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Abstract: Wearable sensors have the potential to enable comprehensive patient characterization and
optimized clinical intervention. Critical to realizing this vision is accurate estimation of biomechanical
time-series in daily-life, including joint, segment, and muscle kinetics and kinematics, from wearable
sensor data. The use of physical models for estimation of these quantities often requires many wearable
devices making practical implementation more difficult. However, regression techniques may provide
a viable alternative by allowing the use of a reduced number of sensors for estimating biomechanical
time-series. Herein, we review 46 articles that used regression algorithms to estimate joint, segment,
and muscle kinematics and kinetics. We present a high-level comparison of the many different
techniques identified and discuss the implications of our findings concerning practical implementation
and further improving estimation accuracy. In particular, we found that several studies report the
incorporation of domain knowledge often yielded superior performance. Further, most models were
trained on small datasets in which case nonparametric regression often performed best. No models
were open-sourced, and most were subject-specific and not validated on impaired populations. Future
research should focus on developing open-source algorithms using complementary physics-based
and machine learning techniques that are validated in clinically impaired populations. This approach
may further improve estimation performance and reduce barriers to clinical adoption.

Keywords: machine learning; hybrid estimation; wearable sensors; electromyography; inertial sensor;
regression; remote patient monitoring; joint mechanics

1. Introduction

Since the turn of the century, wearable sensors have experienced substantial technological
advancements that have reduced their size and power requirements, improved their wearability,
and increased the quality and types of data they capture. These improvements have allowed the
application of wearable sensors to important clinical challenges impacting human health. These
challenges include the development of novel digital biomarkers [1] that could be used for diagnosis,
prognosis, and clinical decision making in a variety of neurological [2,3], mental health [4,5], and
musculoskeletal [6–9] disorders.

In many cases, clinical evaluation using these biomarkers could be enhanced by also considering
remote observation made during a patient’s daily life (e.g., daily biomechanical variability is clinically
informative in persons with multiple sclerosis [2]). Recent research suggests remote observations may
differ than those made in the lab or clinic [10–12], and thus may provide additional information for
informing clinical decision making. Additionally, remote observation could be used as an endpoint
for assessing efficacy of interventions designed to target specific biomechanical indices (e.g., using

Sensors 2019, 19, 5227; doi:10.3390/s19235227 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8396-6967
http://www.mdpi.com/1424-8220/19/23/5227?type=check_update&version=1
http://dx.doi.org/10.3390/s19235227
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 5227 2 of 24

biofeedback to reduce knee loading [13]). Taken together, these developments suggest that remote
observation of patient biomechanics during daily life is emerging as an important tool for improving
human health. Thanks to recent technological advancements, wearable sensors are ideally positioned
to enable remote patient monitoring. However, wearable sensors do not necessarily provide direct
measurement of the mechanisms underlying any particular clinical condition. Previous research on the
mechanistic origins of various diseases (e.g., musculoskeletal [14–16], neurological [17]) motivate the
incorporation of physically interpretable biomarkers as a part of a comprehensive patient evaluation.
These biomarkers, when observed continuously via remote patient monitoring, may then directly
inform an optimal clinical intervention [18–20]. In this review we focus on the estimation of physically
interpretable biomarkers for musculoskeletal and neurological disorders which take the form of
biomechanical time-series representing joint, segment, and muscle kinetics and kinematics.

1.1. Physical Models

The aforementioned biomechanical time-series may be determined from wearable sensor data
using established mathematical relationships governed by physical models. For example, strapdown
integration [21] of the angular rate signal from a segment attached gyroscope is a physics-based estimate
of segment orientation where an accompanying accelerometer and magnetometer may provide the
initial conditions and drift correction over time (e.g., see [6]). The development of sensor fusion
techniques for removing integration drift in orientation estimates has been (and continues to be) a
research focus [21,22]. Inertial sensor estimates of segment kinematics are sufficient to estimate joint
kinetics during open-chain tasks using an inverse-dynamics approach given estimates of segment
inertial and geometric parameters [23]. However, additional sensors are needed for closed-kinetic
chain tasks since then external contact forces must be considered (i.e., measured). Alternatively,
wearable surface electromyography (sEMG) sensors may inform a solution for the net joint moment
using Hill-type muscle models and thus also joint and/or segment kinematics for open-chain tasks via
forward-dynamics [24–26]. However, as noted in [27], it is quickly realized that the number of sensors
required to inform a physical model is inhibitive since the muscle activation of every muscle must be
estimated thus limiting the use of these approaches for remote patient monitoring.

One solution is to simplify the physical model such that a reduced number of sensors can be used
to measure all required independent variables. Many techniques for simplification have been proposed
and are context dependent. For example, sacral accelerations have been assumed to represent those of
the center of mass enabling a single inertial sensor estimate of ground reaction force [28]. For muscle
force estimation, muscle contraction dynamics are often simplified to comply with a lumped-parameter
Hill-type model as opposed to a continuum model [29–32]. Further, it is common practice to assume
unobserved muscle states (e.g., activation, tension) can be computed in terms of a single or multiple
synergistic muscles whose states are available (e.g., via sEMG) [24,27,33]. Recently, Dorschky et al.
(2019) present a physics-based technique for estimation wherein the states of a neuromusculoskeletal
model (including the biomechanical time-series of interest) were optimized to agree with measured
sensor data using trajectory optimization [34]. While the results were promising, the model was only
two-dimensional, requires an inertial sensor on each of seven segments, and was further limited by
computation time (mean CPU time was 50 ± 26 min across 60 optimizations where each optimization
had 10 strides). The model simplifications and unwieldy sensor arrays required for physical modeling
approaches motivate alternative methods for estimating biomechanical time-series, and especially for
remote patient monitoring.

1.2. Regression Techniques

Regression models that capture the relationship between wearable sensor inputs and biomechanical
time-series outputs may provide an opportunity to further simplify the wearable sensor system required
for remote patient monitoring. These models are developed from a large number of observations
through a process that may be referred to as system identification [35], function approximation [36],
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or machine learning [37], depending on the field. It is important to note, however, that many of the
physics-based techniques also regress model parameters from a large number of observations [32],
wherein that process is often referred to as calibration, and the parameters being regressed are physical
constructs based on the derivation of the model from first principles (e.g., tendon slack length, muscle
activation constants [24]). The current review will focus on the use of non-physical regression as a
means for estimating joint, segment, and muscle kinetics and kinematics from wearable sensor data.

1.3. Relevant Reviews

Techniques for estimating biomechanical time-series from wearable sensor data have been the
focus of previous literature reviews. Faisal et al. (2019) recently provided a high-level overview of
sensing technologies, applications of wearables in monitoring joint health, and analysis techniques [38].
Several reviews are available concerning the use of Hill-type muscle models for sEMG informed muscle
force estimation which can be used to estimate kinematics via forward-dynamics [26,27,32,39]. Dowling
(1997) mentions the potential use of neural networks in this context but does not review any relevant
literature. Sabatini (2011) provides an overview of the use of inertial sensors for estimating segment
and joint kinematics using physics-based techniques and sensor fusion algorithms [21]. Ancillao et al.
(2018) review physics-based techniques for estimating ground reaction forces and moments using
wearable inertial sensors [40]. While these previous reviews capture the current state of physics-based
techniques well, there has not been a comprehensive review of regression techniques for estimating
joint, segment, and muscle kinetics and kinematics from wearable sensor data. Schöllhorn (2004)
provides a relevant review, but focuses only on neural networks and, as will be seen later, none of the
articles they reviewed met the inclusion criteria outlined below and thus we also include studies using
neural networks in this review [41]. Shull et al. (2014) review the applications of wearable sensors
for clinical evaluation and for biofeedback, but they were only interested in gait, did not focus on
the estimation technique, and none of the papers they reviewed used sEMG [42]. Caldas et al. (2017)
review the application of adaptive algorithms for estimating gait phase, spatiotemporal features, and
joint angles [43]. While joint angles are relevant to this review, Caldas et al. focus only on the use of
inertial sensors and only mention three studies used to estimate joint angles; two of which are also
included here. Finally, Ancillao et al. (2018) also reviewed machine learning techniques for estimating
ground reaction forces and moments [40]. Thus, studies estimating only ground reaction forces and
moments were excluded in this review.

The aim of this review was to characterize the use of regression algorithms to estimate
biomechanical time-series from wearable sensor data. A secondary aim was to develop a classification
method to group the prediction equations based on their technical similarities.

2. Methods

2.1. Search Strategy

The PubMed and IEEE Xplore databases were searched for relevant articles in August 2019. Search
terms were chosen to reflect the aims of the current review namely studies investigating (1) regression
of (2) human biomechanical time-series using (3) wearable sensor data (see Table 1 for search terms
pertaining to items 1–3). After duplicates were removed, the title and abstract of each article was
screened to determine if the full text would be reviewed.
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Table 1. Search terms and the item pertaining to this review that they reflect.

Review Relevant Item Search Terms

Regression

regress* OR “machine learning” OR “artificial intelligence”
OR “statistical learning” OR “supervised learning” OR

“unsupervised learning” OR “neural network” OR
perceptron OR “support vector” OR “gaussian process”

AND

Biomechanical Time-Series

joint OR limb OR segment OR ankle OR knee OR hip OR
wrist OR elbow OR shoulder OR muscle

AND
angle OR velocity OR acceleration OR moment OR torque
OR force OR kinematic* OR kinetic* OR biomechanics OR

mechanics OR dynamics

AND

Wearable Sensors
wearable OR accelerometer OR gyroscope OR electromyo*

OR EMG OR sEMG OR “inertial sensor” OR “inertial
measurement unit” OR IMU OR insole OR goniometer

2.2. Inclusion/Exclusion Criteria

Only peer-reviewed journal articles (no conference proceedings) written in English were considered.
Articles were included in the review if they met all criteria within the following three categories:

(1) Sensor criteria: clear use of data for estimation from a sensor that is currently deployable as a
wearable. Studies investigating model inputs dependent on virtual wearable sensor data derived
from a non-wearable sensor were excluded. Studies using exoskeletons were excluded if the
wearable sensor is only feasibly deployed using the exoskeleton.

(2) Prediction criteria: use of non-physical regression (not classification, regressed parameters must
not be physical constructs). The estimated variable must have been a biomechanical time-series
describing either the kinetics or kinematics of a joint, segment, or muscle. Studies were excluded
if they estimated only grip or pinch forces unless the contact forces of each involved segment
were estimated separately. Finally, studies estimating only ground reaction forces and moments
were excluded as methods for this purpose have recently been reviewed [40].

(3) Validation criteria: all studies reviewed must have reported the objective (i.e., numerical)
quantification of testing error using their estimation method. Studies were excluded if they
report statistics for the training error only or if the only description of performance was given
graphically. Studies utilizing inappropriate validation were excluded (e.g., one that could not be
repeated or one using an invalid gold standard for validation).

These exclusion criteria were used for both the title/abstract screening and for full-text review.
For many papers, the presence of one or several exclusion criteria was made clear via the title and/or
the abstract. Therefore, these articles were removed after the title/abstract screening and were not
full-text reviewed.

2.3. Data Analysis

All studies that met the inclusion criteria were characterized by the sample size, subject
demographics (sex, health status, age), wearable sensors (type, sampling frequency), biomechanical
variable estimated, tasks for which the estimation was validated, model characteristics, and estimation
performance. One aim of the current review was to summarize the various estimation techniques
and their performance. A detailed description of the methods and error statistics used in each study
is infeasible, so we grouped prediction equations post-hoc according to a grouping method which
distinguishes the different techniques for comparison (see Section 3.4). Further, we report summary
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statistics which summarize the overall performance (e.g., range of root mean square error across all
observed tasks).

3. Results

A total of 46 articles met the inclusion criteria for full-text review out of 2259 distinct articles
identified via database searches and from external sources (Figure 1). There was a clear increasing
trend in the number of articles which met our review criteria published since the earliest identified in
1995 (Figure 2).
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Figure 1. Flow chart of article selection process. Of the 123 full-text reviewed articles, 77 were removed
on the basis of one or several exclusion criteria pertaining to the sensors used, the prediction approach,
and/or the validation procedure. See Section 2.2 for details concerning specific exclusion criteria.
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Figure 2. Number of articles included in the review for each five-year bin. The oldest paper included
in our review was published in 1995.

3.1. Subject Demographics

Across all participants used for validating the regression techniques, most were unimpaired males
(64%), followed by unimpaired females (29%) and impaired individuals (7%). Three studies validated
their algorithm on just one person while only 11 studies validated their algorithm on a sample size of
greater than 10 participants. One study [44] did not report any information concerning the subject
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sample (other than that they were normal subjects) and the largest sample size for which an algorithm
was validated was 33 (all unimpaired, 15 female) [45].

3.2. Wearable Sensors

Surface electromyography sensors were the most popular wearable sensors used (32 studies)
followed by inertial sensors (nine studies, four used magnetic/inertial measurement units, three used
inertial measurement units, and two used accelerometer only) and high density sEMG (HD-sEMG)
(five studies). One study used an electrogoniometer in addition to sEMG [46] and two studies used
mechanomyography sensors in addition to sEMG [47,48]. Two studies used force sensitive resistors to
instrument insoles [49,50] and one of these used an additional load cell over the Achilles’ tendon [50].
The average sensor sampling rate across all studies using sEMG was 2288.8 Hz (range: 500–16,000 Hz)
and was 303.75 Hz across the nine studies using inertial sensors (range: 50–1500 Hz). Grid sizes
for HD-sEMG included 128, 160, and 192 with an average sensor sampling rate of 1838.4 Hz (range:
1.0–2.048 kHz).

3.3. Biomechanical Variables

Across all studies, the most frequently estimated biomechanical time-series was joint kinematics
(23 studies) followed by joint kinetics (16 studies), segment kinetics (seven studies), and segment
kinematics (five studies) (Figure 3). Of the 16 studies estimating joint kinetics, only three estimated the
intersegmental force. No studies estimated joint contact forces, individual muscle forces, or muscle
kinematics. Most studies focused on joint/segment biomechanics in the sagittal plane (87%), followed
by the frontal plane (46%), and transverse plane (33%) (Figure 3). Across all studies and considering
the major upper and lower extremity joints, the wrist joint received the most attention (28%), followed
by the knee (26%), the elbow (24%), the ankle (20%), the shoulder (15%), and the hip (13%).
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row of figures illustrates the percentage of studies that estimated joint kinematics (a), joint kinetics
(b), segment kinetics (c), and segment kinematics (d) and the bottom row of figures are radar plots
illustrating the number of studies estimating the major upper and lower extremity joint kinematics
(blue) and kinetics (red) in the sagittal (e), frontal (f), and transverse (g) planes. No studies estimated
muscle forces or joint contact forces.
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3.4. Prediction Equations

3.4.1. Prediction Equation Classification

One aim of the current review was to develop a classification method post-hoc allowing a
high-level comparison of the structure of the many different prediction equations used in the reviewed
papers. Note that estimation performances were not compared statistically between methods from
different studies as the nature of the model validation procedures were too often different enough such
that a comparison of error statistics would not be appropriate. The rest of this section describes the
classification we have developed for this comparison. We feel this method best groups the reviewed
papers for an insightful comparison, but it is by no means unique. The description of all techniques
used in the reviewed papers according to this classification is presented in Table 2 in addition to some
other study characteristics for a succinct overview of all reviewed papers. It is recommended that the
description of the classification system be read first to best understand the comparison in Table 2.

We use x(t) ∈ Rd to denote the d-dimensional input used to estimate the m-dimensional output
(biomechanical time-series) y(t) ∈ Rm at time t . All reviewed papers presented regression algorithms
to determine the parameters of a prediction equation f : Rd

→ Rm which defines the explicit mapping
x(t)→ y(t) . In the context of this review, the ith element xi(t) of the input x(t) may be a wearable
sensor measurement after some pre-processing step (called an exogenous input) or a state variable
being fed back. This state variable may be either an element yi(t− td) of a previous output y(t− td)

(i.e., at time t− td, td > 0), or some other internal state (e.g., an output from a hidden neuron prior to
the output layer in a neural network). All prediction equations reviewed in this paper use exogenous
inputs. In this review, we use the term feedback to refer to models which also use output and/or internal
state variable feedback. For example, herein Elman networks [51], long-short term memory (LSTM)
neural networks [52,53], and non-linear/linear autoregressive (with exogenous inputs) models [48,54]
are all considered to have a feedback structure.

In general, an exogenous input xi(t) will be either the value of a sensor time-series s at time t ,
s(t) , or a discrete feature which describes s over some finite time interval. Note that s(t) may be the
raw sensor signal itself or after some pre-processing step. For example, in this review, we classify
the value of an sEMG envelope at some time instant as a time-series input, even though this value
may depend on previous (or future) raw sEMG samples. Similar to system theory, we use the term
dynamic to refer to models which use past exogenous inputs, for example xi(t− td) for td > 0, to
estimate y(t) at time t. Note the difference between what we call a dynamic structure versus a feedback
structure is that dynamic refers to the use of past exogenous inputs whereas feedback refers to the
use of past outputs and/or internal state variables as a part of the input. We further classify discrete
exogenous inputs as time-domain (TD) if computed in the time-domain (e.g., root mean square value)
and frequency-domain (FD) if computed in the frequency-domain (e.g., Fourier coefficients). We also
report which studies first decomposed the sEMG into motor unit action potentials (MUAPs) from
which time domain (MUAP-TD) or frequency domain (MUAP-FD) discrete features were extracted.

Previous efforts to classify prediction equations have identified two classes, (1) a mixture of linear
models and (2) a weighted sum of basis functions, into which a wide range of techniques can be
classified [55]. We found that all prediction equations used in the studies reviewed herein can be
viewed as a weighted sum of basis functions (where the weight of any one particular basis function
is not restricted to be constant as in [55]). Given this general perspective, we identified a three-class
classification for grouping the techniques used in each of the 46 reviewed papers: (i) polynomial
mixtures (Pn), (ii) neural networks (NN), and (iii) nonparametric regression (NP).
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ThePn class is viewed as a special case where the basis functions are strictly nth -order polynomials,
n ∈ N. Often, models are classified as either linear or non-linear, but here we consider both first-order
polynomial mixtures (n = 1) and higher order polynomial mixtures (n > 1) as sub-classes of Pn. This
is because a first-order linear model may use features which are non-linear transformations of raw
sensor signals. For example, consider a model using the sEMG amplitude at time t (denoted by
x(t)) for estimation. Then the prediction equation y(t) = a1x(t) + a2x2(t), for coefficients a1, a2 ∈ R,
may be interpreted as a linear model with two features as inputs (namely sEMG amplitude and
squared sEMG amplitude) or as a 2nd order polynomial with a single input (i.e., sEMG amplitude). To
improve clarity, we report both the polynomial model order and a description of the features used
for estimation in Table 2. Prediction equations belonging to the Pn class in this review include those
resulting from Gaussian mixture regression [56], lasso [57], and ridge [58] regression, and an ensemble
of polynomials [58] among others.

The NN class is viewed as a special case where the basis functions are neural networks. This
formulation allows for both radial basis function networks [59] and an ensemble of networks [60] as
the final prediction equation.

The NP class refers to models which require access to all training data when making predictions
(as defined in [36]). All NP prediction equations in this review are either linear smoothers [36,61] or
(kernelized) support vector regression (SVR). Linear smoothers express the estimated output for a test
input as a linear combination of all training targets. These include the prediction equations resulting
from Gaussian process regression [48,62], kernel ridge regression [58], kernel smoothers [63,64], and
k-nearest neighbors regression [65].

3.4.2. Descriptive Statistics of Prediction Equations

Neural networks were the most popular model (33 studies, 72%) followed by polynomial mixtures
(14 studies, 30%) and nonparametric regression (seven studies, 15%). Of the 14 polynomial mixtures,
12 were first-order (linear models) of which nine used time-series inputs. Time-series inputs were used
more often (72% of studies) than discrete features (33% of studies). Across the 15 studies using discrete
features as inputs, 13 contained time-domain features, three contained frequency-domain features, and
three studies estimated the decomposition of the raw sEMG signals into individual MUAPs before
computing discrete features. Ten studies used a dynamic structure and nine studies used a feedback
structure. Seven studies used principal component analysis as an unsupervised feature reduction
method. Most studies present subject-specific models (80%). No final prediction equations developed
in any studies were open-sourced, but one paper [66] provided open-source code for their MUAP
decomposition algorithm. Table 2 provides an overview of the prediction equations used in each study
as well as a summary statistic summarizing estimation performance.
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Table 2. Overview of the 46 reviewed papers.

Reference (Year) Sensors (fs, Max Number) Variable (Location): Plane(s) Tasks Inputs Model Performance Summary

Koike and Kawato [60]
(1995) sEMG (2 kHz, 10) τ (elbow): S

τ (shoulder): F ISO, OC TS NN (FB, dyn) CD: 0.89

Suryanarayanan et al. [44]
(1996) sEMG (2 kHz, 1) θ (elbow): S OC TS NN (dyn) RMSE ≤ 15%

Shih and Patterson [67]
(1997) sEMG (900 Hz, 4)

τ (elbow): S
τ (wrist): S

τ (shoulder): S
θ (elbow): S
θ (wrist): S

θ (shoulder): S

WCP TS NN RMSE: 0.67–5.76 Nm, 0.64–5.62 Nm
RMSE: 4.78–13.76◦, 4.73–14.33◦

van Dieën and Visser [68]
(1999) sEMG (600 Hz, 6) τ (lumbo-sacral): S ISO, LOC TS P1 (dyn) RMSE: 26–54 Nm, 49–160 Nm

Au and Kirsch [69]
(2000) sEMG (500 Hz, 6)

θ (shoulder): S, F, T
θ (elbow): S

.
θ (shoulder): S, F, T

.
θ (elbow): S

..
θ (shoulder): S, F, T

..
θ (elbow): S

OC, LOC TS NN (dyn) RMSE: 14.2–19.6◦

RMSE: 8–17.2◦ (impaired subjects)

Dipietro et al. [70]
(2003) sEMG (1 kHz, 5) p (hand): T OC TS NN (FB) RMSE: 7.3–11.5%

Song and Tong [46]
(2005)

sEMG (1 kHz, 3)
goni (1 kHz, 2) τ (elbow): S LOC TS NN (FB) nRMSE: 4.53–8.45%

nRMSE: 10.56–16.20% (sEMG only)

Clancy et al. [35]
(2006) sEMG (4096 Hz, 8) τ (elbow): S ISO TS P1 (dyn) MAE: 7.3%

Došen and Popovič [71]
(2008) 2D ACC (200 Hz, 4)

θ (ankle): S
θ (knee): S
θ (hip): S

..
p (hip joint center): S

MSW TS NN (dyn)

RMSE: 1.19–3.60◦, 1.18–2.62◦

RMSE: 0.26–0.39 m/s2, 0.29–0.46 m/s2

CC (θ): 0.97–0.998, 0.97–0.998
CC (

..
p ): 0.96–0.99, 0.91–0.99

Findlow et al. [63]
(2008) IMU (100 Hz, 4)

θ (ankle): S
θ (knee): S
θ (hip): S

Normal Walk TS NP (KS)

MAE: 1.69–2.30◦, 4.91–9.06◦

MAE: 1.78–5.32◦ (reduced sensor array)
CC: 0.93–0.99, 0.70–0.89

CC: 0.87–0.99 (reduced sensor array)

Goulermas et al. [64]
(2008) IMU (–, 4)

θ (ankle): S
θ (knee): S
θ (hip): S

MSW TS NP (KS) CC: 0.97, 0.96, 0.83
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Table 2. Cont.

Reference (Year) Sensors (fs, Max Number) Variable (Location): Plane(s) Tasks Inputs Model Performance Summary

Hahn and O’Keefe [72]
(2008) sEMG (1 kHz, 7)

τ (ankle): S
τ (knee): S
τ (hip): S

Normal Walk TS NN
CD: 0.54–0.84 (sEMG only)
CD: 0.77–0.92 (sEMG with

demographics & anthropometrics)

Mijovic et al. [59]
(2008) 2D ACC (50 Hz, 2)

..
θ (forearm): S OC TS NN (RBF) CD: 0.841–0.998, 0.75–0.99, 0.03–0.88

Delis et al. [73]
(2009) sEMG (1744.25 Hz, 2) θ (knee): S Normal Walk DISC (TD) NN (SOM) CC: 0.59–0.84

Jiang et al. [74]
(2009) sEMG (1 kHz, 8) CF (hand) ISO DISC (TD) (1) NN

(2) P1
(1) CD: 0.86
(2) CD: 0.78

Youn and Kim [47]
(2010)

sEMG (1 kHz, 2)
MMG (1 kHz, 2) CF (hand) ISO DISC (TD) NN

nRMSE ≤ 16% (MMG only)
nRMSE ≤ 13% (sEMG only)

nRMSE ≤ 10% (sEMG +MMG)

Ziai and Menon [57]
(2011) sEMG (1 kHz, 8) τ (wrist): S ISO TS

(1) P1

(2) P1 (lasso)
(3) P1 (LWPR)
(4) NP (SVR)
(5) NN (2L)

(1) nRMSE: 2.88%
(2) nRMSE: 2.83%
(3) nRMSE: 3.03%
(4) nRMSE: 2.85%
(5) nRMSE: 2.82%

Nielsen et al. [75]
(2011) sEMG (1024 Hz, 7) CF (hand) ISO DISC (TD) NN

RMSE: 0.16 N
RMSE: 0.10 N (impaired subjects)

CD: 0.93
CD: 0.82 (impaired subjects)

de Vries et al. [76]
(2012)

MIMU (50 Hz, 4)
sEMG (1 kHz, 13)

ISF (SC): S, F, T
ISF (AC): S, F, T

ISF (shoulder): S, F, T
ISF (elbow): S, F, T

LOC, ADL TS NN nRMSE: 7–17%

Jiang et al. [77]
(2012) sEMG (2048 Hz, 7) θ (wrist): S, F, T OC DISC (TD) NN CD: 0.74–0.78

Muceli and Farina [78]
(2012)

HD-sEMG 128
(2048 Hz, 2) θ (wrist): S, F, T OC TS NN CD: 0.79–0.89

Clancy et al. [45]
(2012) sEMG (4096 Hz, 2) τ (elbow): S ISO TS P1, P2, P3, P4

(dyn)
nMAE: 4.65–6.38%

nMAE: 5.55–7.97% (reduced training set)

Howell et al. [49]
(2013) FSR (118 Hz, 12) τ (ankle): S

τ (knee): S, F Normal Walk TS P1 nRMSE: 5.9–17.1%
CC: 0.82–0.97

Kamavuako et al. [79]
(2013) sEMG (10 kHz, 6) τ (wrist): S, T ISO DISC (TD) NN nRMSE: 6.1–13.5%

CD: 0.87–0.91
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Table 2. Cont.

Reference (Year) Sensors (fs, Max Number) Variable (Location): Plane(s) Tasks Inputs Model Performance Summary

Jiang et al. [80]
(2013) sEMG (2048 Hz, 7) θ (wrist): S, F, T OC DISC (TD) NN

CD: 0.63–0.86, 0.34–0.74
CD: 0.61–0.77, 0.46–0.59 (impaired

subjects)

Farmer et al. [54]
(2014) sEMG (1 kHz, 4) θ (ankle): S Normal Walk TS NN (FB, dyn) RMSE: 1.2–5.4◦

Ngeo et al. [62]
(2014) sEMG (2 kHz, 8) θ (MCPs): S OC TS

DISC (TD)

(1) NN (dyn)
(2) NP (GPR,

dyn)

(1) CC: 0.71 (TS inputs only)
(2) CC: 0.84 (TS inputs only)

Hahne et al. [58]
(2014)

HD-sEMG 192
(2048 Hz, 1) θ (wrist): S, F OC DISC (TD)

(1) P1 (ridge)
(2) P1

(3) NN
(4) NP (KRR)

(4) CD: 0.8 (reduced sensor array)
CD: 0.8–0.9 (range across all models)

Jacobs and Ferris [50]
(2015)

FSR (1 kHz, 8)
Load Cell (1 kHz, 1) τ (ankle): S MSW, Calf

Raises TS NN
nRMSE: 7.04–13.78%

nRMSE: 8.72–16.52% (FSR only)
nRMSE: 20.47–46.02% (Load Cell only)

de Vries et al. [81]
(2016)

MIMU (50 Hz, 4)
sEMG (1 kHz, 13) ISF (shoulder): S, F, T LOC, ADL TS NN nSEM: 4–1%

nSEM: 3–21% (reduced sensor array)

Wouda et al. [65]
(2016) MIMU (240 Hz, 5)

θ (ankle): S, F, T
θ (knee): S, F, T
θ (hip): S, F, T

θ (shoulder): S, F, T
θ (elbow): S, F, T
θ (wrist): S, F, T
θ (spine): S, F, T

OC, ADL, MSW,
MSR, sport TS (1) NN

(2) NP (k-NN)
(1) Mean Error: 7◦

(2) Mean Error: 8◦

Michieletto et al. [56]
(2016) sEMG (1 kHz, 8) θ (knee): S Seated Kick TS P1 (GMR) Custom error statistic (see paper)

Xiloyannis et al. [48]
(2017)

sEMG (–, 5)
MMG (–, 5)

.
θ (MCPs): S OC, ADL, ISO TS

(1) P1 (FB)
(2) NP (GPR,

FB)

(1) CC: 0.54
(2) CC: 0.79, 0.62, 0.67 (sEMG only)

Zhang et al. [82]
(2017) sEMG (1 kHz, 8) θ (shoulder): S, F, T

θ (elbow): S OC DISC (TD) NN CD: 0.90–0.91, 0.86–0.87

Ding et al. [83]
(2017) sEMG (2 kHz, 8) θ (elbow): S

θ (humerus): S, F, T OC, ADL TS

(1) NN
(2) NN (FB)
(3) NN (FB,

UKF)

(1) RMSE: 11–14◦, CC: 0.88–0.90
(2) RMSE: 11–15◦, CC: 0.87–0.89
(3) RMSE: 7–9◦, CC: 0.95–0.96

Clancy et al. [84]
(2017) sEMG (2048 Hz, 16) CF (hand): S, F

τ (wrist): T ISO TS P1 RMSE: 6.7–10.6%, 11.0–15.7 (4 sensors)
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Table 2. Cont.

Reference (Year) Sensors (fs, Max Number) Variable (Location): Plane(s) Tasks Inputs Model Performance Summary

Xia et al. [52]
(2018) sEMG (2 kHz, 5) p (hand): S, F, T OC DISC (FD)

DISC (TD)

1) NN (CNN)
2) NN

(C-LSTM, FB)

(1) CD: 0.78
(2) CD: 0.90

Wouda et al. [85]
(2018) MIMU (240 Hz, 3) θ (knee): S MSR TS NN RMSE: 2.27–8.41◦, 6.29–25.05◦

CC: 0.98–0.99, 0.77–0.99

Sun et al. [66]
(2018) sEMG (16 kHz, 1) CF (forearm) ISO DISC

(MUAP-TD) P1 CD: 0.72–0.89

Chen et al. [86]
(2018) sEMG (1.2 kHz, 10)

θ (ankle): S
θ (knee): S
θ (hip): S

MSW TS NN (DBN) RMSE: 2.45–3.96◦

CC: 0.95–0.97

Xu et al. [53]
(2018) HD-sEMG 128 (1 kHz, 1) CF (forearm) ISO TS

(1) NN (CNN)
(2) NN (LSTM,

FB)
(3) NN

(C-LSTM, FB)

(1) nRMSE: 7.33–10.93%
(2) nRMSE: 6.16–9.33%
(3) nRMSE: 5.95–9.74%

Wang et al. [51]
(2019) sEMG (1.6 kHz, 5) θ (knee): S LOC DISC (FD) NN (FB) nRMSE: 3.55–5.13%

Dai and Hu [87]
(2019)

HD-sEMG 160
(2048 Hz, 1) θ (MCPs): S OC TS, DISC

(MUAP-FD) P2 CD: 0.66–0.81 (TS inputs)
CD: 0.69–0.86 (MUAP-FD inputs)

Dai et al. [88]
(2019) sEMG (2048 Hz, 16) CF (hand): S, F

τ (wrist): T ISO TS P1 (dyn) RMSE: 7.3–9.2%, 11.5–13.0% (4 sensors)

Kapelner et al. [89]
(2019)

HD-sEMG 192
(2048 Hz, 3) θ (wrist): S, F, T OC DISC (TD,

MUAP-TD) P1 CD: 0.77 (MUAP-TD inputs)
CD: 0.70 (TD inputs)

Stetter et al. [37]
(2019) IMU (1.5 kHz, 2) ISF (knee): S, F, T MSW, MSR,

sport TS NN (2L) nRMSE: 14.2–45.9%
CC: 0.25–0.94

Sensors: fs: sampling frequency (—indicates fs not reported), ACC: accelerometer; IMU: inertial measurement unit (accelerometer + gyroscope); MIMU: IMU with magnetometer,
HD-sEMG N: high density grid of N surface electromyography electrodes, FSR: force sensitive resistors (instrumented insole); MMG: mechanomyography; goni: electrogoniometer;
Variables: τ: net joint (muscle) moment; θ,

.
θ,

..
θ: joint/segment angular position, velocity, acceleration; p,

.
p,

..
p: segment position, velocity, acceleration; ISF: joint intersegmental force; CF:

joint/segment contact force, AC: acromio-clavicular joint, SC: sterno-clavicular joint, MCPs: one or several of the metacarpophalangeal joints; Tasks: ISO: isometric; OC, LOC: open-chain,
loaded open-chain; MSW: multi-speed walking; ADL: activities of daily living (brushing teeth, drinking, etc.); MSR: multi-speed running; sport: sport related movements (e.g., jumping,
kicking, throwing); Inputs: TS: time-series; DISC: discrete; TD, FD: time-domain, frequency domain; MUAP: sEMG data were first decomposed into motor unit action potentials from
which discrete features were extracted; Model: FB: model exhibits output and/or internal state variable feedback (includes autoregression); dyn: dynamic (dependent on previous
inputs); Pn: mixture of n-th order polynomials; GMR: Gaussian mixture regression; NN: neural network; RBFN: radial basis function network; SOM: self-organizing map; DBN: deep
belief network; NP: nonparametric regression; KS: kernel smoother; GPR: Gaussian process regression; SVR: support vector regression; KRR: kernel ridge regression; k-NN: k nearest
neighbors regression; UKF: unscented Kalman filter; CNN: convolutional neural network, LSTM: long-short term memory network, C-LSTM: CNN in series with LSTM; 2L: two hidden
layers; Performance Summary: RMSE: root mean square error; nRMSE: normalized RMSE (e.g., RMSE in physical units normalized by maximum); MAE: mean absolute error; nMAE:
normalized mean absolute error (see nRMSE); nSEM: normalized standard error of measurement; CC: correlation coefficient; CD: coefficient of determination; italic performance metrics
indicate results for task extrapolation (e.g., trained on normal walking data, tested on fast walking data), bold performance metrics indicate results for subject extrapolation (all data in the test
set were associated with different subjects than were data in the training set).
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4. Discussion

Remote monitoring of patient segment, muscle, and joint kinematic and kinetic time-series has
been established as an important component of digital health. Practical limitations in the number of
sensors that can be deployed simultaneously to a given user motivate the pursuit of regression-based
approaches. Thus, the primary aim of this review is to summarize relevant developments in the use of
regression for estimating these biomechanical time-series. This review is timely given the increase
in relevant studies since the turn of the century (Figure 2) and the limitations of other systematic
reviews in the area. While many different techniques were observed since the first relevant method
published in 1995, there are some common themes consistent across studies which we discuss below.
Additionally, we discuss challenges concerning the practical implementation of the reviewed methods
and common characteristics of the techniques that provided the best performance to provide possible
directions for future work. In particular, we discuss how incorporating domain knowledge often
improved performance and the implications for hybrid estimation (i.e., using both physics-based and
machine learning techniques in concert). Note that our identification of techniques that may improve
performance was not based on a comparison of methods between the studies reviewed herein. Instead
we draw conclusions concerning techniques that led to improved performance only where those
conclusions were inferred within individual studies that report an appropriate statistical comparison.

4.1. Overview of Techniques

Neural networks were the most popular regression model. Most incorporated a 3-layer feed
forward neural network (non-recurrent, single hidden layer) [47,50,57–59,62,65,67,69,71–82,85] and
differed based on the choice of activation function and/or number of hidden neurons. The number
of hidden neurons in the NN models reviewed was usually optimized over a set of predefined
values [46,47,51,54,58,62,65,69,70,72,74,75,77,78,83] but sometimes not [37,50,67,71,76,81]. Two papers
considered an ensemble of networks. Koike and Kawato (1995) trained two task-specific NNs (one for
postural activities and the other for dynamic) and a gating network which provided the weights for
linearly combining the joint torque estimates from the two task-specific NNs [60]. Ding et al. (2017)
utilized an unscented Kalman filter for combining two NNs to estimate elbow joint angle and upper
arm orientation [83] wherein a recurrent NN trained using sEMG data with reduced information
redundancy (using a custom reduction approach) was used to model the time-update equation and a
second NN trained to estimate a redundant sEMG time-series was used as the measurement-update
equation. Convolutional and long-short term memory NN (CNN and LSTM, respectively) were first
used in 2018. Xia et al. (2018) found that an LSTM in series with a CNN (C-LSTM) outperformed
a CNN alone for estimating hand position during general open-chain tasks [52]. Likewise, Xu et al.
(2018) found that C-LSTM outperformed LSTM alone which outperformed CNN alone (nRMSE: 8.67%,
9.07%, and 12.13% respectively) for estimating contact forces at the distal forearm and was one of the
few studies to use a leave-one-subject-out validation approach [53].

Polynomial mixtures were the next most popular model and of these, first order polynomials
were most common. Consideration of simple linear models is motivated by an observed relationship
between sEMG amplitude and muscle force, especially at lower force levels. However, to increase
muscle force, additional motor units are recruited and/or stimulation frequency increases which
along with heterogenous activation within a muscle and load sharing between muscles makes this
relationship non-linear [27,32]. Some reviewed papers compared linear models (P1) to both neural
networks [57,58,74] and nonparametric regression [48,57,58]. Although between model comparisons
varied and two of these four studies only considered isometric tasks [57,74], the NN and NP
performances were no different than those from linear models. Comparisons have also been made
between first order and higher order polynomial mixtures. It was shown in [68] that linear models
performed equally as well as second order models for estimating lumbo-sacral joint torque using sEMG
and Clancy et al. (2006) show that superior sEMG amplitude estimation techniques (e.g., whitening,
multi-channel) can improve linear models [35]. Alternatively, Clancy et al. (2012) show that 2nd or 3rd
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order polynomials outperformed 1st and 4th order models (with regularization and optimal dynamic
orders) for estimating isometric elbow joint torque using sEMG inputs [45]. A few studies considered
an ensemble of polynomials. Michieletto et al. (2016) used Gaussian mixture regression, which can be
shown to be a linear mixture [55], to estimate knee flexion/extension angle using sEMG inputs [56].
Hahne et al. (2014) used degree-of-freedom-specific linear models to estimate wrist joint angle and
linearly combined their estimates using weights determined by a logistic regression model trained to
classify the degree-of-freedom of the movement (the weights were the posterior class probabilities) [58].

Nonparametric regression was used least frequently. This may be due to the amount of data
necessary to compute an estimate given the nonparametric models used in the reviewed studies
(although reduction methods exist [36]). While this may be prohibitive for real-time applications (e.g.,
for prosthetic control [58]) it may still be a feasible method for remote patient monitoring applications
where data can be stored locally during the day and processed at a later time. Linear smoothers were
the most popular nonparametric regression. The first study to use nonparametric regression in the
proposed context was in 2008 where the Nadaraya-Watson estimator, a kernel smoothing technique,
was used to estimate lower extremity joint angles using IMU data [63]. Goulermas et al. (2008) built
upon this model by incorporating an additional term in the Gaussian kernel intended to accentuate or
attenuate a training target’s contribution to the final estimate according to a custom pattern similarity
index [64]. Several papers noted the advantage of nonparametric regression for small training sets.
For example, Ngeo et al. (2014) show Gaussian process regression outperformed a neural network
in estimating finger joint angles using sEMG data, especially for smaller data sets [62]. Similarly,
Hahne et al. (2014) found that kernel ridge regression outperformed a neural network for both a
reduced training set and when reducing the number of sEMG channels of a high-density array (from
192 to 12–16) [58].

4.2. Concerns for Practical Implementation

Remote patient monitoring and myoelectric prosthetic control were the two most common
applications used to motivate the many different techniques reviewed which indicates that eventual
users of these systems are expected to present with clinical impairment. However, our results show
that most studies do not validate their estimation techniques on impaired individuals. Evaluating
algorithm performance on unimpaired populations is certainly useful for algorithm development as
it reduces extraneous variables and simplifies study recruitment and retention efforts. Nevertheless,
these algorithms need to be deployed to impaired populations and, while some studies present
improved or equal performance for impaired individuals, many show that performance decreases.
Thus, caution should be taken when considering how well a technique will work when deployed
for a population on which it has not been validated. This clearly applies for a model trained on
healthy participants but deployed to participants with impairment (though in some cases the drop in
performance is minimal [90]). However, one also cannot assume that a model trained and tested on
impaired participants will have identical performance characteristics as the same model trained and
tested on healthy participants.

In addition to generalizing performance across populations, more research is needed to better
understand how these regression models generalize across individuals and tasks. The majority of
studies (80%) developed subject-specific models and only 33% of studies explored task extrapolation.
The latter may be less of a barrier to implementation since in practice task identification will likely be a
part of the pipeline for automated analysis [91], in which case highly accurate activity classification
models are required [92]. Thus, task specific models could be selected following task identification.
However, given the approaches reviewed herein, subject-specific models require every user to be
observed in-lab for model training. Further, the observation sets for model training must be broad
enough in scope (e.g., multi-speed, multi-load) so that they can be confidently applied for estimation in
unconstrained environments. These requirements substantially limit the scalability of these solutions
for remote patient monitoring. Subject-general models may be one of the more difficult challenges
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to overcome in the future as they appear to frequently result in performance decreases [59,63,64,85].
Intuitively, this may indicate that current regression models are learning person-specific patterns
as opposed to generalizable phenomena. This may be a result of the small sample sizes used
for model training in many of the reviewed studies. To fully realize the potential of regression
techniques for estimating biomechanical time-series, future work should incorporate observations from
impaired populations in their training and validation sets and larger sample sizes to foster learning of
generalizable phenomena.

The clinical utility of the reviewed estimation techniques is largely driven by the estimated
biomechanical variables. This review found no relevant studies which estimated muscle or joint
contact forces. This is likely due to the fact that direct measurement of these variables is substantially
more invasive than joint or segment mechanics. Nevertheless, indirect muscle and joint contact force
estimates enabled by traditional laboratory-based gait analysis can be informative clinically [18,19].
Thus, models trained using these indirect estimates as training targets may be useful for estimating
muscle and joint contact forces in remote environments. Further, future research should investigate the
estimation of frontal and transverse plane joint mechanics. Specifically, frontal plane joint moment
may be especially useful in monitoring patients at risk of developing knee osteoarthritis and remote
observation of these mechanics may provide clinical endpoints to evaluate intervention efficacy or
inform rehabilitation decision making [13,93]. There is room for improvement in this area as only one
study [49] reports the estimation of non-sagittal plane moment of any lower extremity joint (frontal
plane knee joint moment during walking), and performance was inferior to sagittal plane estimates
achieving normalized root mean squared error of 16.4 ± 5.7% (vs. 10.7 ± 5.3% for sagittal plane
moments) in healthy subjects.

Deployment of many of the reviewed techniques is further complicated by hardware limitations.
Of particular concern are the battery capacity and memory constraints of current wearables. Of
the more popular wearable sensors, gyroscopes are notorious for limiting long-term capture due
to their power requirements and would thus limit immediate application of several methods
reviewed [37,63–65,76,81,85]. Alternatively, accelerometers and sEMG are able to provide continuous
recording for at least 24-h with current battery technology. The use of sEMG for remote monitoring
is less common than accelerometry and has been used primarily for quantifying indices of physical
activity [94–97]. Recent efforts have estimated muscle activation time-series during walking using
methods similar to those used to estimate muscle force using Hill-type muscle models [8,91,98]. This
pre-processing step was used by several reviewed papers suggesting they may be practically deployed.
However, the sEMG sampling frequency used in many of the reviewed studies (500 Hz to 16 kHz) was
much higher than what has been used for remote monitoring (10–250 Hz). It is currently unknown
to what extent estimation performance is influenced by sEMG sampling frequency. Future research
should explore these limitations in search of hardware and algorithmic solutions that are practically
deployable for remote patient monitoring.

An additional practical concern is the number of wearable sensors required for the reviewed
algorithms. Several studies considered the effect of reducing the number of sensors on estimation
performance. Clancy et al. (2017) present a backward stepwise selection method for reducing the
number of necessary sensors [84]. They show that additional sensors beyond four (up to 16) provided
no statistically significant advantage for estimating degree-of-freedom-specific wrist joint kinetics.
This reduction method was later used by Dai et al. (2019) for a similar application where the reduction
approach generally outperformed pre-selected sensor locations [88]. Dai and Hu (2019) present a
method for reducing a high-density grid of 160 sEMG electrodes down to an 8 × 8 grid, however, the
8 × 8 subset was finger specific (for estimating finger kinematics) [87]. Future work in the development
of regression approaches for estimating biomechanical time-series should incorporate analysis of the
effect of reducing instrumentation complexity (i.e., reducing the number and types of sensors required)
on estimation performance.
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Finally, only one study provided open-source code for any part of their methodology [66]. The
code was for performing the MUAP decomposition of the raw sEMG signals and not the actual
regression model. Open-sourcing subject-general models will allow non-specialized research teams
without expertise in engineering or computer science to utilize these methods for clinical purposes.
Further, it will allow 3rd party validation; a necessary component prior to practical deployment and to
promote confidence from the public in the clinical utility of these tools. Open-source data as well as
open-source code in future studies would help speed the pace of development of these techniques.

4.3. Incorporating Domain Knowledge

While we excluded physics-based techniques from the current review, several papers incorporated
domain knowledge into their approach (e.g., muscle and neural physiology, rigid body dynamics)
which was often reported to improve performance. For example, Koike and Kawato (1995) incorporated
feedback of joint angular position and velocity specifically on the basis of the well known force-length
and force-velocity properties of muscle [60]. Further, pre-processing of the raw sEMG signals to
optimally estimate sEMG amplitude was often motivated by an understanding of muscle activation
dynamics. State-of-the art estimation incorporates signal whitening and the use of multiple channels
(multiple sensors per muscle) [32,35,99]. These techniques have been shown to improve estimation
performance compared to other methods [35,45]. Most papers used the standard highpass filter,
rectify, lowpass filter processing to estimate sEMG amplitudes and a broad range of lowpass filter
cutoff frequencies were used [15,46,48,53,54,56,57,62,67–69,72,76,86,88]. In addition to enveloping
techniques, some incorporate the fact that the observed sEMG is the superposition of many MUAPs.
Three studies (all since 2018) computed discrete features as model inputs after first performing MUAP
decomposition (Table 2). Given their results, Dai and Hu (2019) recommend the MUAP decomposition
over standard enveloping techniques [87]. Sun et al. (2018) identified shape-based clusters (K-means,
5 ≤ K ≤ 20) of MUAPs extracted from the biceps brachii sEMG and suggest the different clusters
represent different motor units [66]. The final estimation can be seen as a scaling of a single feature
related to the number of activated motor units which they use to represent firing rate (see Equation (10)
in [66]). Thus, the pre-processing of the raw sEMG signal, to estimate both sEMG amplitude and
MUAPs, based on its physiological origin [32,99] may have contributed to improved estimation
performance. An electromechanical delay (delayed increase in muscle force following neural excitation)
is also known to characterize muscle contraction dynamics [32]. This phenomenon may provide a
physiological justification for the improvements in performance associated with the use of a dynamic
model structure allowing previous sEMG values to have lasting effects on the estimated output. Total
delay was sometimes optimized using a grid search (625–875 ms [69], 50–150 ms [54]) and sometimes
not (130 ms [68], 0.5 ms [44], 488.3 ms [88]). Clancy et al. (2006) found that performance increased with
greater total time delay up to about 10 or 15 samples (i.e., 244.1 or 366.2 ms) [35]. Likewise, Clancy et al.
(2012) tried between 1 and 30 sample delays and found that lesser time delays (namely total delay
<5 samples or 122.1 ms) resulted in poorer performance [45]. Overly large delays also resulted in poor
performance, especially for high polynomial orders which they attribute to overfitting. The best total
delays (439.5–683.ms) were dependent on polynomial order and the regularization method. Ngeo et al.
(2014) modeled the sEMG to activation dynamics using the method described in [100] and optimized
the electromechanical delay. Optimal values were person-specific (between 39.6–75 ms) and they
show that incorporating electromechanical delay into their activation model improved performance
compared to neglecting it [62]. Some of the optimal delays reported in the reviewed studies are larger
than what is reported elsewhere in the literature (30–150 ms) [32]. One explanation may be that in
addition to the delayed effect of neural excitation, more information concerning the sEMG time-history
could help a regression algorithm capture some sub-task related neural control pattern which may be
inferred from a sufficiently large (i.e., >150 ms) window of time. The muscle synergy hypothesis may
provide a physiological basis for expecting said pattern to exist [101]. This concept was mentioned in
several reviewed papers and thus we pay it special attention next.



Sensors 2019, 19, 5227 17 of 24

4.3.1. Reference to Muscle Synergies

Several papers referred to the muscle synergy hypothesis in the development of their models and
in the discussion of its performance. The muscle synergy hypothesis provides a potential explanation of
how the central nervous system accommodates redundancy in motor control [102]. The theory suggests
that the activation time-series of a given muscle is a linear combination of a small set of basis waveforms.
Non-negative matrix factorization (NMF) is an algorithm commonly used in muscle synergy analysis to
optimally determine the basis functions and the coefficients for linear combination given a set of muscle
sEMG or activation time-series [101–103]. Jiang et al. (2009) used these techniques directly in their
estimation and show that for estimating contact forces at the hand, their method using NMF is nearly
unsupervised in that target force values are not needed and is only supervised in the sense that the
degree-of-freedom must be known for model training [74]. Others have referred to muscle synergies
as a possible explanation for the observed accuracy of some regression techniques [35,69,70,82]. The
synergy hypothesis indicates that the activity of all muscles contributing to a given joint torque may be
approximated given a common and observable subset of sEMG observations. While the estimation of
muscle activation time-series was not included in the current review, we note that Bianco et al. (2018)
explored the possibility of estimating unmeasured muscle activations from sEMG time-series measured
from eight different muscles using the traditional linear combination of basis waveforms formulation
of muscle synergies [104]. To the authors’ knowledge, no studies have regressed unmeasured muscle
activations using a reduced number of wearable sensors. In this formulation, the function being
identified in the regression would effectively model the synergistic relationship between muscles.
Such an approach might enable estimated activations to inform a complete set of Hill-type muscle
models crossing the joint of interest to estimate muscle force. Wang and Buchannan (2002) tried
a similar approach wherein a neural network was trained to learn the muscle activation dynamics
(intramuscular EMG to muscle activation model) using estimated torque error to drive parameter
adaptation in the learning process [105]. However, they estimated activations only for those muscles
with measured intramuscular EMG. Thus, advances in modeling the observed synergistic behavior of
muscle activations may prove useful for improving estimation of biomechanical time-series with a
minimal number of wearable sensors.

The muscle synergy hypothesis suggests that an observed set of muscle activation or sEMG
time-series carries redundant information and can be explained by a lower dimensional structure
(e.g., less than the number of sensors available). Regularization is a common technique in machine
learning used to reduce model complexity and prevent overfitting, usually at the expense of training
error. Reducing the number of inputs by removing redundant information also reduces model
complexity and the muscle synergy hypothesis may provide a physiological basis for this phenomenon.
Clancy et al. (2012) compared ridge regression to their pseudo-inverse based regularization wherein
the reciprocals of singular values below some threshold were replaced with zero [45]. The best ridge
regression results were similar to the pseudo-inverse regularization, however, optimal fits were less
sensitive to changes in pseudo-inverse tolerances near the optimum than they were to changes in
the ridge penalty hyperparameter suggesting the pseudo-inverse technique may be easier to tune.
This technique, also used in [84,88], along with self-organizing maps [73] and principal component
analysis [53,58,75,78,82,86,89] are examples of unsupervised feature reduction techniques. Chen et al.
(2018) found that using a deep belief network to reduce 10 inputs to three outperformed the PCA
approach for the same dimensionality reduction task [86]. This might be considered a supervised
dimensionality reduction (as would lasso regression [57]) as the determination of the weights in the
hidden neurons of the deep belief network are optimized so that the final output best approximates the
training set targets. Thus, although feature reduction is common in machine learning for improving
generalizability, it may be further justified on a physiological basis given the assumption that a lower
dimensional structure of the inputs exists.
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4.3.2. Towards a Hybrid Approach

A general conclusion from these observations is that clever incorporation of domain knowledge
in regression techniques may improve performance. In the papers we reviewed, this was mostly
by way of sensor signal pre-processing, feature engineering, and model structure (e.g., feedback or
dynamic). Incorporation of domain knowledge in regression has been suggested for other biomechanics
applications [106], and as shown in [36], a good understanding of system dynamics can directly inform
kernel structure in Gaussian process regression. For these reasons, hybrid methods using both
physics-based and machine learning techniques in concert are being proposed in other fields including
climate sciences [107], GPS-inertial navigation [108], and general chaotic processes [109]. As noted
in a recent editorial [110] concerning climate modeling, “The hybrid approach makes the most of
well-understood physical principles such as fluid dynamics, incorporating deep learning where
physical processes cannot yet be adequately resolved.” The general approach observed in many of these
techniques are generalizable and applicable beyond specific scientific disciplines and thus may prove
beneficial for remote patient monitoring. One approach might be to regress an unobserved internal
state for which the physical relationship with observed measurements is either not well understood or
not fully informed (e.g., not enough sensors) and then to drive a physical model using the estimated
internal state variable. For example, this was done in [105] where the authors’ chose to model muscle
activation dynamics using a neural network since they determined these dynamics to be the least
well understood. A second approach might be the fusion of a regression estimate and a physical
model estimate. Along these lines, if uncertainties are modeled, the parameters of the regression (or
the physical model) may be adapted in real-time. Gui et al. (2019) use a similar approach to remove
the need to calibrate an EMG-torque model [111]. In the proposed context this could be especially
useful as it may be interpreted as real-time subject specification from a general model. Further, it
may enable the adaptation of a model to time-varying signal characteristics (e.g., due to electrode
displacement, changes in skin conductivity, specific spatial position of inertial sensors) which may
negatively impact estimation [57]. Future developments in hybrid methods that take advantage of the
strengths of both physical models and machine learning may help realize the maximum potential of
remote patient monitoring.

5. Conclusions

Regression techniques present an alternative approach to physical models for estimating
biomechanical time-series using wearable sensor data. These methods could be transformative for
personalizing healthcare interventions as they allow the monitoring of a patient’s biomechanics
continuously and in unconstrained environments. The aim of this review was to summarize
relevant regression techniques in this context to imply directions for future research concerning
practical implementation and improving estimation performance. Several reviewed studies found that
incorporating some form of domain knowledge resulted in better estimation accuracy. Advances in
this area along with open-source algorithms, validation in impaired populations, and consideration of
practical hardware limitations (e.g., battery capacity and memory) may expedite future developments
to make clinical implementation a reality. In summary, future work should consider the following:

� Development of methods using hardware specifications that can be implemented remotely and
for a full 24-h capture.

� Development of subject-general models or real-time calibration.
� Development of hybrid machine learning and physics-based estimation.
� Open-source algorithms.
� Development of regression models for estimating muscle forces and joint contact forces.
� Validation of models on impaired populations.
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