx.doi.org/10.1049/el:20057769


Sensors 2019, 19, 5233 26 of 27

6. Hawkes, K.D. Transient Analysis System for Characterizing RF Transmitters by Analyzing Transmitted RF
Signals. U.S. Patent 5,758,277, 26 May 1998.

7. Du, L.; Liu, H.; Bao, Z. Radar HRRP target recognition based on higher order spectra. IEEE Trans.
Signal Process. 2005, 53, 2359–2368.

8. Zhang, X.D.; Shi, Y.; Bao, Z. A new feature vector using selected bispectra for signal classification with
application in radar target recognition. IEEE Trans. Signal Process. 2001, 49, 1875–1885. [CrossRef]

9. Reising, D.R.; Temple, M.A. WiMAX mobile subscriber verification using Gabor-based RF-DNA fingerprints.
In Proceedings of the 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada,
10–15 June 2012; pp. 1005–1010.

10. Reising, D.R.; Temple, M.A.; Oxley, M.E. Gabor-based RF-DNA fingerprinting for classifying 802.16 e
WiMAX mobile subscribers. In Proceedings of the 2012 International Conference on Computing, Networking
and Communications (ICNC), Maui, HI, USA, 30 January–2 February 2012; pp. 7–13.

11. Klein, R.W.; Temple, M.A.; Mendenhall, M.J. Application of wavelet-based RF fingerprinting to enhance
wireless network security. J. Commun. Netw. 2009, 11, 544–555. [CrossRef]

12. Klein, R.W.; Temple, M.A.; Mendenhall, M.J. Application of wavelet denoising to improve OFDM-based
signal detection and classification. Secur. Commun. Netw. 2010, 3, 71–82. [CrossRef]

13. Yuan, Y.; Huang, Z.; Wu, H. Specific emitter identification based on Hilbert-Huang transform-based
time-frequency-energy distribution features. IET Commun. 2014, 8, 2404–2412. [CrossRef]

14. Xie, Y.; Wang, S.; Zhang, E. Specific Emitter Identification based on nonlinear complexity of signal.
In Proceedings of the 2016 IEEE International Conference on Signal Processing, Communications and
Computing (ICSPCC), Hong Kong, China, 5–8 August 2016; pp. 1–6.

15. Polak, A.C.; Dolatshahi, S.; Goeckel, D.L. Identifying wireless users via transmitter imperfections. IEEE J. Sel.
Areas Commun. 2011, 28, 1469–1479. [CrossRef]

16. Brik, V.; Banerjee, S.; Gruteser, M. Wireless device identification with radiometric signatures. In Proceedings
of the 14th ACM International Conference on Mobile Computing and Networking, San Francisco, CA, USA,
14–19 September 2008; pp. 116–127.

17. Huang, Y.; Zheng, H. Radio frequency fingerprinting based on the constellation errors. In Proceedings of
the 2012 18th Asia-Pacific Conference on Communications (APCC), Jeju Island, Korea, 15–17 October 2012;
pp. 900–905.

18. Schubert, B.; Liszewski, J.; Keusgen, W. Identification of the volterra kernels of nonlinear power amplifiers.
In Proceedings of the 2009 International Conference on Communications, Circuits and Systems, Milpitas,
CA, USA, 23–25 July 2009; pp. 767–771.

19. Liu, M.W.; Doherty, J.F. Keusgen, W. Wireless device identification in MIMO channels. In Proceedings of the
2009 43rd Annual Conference on Information Sciences and Systems, Baltimore, MD, USA, 18–20 March 2009;
pp. 563–567.

20. Liu, M.W.; Doherty, J.F. Nonlinearity estimation for specific emitter identification in multipath channels.
IEEE Trans. Inf. Forensics Secur. 2011, 6, 1076–1085.

21. Li, D.; Jia, Y.; Li, Q. Identification and nonlinear model predictive control of MIMO Hammerstein system
with constraints. J. Cent. South Univ. 2017, 24, 448–458. [CrossRef]

22. Belkacem, O.B.H.; Ammari, M.L.; Bouallegue, R. Effect of Power Amplifier Nonlinearity on the Physical
Layer Security of MIMO Systems. Wirel. Pers. Commun. 2017, 96, 5587–5601. [CrossRef]

23. Zou, Y.; Raeesi, O.; Antilla, L. Impact of power amplifier nonlinearities in multi-user massive MIMO
downlink. In Proceedings of the 2015 IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA, 6–10
December 2015; pp. 1–7.

24. Fernandes, C.A.R. Nonlinear MIMO Communication Systems: Channel Estimation and Information
Recovery Using Volterra Models. Ph.D. Thesis, Universit de Nice Sophia Antipolis, Nice, France, 2010.

25. Wang, D.; Hu, A.; Chen, Y. An esprit-based approach for rf fingerprint estimation in multi-antenna ofdm
systems. IEEE Wirel. Commun. Lett. 2017, 6, 702–705. [CrossRef]

26. Wang, D.; Hu, A.; Peng, L. Energy Selected Transmitter RF Fingerprint Estimation in Multi-Antenna OFDM
Systems. In Proceedings of the 2018 10th International Conference on Wireless Communications and Signal
Processing (WCSP), Hangzhou, China, 18–20 October 2018; pp. 1–6.

http://dx.doi.org/10.1109/78.942617
http://dx.doi.org/10.1109/JCN.2009.6388408
http://dx.doi.org/10.1002/sec.115
http://dx.doi.org/10.1049/iet-com.2013.0865
http://dx.doi.org/10.1109/JSAC.2011.110812
http://dx.doi.org/10.1007/s11771-017-3447-3
http://dx.doi.org/10.1007/s11277-017-4429-3
http://dx.doi.org/10.1109/LWC.2017.2731951


Sensors 2019, 19, 5233 27 of 27

27. Cai, K.; Li, H.; Mitola, J. Channel Identification of communication system with nonlinear power amplifier.
In Proceedings of the 2013 47th Annual Conference on Information Sciences and Systems (CISS), Baltimore,
MD, USA, 20–22 March 2013; pp. 1–5.

28. Wu, Q.; Testa, M.; Larkin, R. On design of linear RF power amplifier for CDMA signals. Int. J. RF Microw.
Comput.-Aided Eng. 2015, 8, 283–292. [CrossRef]

29. Eriksson, J.; Wedin, P.A.; Gulliksson, M.E. Regularization methods for uniformly rank-deficient nonlinear
least-squares problems. J. Optim. Theory Appl. 2005, 127, 1–26. [CrossRef]

30. Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; Wiley-Interscience: Hoboken, NJ, USA, 2000.
31. Liu, C.; Xiao, H.; Wu, Q. Spectrum Design of RF Power Amplifier for Wireless Communication Systems.

IEEE Trans. Consum. Electron. 2002, 48, 72–80.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/(SICI)1099-047X(199807)8:4<283::AID-MMCE2>3.0.CO;2-H
http://dx.doi.org/10.1007/s10957-005-6389-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries and Problem Formulation
	Memoryless Nonlinear PA Modeling
	MIMO Multipath Channel

	The Proposed Estimation Approaches
	The LMM Approach
	The NLS Approach

	Practical Discussions on the Proposed Approaches
	Overdetermined Order of the PA Model
	Underdetermined Order of the PA Model
	Rank Deficiency Condition of the Proposed Approaches

	Error Rate Analysis For Classification
	Numerical Results
	Simulation Setting
	Simulation Results
	The Impact of SNR
	Identification for Multiple Emitters
	The Confirmation of Practical Discussions

	Experimental Results

	Conclusions
	
	
	
	References

