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Abstract: Traditional filtering methods only focused on improving the peak signal-to-noise ratio of
the single fringe pattern, which ignore the filtering effect on phase extraction. Fringe phase-shifting
field based fuzzy quotient space-oriented partial differential equations filtering method is proposed
to reduce the phase error caused by Gaussian noise while filtering. First, the phase error distribution
that is caused by Gaussian noise is analyzed. Furthermore, by introducing the fringe phase-shifting
field and the theory of fuzzy quotient space, the modified filtering direction can be adaptively
obtained, which transforms the traditional single image filtering into multi-image filtering. Finally,
the improved fourth-order oriented partial differential equations with fidelity item filtering method is
established. Experiments demonstrated that the proposed method achieves a higher signal-to-noise
ratio and lower phase error caused by noise, while also retaining more edge details.

Keywords: structured light sensor; image denoising; fringe phase-shifting field; fuzzy quotient space;
oriented partial differential equations; phase error

1. Introduction

Due to the advantages of non-contact, high speed, high precision, three-dimensional (3D) shape
measurement, fringe projection profilometry (FPP) [1–4] has been widely used in industrial detection,
quality inspection, etc. Generally, the principle [1–6] is to project the sinusoidal and straight fringes
onto the surface of the object measured, and then the camera captures the fringe images modulated
by the object surface. The shape information of the object can be obtained from the absolute phase
according to the phase-height mapping. It is very important to calculate the absolute phase from the
fringe images that are captured by the camera. However, fringe signals will be degraded by sensor
noise [7–10] obeying Gaussian distribution, which affects the accuracy of the final three-dimensional
measurement information, due to the influence of environmental noise, in the process of image
acquisition and transmission.

As we all know the fringe image contains important information, such as the deformation and
displacement of the object measured. Wang [11] analyzed the relationship between phase-shift errors
and the accuracy of phase reconstruction, and proposed an accurate phase-shift estimation method. In
the past few decades, many studies have been performed on understanding the effect of Gaussian
noise on phase reconstruction, which can be roughly divided into two categories, which are, the binary
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pattern method and filtering method. The basic principle of the binary pattern method [12–15] is to
project binary fringe pattern to improve the peak signal-to-noise ratio (PSNR) of captured fringe images.
Wang [15] designed N patterns in an N-dimensional coding space to define and maximize the SNR of
pattern. Afterwards, binary pattern method based binary defocusing fringe [13,14] and Gray-code [5,15]
were also applied to improve the PSNR of the fringe pattern. However, the edges of binary patterns
are often difficult to precisely distinguish, which reduces the measurement accuracy. The filtering
method [16–24] is to reduce noise by means of filtering algorithms. Image filtering is a process of
restoring noise-free image from noise image, in which the difficulty is how to protect details while
reducing noise. Therefore, how to filter the Gaussian noise effectively is very important in accurately
extracting the phase information. Traditional filtering methods [16–20], such as Gaussian filtering,
median filtering, and wavelet transform, were proposed to reduce the noise. Villa [21] proposed
a fringe pattern denoising method based on Gaussian convolution to improve the performance of
low-frequency fringes. However, unlike general images, the digital fringe image has obvious directional
characteristics and it presents sinusoidal distribution. If the traditional filtering methods were used,
the edge information of fringe pattern will be blurred while filtering [9], which reduces the accuracy
of phase extraction. To this end, partial differential equations (PDEs) methods, such as second-order
PDEs, total variation (TV), fourth-order PDEs, oriented PDEs (OPDEs), etc., have been applied for
filtering electronic speckle pattern interferometry (ESPI) fringe patterns, which makes the filtering
only be carried out along the fringe direction. Tang [20,22,23] proposed a second-order single oriented
PDEs method to solve the denoising problems for optical interferometry fringes, and then provided
various methods that were based on PDEs. Yang [24] put forward an adaptive model combining the TV
and fractional-order differentiation filter for such problems. The second-order PDEs [20,23–25] easily
lead to the phenomenon of the staircase effect, while the four-order PDEs [26] can effectively reduce
the staircase phenomenon and get more attention and application. Recently, through introducing
the controlling speed function, Tang [9] established an adaptive oriented PDEs filtering method for
discontinuous optical fringe patterns. At the same time, lots of hybrid methods based on PDEs had
also been studied, such as fuzzy C-means [27,28], Hessian matrix [29], and shearlet transform [30].
Li [31] proposed a method for multi-frame fringe patterns processing based on convolutional neural
network (CNN) in order to extract the fringe skeletons in ESPI. Partial differential equations, especially
OPDEs and fourth-order OPDEs, have been demonstrated to be powerful in preserving the details
of ESPI fringe patterns while filtering. However, fourth-order OPDEs filtering methods have been
widely studied for ESPI fringes, while being rarely applied for digital projection fringe denoising
problem. Additionally, we can see that the above methods belong to single image filtering, pursuing the
improvement of PSNR of single image. In phase-shifting profilometry (PSP), the phase is determined
together by N phase-shifting images. In the presence of random Gaussian noise, the fringe filtering
directions at the same location of N phase-shifting images may be different with each other. Traditional
single image filtering will often lead to phase shifting.

When considering the limitation above, fringe phase-shifting field based fuzzy quotient
space-oriented partial differential equations filtering method (FOPDEs) is proposed for fringe image
denoising problem, which provides the fringe image with higher PSNR and reduces the phase error
that was caused by Gaussian noise. Firstly, the influence of Gaussian noise on phase error is analyzed.
It is concluded that the phase error that is caused by Gaussian noise also presents Gaussian distribution,
which can be taken as the theoretical basis of fringe image filtering. Secondly, the concept of fringe
phase-shifting field is established to transform the single fringe image filtering into multi-fringe images
filtering in the phase-shifting field. Thirdly, the theory of fuzzy quotient space is applied to modify
the filtering direction. The pixels along the fringe direction are adaptively clustered, and the filtering
direction is corrected according to the phase-shifting field by judging the intensity of the pixel noise.
Finally, the improved OPDEs filtering method with fidelity term is proposed, which preserves more
details while filtering Gaussian noise. The experimental results show the effectiveness of the proposed
FOPDEs method when compared with other methods.
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Section 2 introduces the phase error that is caused by Gaussian noise. Section 3 explains the
principle of the proposed method. Section 4 shows the experimental performance of the proposed
method, and Section 5 summarizes the paper.

2. Gaussian Noise-Induced Phase Error

This section will briefly review the FPP and explain how Gaussian noise effects the phase. The
projected sinusoidal fringe pattern is presented as [1–4],

I(x, y) = IA(x, y) + IB(x, y) cos[ϕ(x, y) + δn]

δn = k ∗ 2π
N , N = 3, 4, 5 · · · , n = 0, 1, · · · , N − 1

(1)

where (x, y) is any point, IA is the average intensity, IB is the intensity modulation, ϕ is the phase to
be solved for, and N is the number of phase-shifting steps. According to the N-step phase-shifting
algorithm, the phase value solved can be described as,

ϕ(x, y) = −arctan

∑N
n=1 In(x, y) sin δn∑N
n=1 In(x, y) cos δn

 (2)

The phase value ranges (−π,π] with 2π discontinuities due to the use of arctangent function.
Phase unwrapping algorithms [2–4] need to be applied for the continuous phase, which can be used
to analyze and compare the phase accuracy of different filtering algorithms in the presence of noise.
Assume that the noise-free image f’ is a real function that is defined on a bounded and piecewise
smooth open subset (image domain) Ω ∈ R2, that is, f : Ω→ R . Moving to a discrete formulation
of the problem, we assume that f , f ′ ∈ Rk are the function values at the k nodes of an equidistant
two-dimensional grid of size M×N on Ω. Denote by f the noisy image, which can be obtained from
image f’ and the addition of Gaussian noise,

f = f ′ + g (3)

where g represents the additive Gaussian white noise with zero mean and standard deviation σ. Thus,
given the noisy image f, we are interested in recovering f’, which is well known to be an ill-posed
problem, in general.

In this paper, the noise model that was developed by [31,32] is adopted to quantitatively analyze
the noise-induced phase error in phase-shifting algorithm. Usually, the noise is far less than the
projected intensity. Therefore, the effect of noise on the phase reconstruction can be regarded as a little
perturbation on the measured phase, which leads to the following first-order approximation of the
variance of phase error,

σ2
ϕ =

N−1∑
n=0

[(
∂ϕ

∂In

)
σ2

]
(4)

Let ω be the total periods number in the fringe pattern, substituting Equation (1) into Equation (4),
and the variance of phase error can be written as,

σ2
ϕ =

N−1∑
n=0

(− 2
Nω2IB

sin
(
ϕ−

2nπ
N

))2 = 2σ2

Nω2I2
B

(5)

According to Equation (5), the variance of phase error primarily depends on four factors, the
number of phase-shifting steps N, the Gaussian noise variance σ, intensity modulation IB, and the
fringe density ω. Thus, through increasing the number of phase-shifting steps, denser fringe patterns,
and higher intensity modulation, noise in phase reconstruction can be reduced. However, for a given
high speed or real-time measurement system, where the measured object, measurement time, and
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number of fringe pattern are fixed, the noise-induced phase error is difficult to suppress or eliminate
completely. For a given measurement system, Equation (5) suggests that the Gaussian noise-induced
phase error still obeys for Gaussian distribution. The phase error will be included in the absolute phase
ϕ, which will cause the error of object reconstruction according to the mapping of phase-height [2].
We can see that the phase error that is caused by Gaussian noise influences the accuracy of the
reconstruction results.

Figure 1a is the ideal fringe pattern, Figure 1b is the fringe pattern with Gaussian noise variance
0.3%, and Figure 1c is the Gaussian filtering result of Figure 1b. The 25th row cross sections of phase
error that are shown in Figure 1d are the results of the by Gaussian filtering of Figure 1b,c, minus
the ideal phase of Figure 1a. Traditional filtering methods only focus on improving the PSNR of
single image, and neglect the effect of filtering on phase reconstruction. From Equation (2) and the
red rectangular box of Figure 1d, it can be seen that the phase error that is caused by noise cannot be
reduced by only increasing the PSNR of single image. In this work, the main purpose of image filtering
is to reduce the phase error that is caused by noise.
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Figure 1. Fringe patterns. (a) Noise-free fringe pattern, (b) fringe pattern with σ2= 0.3%, (c) fringe
pattern with Gaussian filtering, and (d) the 25th row cross sections of phase error of noised image and
fringe image filtered by Gaussian filtering.

3. Principles

This section introduces the proposed filtering method to get high PSNR fringe image for phase
extraction in order to reduce the influence of Gaussian noise on phase reconstruction.
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3.1. Fringe Phase-Shifting Field

The fringe gradient reflects the intensity change of the pixels. Generally speaking, for ideal
noise-free vertical fringes, the fringe gradient is along the sinusoidal direction, that is, the horizontal
direction. However, being affected by random noise, the gradient direction of the fringes might change,
not following the horizontal direction, but showing an angle with the horizontal direction. The gradient
vector at point (x, y) can be written as,

∇ f =
[
Gx, Gy

]T
=

[
∂ f
∂x

,
∂ f
∂y

]T

(6)

where, Gx =
∂ f
∂x , Gy =

∂ f
∂y are the gray change rates of f (x, y) along x direction and y direction,

respectively, which can be expressed by the central difference method. ∇ f is a vector, which points to
the direction of the maximum rate of change of f (x, y), and its modulus can be expressed as,

∣∣∣∇ f
∣∣∣ = [

G2
x + G2

y

] 1
2 =

(∂ f
∂x

)2

+

(
∂ f
∂y

)2
1
2

(7)

The difference between the fringe patterns and common image is that the fringe images have
directional characteristics and they present sinusoidal characteristics along the vertical direction of
fringe. We define the perpendicular direction to the fringe gradient direction as the fringe direction,
which obeys the right-hand theorem. Let θ be the angle between the fringe direction and the x-axis,

θ = arcsin
|Gx|√

G2
x + G2

y

(8)

The space that consists of N-step phase-shifting images is defined as the fringe phase-shifting
field, as shown in Figure 2. I1, I2, I3, and I4 are the projection intensities of the corresponding point
(a, b) in four-step phase-shifting images, respectively. p is the phase value of point (a, b) in the phase
map. Next, we give two hypotheses and prove them.
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Figure 2. Fringe phase-shifting field (N = 4).

Hypothesis 1. Assuming that the projected fringe patterns are all standard sinusoidal fringes, and after
modulating on the smooth and diffuse reflective surface of the object, for any point of phase map, the fringe
direction of the corresponding point is identical with each other in the four-step fringe phase-shifting field.
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Proof. For the four-step phase-shifting method, the intensity at any point (a, b) can be expressed as
I(a, b) = IA + IB cos

(
φ+ 2nπ

4

)
, n = 1, 2, 3, 4. θ1,θ2,θ3,θ4 represent the fringe direction angles of the

corresponding point of four phase-shifting images, respectively. With the central difference method,
the direction angles can be expressed as,

θ1 = arctan I1(a+1,b)−I1(a−1,b)
I1(a,b+1)−I1(a,b−1)

= arctan
cos(φa+1,b+0) − cos(φa−1,b+0)
cos(φa,b+1+0) − cos(φa,b−1+0)

= arctan
cos(φa+1,b) − cos(φa−1,b)
cos(φa,b+1) − cos(φa,b−1)

,

θ2 = arctan I2(a+1,b)−I2(a−1,b)
I2(a,b+1)−I2(a,b−1)

= arctan
cos(φa+1,b+

π
2 ) − cos(φa−1,b+

π
2 )

cos(φa,b+1+
π
2 ) − cos(φa,b−1+

π
2 )

= arctan
cos(φa+1,b) − cos(φa−1,b)
cos(φa,b+1) − cos(φa,b−1)

,

θ3 = arctan I3(a+1,b)−I3(a−1,b)
I3(a,b+1)−I3(a,b−1)

= arctan
cos(φa+1,b+π) − cos(φa−1,b+π)
cos(φa,b+1+π) − cos(φa,b−1+π)

= arctan
cos(φa+1,b) − cos(φa−1,b)
cos(φa,b+1) − cos(φa,b−1)

,

θ4 = arctan I4(a+1,b)−I4(a−1,b)
I4(a,b+1)−I4(a,b−1)

= arctan
cos(φa+1,b+

3π
2 ) − cos(φa−1,b+

3π
2 )

cos(φa,b+1+
3π
2 ) − cos(φa,b−1+

3π
2 )

= arctan
cos(φa+1,b) − cos(φa−1,b)
cos(φa,b+1) − cos(φa,b−1)

.

As can be seen from the above, θ1 = θ2 = θ3 = θ4. That is, for four-step phase-shifting images,
the fringe direction of corresponding point is identical with each other. �

Hypothesis 2. In the four-step fringe phase-shifting field, if the fringe patterns are degraded by Gaussian noise,
for one point of phase map, the fringe direction of the corresponding point might be different from each other.

Proof. According to the Hypothesis 1, for four-step phase-shifting images, the fringe direction
of any corresponding point is identical under ideal conditions. However, due to the existence of
noise, the random noise intensity at any point is different. In the presence of additive Gaussian
white noise In′ , we assume that the intensity of light at any point (a, b) is expressed as I(a, b) =

IA + IB cos
(
φ+ 2nπ

4

)
+ In′ , n = 1, 2, 3, 4; thus, the fringe direction can be rewritten as,

θ′ = arctan I1(a+1,b) − I1(a−1,b)
I1(a,b+1) − I1(a,b−1)

= arctan
IB cos(φa+1,b+0) + In′

(a+1,b)
− IB cos(φa−1,b+0)−In′

(a−1,b)

IB cos(φa,b+1+0) + In
(a,b+1)

− IB cos(φa,b−1+0) − In
(a,b−1)

= arctan
cos(φa+1,b) − cos(φa−1,b) +

(
In′
(a+1,b)

− In′
(a−1,b)

)/
IB

cos(φa,b+1) − cos(φa,b−1) +
(
In′
(a,b+1)

−In′
(a,b−1)

)/
IB

(9)

It can be seen from Equation (9) that the random Gaussian noise leads to the deviation of fringe
direction. Therefore, for the same corresponding point, fringe directions might be different from
each other. According to Hypothesis 1 and 2, the fringe direction could be deviated due to the
influence of random Gaussian noise. If the traditional method is applied for filtering, the phase shifting
will still occur. Therefore, it is necessary to modify the fringe direction to obtain a more accurate
filtering direction. �

3.2. Filtering Direction Correction Method Based on Fuzzy Quotient Space

In this subsection, the proposed filtering direction correction method is introduced in detail. The
basic idea is that only the strong noise points along the fringe direction are filtered to avoid blurring
the weak noise points, so as to better protect the fringe edges. This subsection briefly explains the
theory of fuzzy quotient space [33–36], which classifies the pixels along the vertical direction of the
fringe gradient into weak noise point clusters and strong noise point clusters. Some basic notions and
properties of fuzzy quotient space theory are given, as follows.
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Definition 3. Let S represents the set of all fuzzy subsets on fringe image domain Ω. Assume that function
R ∈ S(Ω ×Ω), and satisfies (i) reflexivity, ∀x ∈ Ω, R(x, x) = 1; (ii) symmetry, ∀x, y ∈ Ω, R(x, y) = R(y, x);
(iii) ∀x, y, z ∈ Ω, R(x, z) ≥ supy(R(x, y), R(y, z)). R is called a fuzzy equivalence relation on Ω.

Proposition 4. Assume that R is a fuzzy equivalence relation on Ω and Rλ =
{
(x, y)

∣∣∣R(x, y) ≥ λ,λ ∈ [0, 1]
}
.

Let Ω(λ) be a quotient space corresponding to equivalence relation Rλ. It can be seen that
0 ≤ λ2 ≤ λ1 ≤ 1⇔ Rλ1 > Rλ2 ⇔ Ω(λ2) is a quotient space of Ω(λ1). A family

{
Ω(λ)

∣∣∣λ ∈ [0, 1]
}

of quotient
spaces forms an order-chain based on the inclusion relation of quotient sets, called hierarchical structure on Ω.

Theorem 5. Given a fuzzy equivalence relation R on Ω, we have a corresponding hierarchical structure on Ω.

Theorem 6. Assume that
{
Ω(λ)

∣∣∣λ ∈ [0, 1]
}

is a hierarchical structure on Ω, there is a fuzzy equivalence relation
R on Ω.

Proposition 7. Let R be a fuzzy equivalent relation on Ω. All the pixels along the fringe direction
can be represented by fuzzy equivalent granules (G1, G2, · · · , Gi, · · · , Gm), where Gi represents a fuzzy
sub-granular. ∀Gi, G j, d

(
Gi, G j

)
= 1− s(a, b),∀a ∈ Gi, b ∈ G j, dis a distance function, s

(
xi, x j

)
indicates the

similarity function.

According to Proposition 7, when given a distance, we can have a fuzzy equivalence relation
and a hierarchical structure on Ω, as shown in Figure 3. We define an Euclidean distance of pixels as
d = abs

(
A(xi, yi) −A

(
x j, y j

))
/255. Thus, a fuzzy similarity matrix r with reflexivity and symmetry is

constructed as,

rN×N =



1
...

. . .
si1 · · · 1
...

...
. . .

s j1 · · · s ji · · · 1
...

...
...

. . .
sN1 · · · sNi · · · sN j · · · 1


(10)
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Figure 3. A hierarchical structure.

Based on the theory of fuzzy quotient space, triple (Ω, A, G)λ is used to describe the granulation
problem. Ω denotes the whole pixels along fringe direction. A denotes the gray value attribute of
pixel. G denotes the set of attribute values. All of the pixels along the fringe direction can be divided
into several fuzzy equivalent granules according to A. Subsequently, the union of all granules can
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represent the domain Ω, that is, the pixels along fringe direction. According to Proposition 7, Ω is
a hierarchical structure about granularity λ. In Figure 3, each green circle represents a granule. For
different granularities, all of the pixels can be divided into different fuzzy equivalent clusters. That is
to say, different clustering results can be obtained by changing the granularity. The granularity is the
coarsest when all of the pixels are regarded as one granule. The granularity gets finer with the increase
of the number of granules. Therefore, through the fuzzy quotient space, pixels clustering problems can
be expressed as the different results at different granularity layers.

As shown in Figure 3, a variety of classification results at different granularity levels can be
obtained by the hierarchical structure [35–37]. How to extract the optimal granularity layer from
the hierarchical structure will be discussed below. Effective granularity layer can better reflect the
clustering effect of granules, that is, the inner distance of granule is as small as possible, while the outer
distance between the granules is as large as possible. Therefore, the sum of inter- granule distances
is defined as inter-granule compactness, and the sum of outer-granule is defined as outer-granule
separation. The optimum granularity layer has the highest degree of inter-granule compactness and
outer-granule separation. The criteria for judging the optimal granularity layer are as follows,

opt(λ) = max
(

Simavg

Disavg

)
(11)

where Simavg is the average inter-granule similarity under granularity λ and Disavg is the average
outer-granule distance under granularity λ. Assume that there has m granules under granularity λ
and Cλi represents the ith granule,

Simavg =
1
m

m∑
i=1

∑
|Cλi |

s(X, Y)∣∣∣Cλi ∣∣∣ , X, Y ∈ Cλi , X , Y (12)

A granule is a set of many pixels and d′λi is the average gray value of the granule. The distance
between granules can be calculated according to the Euclidean distance, as mentioned above. The
average outer-granule distance can be written as,

Disavg =
1
m

m∑
i, j=1

d′(i, j), i, j ∈ m, i , j (13)

Hence, the optimal granularity layer is selected out from the hierarchical structure. According
to Section 3.1, noise will cause the deviation of fringe direction. If the filtering process is along the
deviated fringe direction, it will still lead to phase shifting, which will ultimately affect the accuracy of
phase extraction.

Definition 8. If there is a weak noised point in the four-step phase-shifting field, and its 3*3 neighborhood points
are all weak noised points, then this point is called a valid point.

The fringe direction of any corresponding point is θ = (θ1,θ2,θ3,θ4), the filtering direction
determination method is as follows,

(1) If there is only one valid point, the fringe direction of the valid point is taken as the filtering
direction, that is, θ = θi.

(2) If there are two or three valid points, the mean fringe direction of the valid points is taken as the

filtering direction, that is, θ = Mean
(
θi,θ′i

)
or θ = Mean

(
θi,θ′i ,θ

′′

i

)
.

(3) If there is no valid point, the mean value of the fringe direction is taken as the filtering direction,
that is, θ = Mean(θ1,θ2,θ3,θ4).
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3.3. Improved Fourth-Order Opdes Filtering Method

In this subsection, we present an improved fourth-order OPDEs filtering method with fidelity
item. The basic idea of image filtering based on partial differential equations theory is as follows. Let
I : R2

→ R represent a gray image. Additionally, I(x, y) is the gray value of pixel (x, y). Introducing
time parameter t, then the image evolution process can be expressed as [8,20,21],

∂tu = F[u(x, y, t)], u(x, y, 0) = I(x, y) (14)

where u(x, y, t) is the evolutionary image. F : R→ R is an operator given for different image processing
processes. The original image I(x, y) can be regarded as the initial condition. Thus, the solution of
differential equations u(x, y, t) is the image that is processed under the time parameter t. The principle
of PDEs denoising is transforming the image denoising problem into a minimal functional problem
according to the variational framework. Let E and Es represent the energy function and the smoothing
item, respectively. To preserve more details while filtering, based on the fourth-order OPDEs energy
function model of literatures [8,20,21] and Equation (14), we introduce the fidelity item E f to obtain an
improved fourth-order OPDEs filtering model, which can be defined as,

E(u) = Es(u) + E f (u) =
∫
Ω

1
2

∣∣∣∣∣∣∂2u
∂ρ2

∣∣∣∣∣∣2dxdy +
λ
2
‖u0 − u‖2L2 (15)

where ρ represents the fringe direction of the image u(x, y), that is, the diffusion direction. λ is a
constant, which reflects the fidelity of the original image and the denoised image. u0 is the original
image, while u is the denoised image under time parameter t. L2 represents the Euclidean norm. The
relationship between the coordinate position (x, y) and ρ is x = ρ cosθ, y = ρ sinθ.

The problem of noise removal can be transformed into a formulaic problem of solving the
minimum value of Equation (15) on the image domain Ω. The equivalent Euler equation of ∂E/∂t = 0
is taken as,

∂ f
∂u
−
∂u
∂x

(
∂ f
∂ux

)
−
∂u
∂y

(
∂ f
∂uy

)
+
∂2

∂x2

(
∂ f
∂uxx

)
+

∂2

∂x∂y

(
∂ f
∂uxy

)
+

∂2

∂y2

(
∂ f
∂uyy

)
= 0 (16)

where,

f = 1
2

∣∣∣∣ ∂2u
∂ρ2

∣∣∣∣2 = 1
2

(
uxx cos2 θ+ 2uxy cosθ sinθ+ uyy sin2 θ

)2
+ λ

2 (u0 − u)2

∂ f
∂u = −λ(u0 − u), ∂ f

∂ux
= 0, ∂ f

∂uy
= 0,

∂ f
∂uxx

= uxx cos4 θ+ 2uxy cos3 θ sinθ+ uyy cos2 θ sin2 θ,
∂ f
∂uyy

= uyy sin4 θ+ 2uxy cosθ sin3 θ+ uxx cos2 θ sin2 θ,
∂ f
∂uxy

= 2uxx cos3 θ sinθ+ 2uyy cosθ sin3 θ+ 4uxy cos2 θ sin2 θ.

(17)

Substituting Equation (17) into Equation (16), we can write,

λ(u0 − u) + uxxxx cos4 θ+ uyyyy sin4 θ+ uyyxx cos2 θ sin2 θ+ uxxyy cos2 θ sin2 θ+ 2uxyxx cos3 θ sinθ+
2uxyyy cosθ sin3 θ+ 2uxxxy cos3 θ sinθ+ 2uyyxy cosθ sin3 θ+ 4uxyxy cos2 θ sin2 θ = 0

(18)

The improved fourth-order OPDEs filtering model while using the gradient decline method
is presented,

∂ f
∂u = λ(u0 − u) + uxxxx cos4 θ+ uyyyy sin4 θ+ uyyxx cos2 θ sin2 θ+ uxxyy cos2 θ sin2 θ+
2uxyxx cos3 θ sinθ+ 2uxyyy cosθ sin3 θ+ 2uxxxy cos3 θ sinθ+ 2uyyxy cosθ sin3 θ+
4uxyxy cos2 θ sin2 θ

(19)
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The controlled diffusion factor g(|∇u|) = 1/
(
1 + k|∇u|2

)
is introduced to the improved fourth-order

OPDEs model. The value of g becomes larger along the gradient direction, while it becomes smaller
along other directions. Thus, the controlled diffusion factor can control the filtering speed. Equation (19)
can be rewritten as,

∂ f
∂u = −g(|∇u|)


λ(u0 − u) + uxxxx cos4 θ+ uyyyy sin4 θ+ uyyxx cos2 θ sin2 θ+ uxxyy cos2 θ sin2 θ+
2uxyxx cos3 θ sinθ+ 2uxyyy cosθ sin3 θ+ 2uxxxy cos3 θ sinθ+ 2uyyxy cosθ sin3 θ+
4uxyxy cos2 θ sin2 θ

 (20)

Let (i, j) be any point on the image and the time step is ∆t. Denote p by the number of iteration. In
the evolution, evolutionary image u

(
i, j, tp

)
at tp = p∆t is presented as (u)

p

i, j
, which can be expressed as

(u)
p

i, j
=

u
p+1

i, j
− u

p

i, j

∆t
(21)

The discrete form of Equation (20) is

u
p+1

i, j
= up

i, j − ∆tgp
i, j



(uxxxx)
p
i, j

cos4
(
θi, j

)
+

(
uyyyy

)p

i, j
sin4

(
θi, j

)
+

(
uyyxx

)p

i, j
cos2

(
θi, j

)
sin2

(
θi, j

)
+(

uxxyy
)p

i, j
cos2 θ sin2 θ+ 2

(
uxyxx

)p

i, j
cos3

(
θi, j

)
sin

(
θi, j

)
+

2
(
uxyyy

)p

i, j
cos

(
θi, j

)
sin3

(
θi, j

)
+ 2

(
uxxxy

)p

i, j
cos3

(
θi, j

)
sin

(
θi, j

)
+

2
(
uyyxy

)p

i, j
cos

(
θi, j

)
sin3

(
θi, j

)
+ 4

(
uxyxy

)p

i, j
cos2

(
θi, j

)
sin2

(
θi, j

)


(22)

where,

(ux)
p

i, j
=

u
p

i+1, j
− u

p

i−1, j

2
,
(
uy

)p

i, j
=

u
p

i, j+1
− u

p

i, j−1

2
,
(
uxy

)p

i, j
=

u
p

i+1, j+1
− u

p

i+1, j−1
− u

p

i−1, j+1
− u

p

i−1, j−1

4
,

(uxx)
p

i, j
= u

p

i+1, j
− 2u

p

i, j
+ u

p

i−1, j
,
(
uyy

)p

i, j
= u

p

i, j+1
− 2u

p

i, j
+ u

p

i, j−1

(uxxxx)
p

i, j
= (uxx)

p

i+1, j
− 2(uxx)

p

i, j
+ (uxx)

p

i−1, j
,
(
uyyyy

)p

i, j
=

(
uyy

)p

i, j+1
− 2

(
uyy

)p

i, j
+

(
uyy

)p

i, j−1(
uyyxx

)p

i, j
=

(
uyy

)p

i+1, j
− 2

(
uyy

)p

i, j
+

(
uyy

)p

i−1, j
,

(
uxxyy

)p

i, j
= (uxx)

p

i, j+1
− 2(uxx)

p

i, j
+ (uxx)

p

i, j−1(
uxyxx

)p

i, j
=

(
uxy

)p

i+1, j
− 2

(
uxy

)p

i, j
+

(
uxy

)p

i−1, j
,

(
uxyyy

)p

i, j
= (uxx)

p

i, j+1
− 2

(
uxy

)p

i, j
+

(
uxy

)p

i, j−1(
uxxxy

)p

i, j
=

(uxx)
p

i+1, j+1
− (uxx)

p

i+1, j−1
− (uxx)

p

i−1, j+1
+ (uxx)

p

i−1, j−1
4 ,

(
uyyxy

)p

i, j
=

(uyy)
p

i+1, j+1
− (uyy)

p

i+1, j−1
− (uyy)

p

i−1, j+1
+ (uyy)

p

i−1, j−1
4 ,

(
uxyxy

)p

i, j
=

(uxy)
p

i+1, j+1
− (uxy)

p

i+1, j−1
− (uxy)

p

i−1, j+1
+ (uxy)

p

i−1, j−1
4 .

Figure 4 shows the flowchart of the proposed FOPDEs method.
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Figure 4. The flowchart of the fuzzy quotient space- oriented partial differential equations filtering
(FOPDEs) method.

The steps of the FOPDEs methods can be written as: (1) The four-step phase-shifting fringe
patterns are applied to establish the fringe phase-shifting field. (2) For each phase-shifting image, the
pixels along the fringe direction are classified into weak noised points and strong noised points by the
fuzzy quotient space, and the modified filtering directions of strong noised points are calculated in the
fringe phase-shifting field. (3) The improved fourth-order oriented partial differential equations with
fidelity item is used to remove the Gaussian noise. (4) Phase extraction with filtered fringe images. In
the next section, we will introduce the performance of the proposed method in detail.

4. Experiments and Results

In this section, we test our method on computer-simulated and experimental fringe patterns to
verify the performance of our proposed method. All of the simulations listed here are implemented in
Matlab R2018b on a laptop that was equipped with 3.0 GHz CPU and 8G RAM memory.

Traditional filtering methods only use PSNR as filtering evaluation index, which is difficult to fully
reflect the comprehensive performance for phase-shifting images. Various noise variances are added
to the four-step phase-shifting simulation images in order to verify the effectiveness of the proposed
method. The PSNR and the standard deviation of phase error that are caused by Gaussian noise
(STD) are used as indicators for filtering evaluation. The proposed FOPDEs method is compared with
the commonly used methods, such as Gaussian filtering [16–18,21], mean filtering [16–18], wavelet
transform [17], TV [19,20], and OPDEs [24], as shown in Table 1. Table 1 reflects the results of adding
uniform noise to phase-shifting images and adding different noise to different phase-shifting images.
Figure 5 shows the filtering effects of the 3th step fringe image (with size of 100 × 100) with various
filtering methods.
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Table 1. Comparisons of filtering results with different methods.

Noise Variance 0.0003% 0.01% 0.02% 0.03% 0.05% 0.1% 1* 2*

Noisy
Image

PSNR 45.1694 39.9362 37.2023 35.3777 33.1817 30.3353 45.0698 40.0016
STD 0.0081 0.0146 0.0207 0.0252 0.0327 0.0464 0.0080 0.0209

Gaussian
Filtering

PSNR 34.3710 34.2658 34.2216 34.0142 33.6398 32.9800 34.3895 34.3190
STD 0.0178 0.0182 0.0189 0.0194 0.0204 0.0222 0.0177 0.0185

Median
Filtering

PSNR 32.1864 32.1748 31.9004 31.7873 31.3752 30.3924 32.1726 32.1758
STD 0.0555 0.0562 0.0571 0.0542 0.0562 0.0558 0.0471 0.0530

Wavelet
Transform

PSNR 31.0430 31.0081 30.9437 30.9519 30.8505 30.6780 31.0455 31.0030
STD 0.0624 0.0625 0.0628 0.0628 0.0629 0.0633 0.0624 0.0626

TV
PSNR 34.0390 33.8797 33.6093 33.1969 32.5115 31.2737 34.1355 33.8892
STD 0.0203 0.0218 0.0244 0.0262 0.0301 0.0375 0.0203 0.0242

OPDEs
PSNR 49.6068 44.6278 41.5815 39.9025 37.8154 34.8772 49.6381 44.6649
STD 0.0069 0.0120 0.0169 0.0203 0.0264 0.0381 0.0069 0.0206

FOPDEs
PSNR 50.6144 45.7002 42.6183 40.8076 38.8956 38.5999 50.6905 45.4839
STD 0.0048 0.0083 0.0115 0.0141 0.0185 0.0258 0.0047 0.0117

1*, 0.003%, 0.006%, 0.002%, 0.001% for four-step phase-shifting images, respectively. 2*, 0.01%, 0.003%, 0.05%, 0.02%
for four-step phase-shifting images, respectively.
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median filtering, (e) fringe pattern with wavelet transform, (f) fringe pattern with TV, (g) fringe 
pattern with OPDEs, and (h) fringe pattern with FOPDEs. 

As can be seen from Figure 5 and Table 1, with the increase of noise variance, the PSNR of 
Gaussian filtering, TV, OPDEs, and the proposed FOPDEs method tend to uniformly decrease, 
which shows that noise variance has an important impact on the filtering effect. Under different 
noise variances, the PSNR of median filtering does not change much, and it is significantly lower 
than that of the noisy image. This shows that the median filtering not only does not improve the 
filtering effect, but it also reduces the PSNR and increases the phase error. After Gaussian filtering, 
when the noise variance is strong ( 0.05%≥ ), the noise can be effectively filtered, but the edge 

Figure 5. Fringe patterns with various filtering methods. (a) Noise-free fringe pattern, (b) noised
fringe pattern with σ2= 0.05%, (c) fringe pattern with Gaussian filtering, (d) fringe pattern with median
filtering, (e) fringe pattern with wavelet transform, (f) fringe pattern with TV, (g) fringe pattern with
OPDEs, and (h) fringe pattern with FOPDEs.

As can be seen from Figure 5 and Table 1, with the increase of noise variance, the PSNR of Gaussian
filtering, TV, OPDEs, and the proposed FOPDEs method tend to uniformly decrease, which shows that
noise variance has an important impact on the filtering effect. Under different noise variances, the
PSNR of median filtering does not change much, and it is significantly lower than that of the noisy
image. This shows that the median filtering not only does not improve the filtering effect, but it also
reduces the PSNR and increases the phase error. After Gaussian filtering, when the noise variance
is strong (≥ 0.05%), the noise can be effectively filtered, but the edge blurred phenomenon appears.
While, when the noise variance is weak (< 0.05%), the PSNR will be reduced after Gaussian filtering.
Gaussian filtering and median filtering belong to isotropic filtering. The fringe edges become blurred
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while filtering, which easily leads to a phase shift. Similarly, after wavelet transform, although the
visual observation effect is better, with the increase of noise variance, the PSNRs, and STDs have little
change and they are obviously lower than the noisy image. The TV method is superior to the wavelet
transform method, but there has a ladder effect in the fringe pattern. The OPDEs method achieves a
well filtering effect, and the PSNR is significantly improved. When compared with other methods, the
proposed FOPDEs method has the best filtering effect, which achieves the optimal PSNR and minimum
STD for the above noise variances. When compared with the noisy images, the proposed method can
increase the PSNR by 27.24% and STD by 44.39%.

Figure 6 shows the phase error maps of the simulated fringe image that was filtered by various
methods. From Table 1 and Figure 6b, we can see that, although the phase-shifting algorithm is noise
resistant, the phase error that is caused by Gaussian noise still exists and it cannot be ignored. From
Figure 6, we can see that Figure 6g,h are more close to the phase error distribution of the original noisy
fringe images. According to the Table 1, as compared with OPDEs and other methods, FOPDEs has
the smallest STD and highest PSNR. From Table 1 and Figure 6, the FOPDEs method retains more
original image details than other methods. Figure 7 shows the phase error curves at the 20th row
of Figure 6b–h with various filtering methods. As can be seen from Figure 7, when compared with
other methods, the phase error curve with the proposed FOPDEs method is more close to 0, and it
has the smallest error values. According to Figures 6 and 7, there are edge effects in the Gaussian
filtering, mean filtering, wavelet transform, and TV method. The phase error distribution with the
Gaussian filtering, mean filtering, and wavelet transform vary greatly from that of original noised
image. The TV method retains the phase error distribution characteristics of original noised image.
From Figures 6 and 7, although the curve fluctuation after Gaussian filtering is also smaller, the phase
error with Gaussian filtering changes the characteristics of the original phase error map. The OPDEs
method obviously retains more original image details than TV. As the fidelity item is added to the
energy function of FOPDEs, the proposed method retains most of original image information. As can
be seen from Table 1 and Figures 5–7, the proposed method achieves optimal filtering performance
while retaining more details.

Figure 8 shows the convergence speed and algorithm performance of the proposed FOPDEs
method. The FOPDEs method has reached the optimum PSNR value after 250 iterations, which means
that the FOPDEs method is superior to OPDEs in convergence speed and in improving PSNR. Through
the simulated fringe images experiment, we can see that the FOPDEs method improves the peak
signal-to-noise ratio of the fringe images and reduces the standard deviation of phase error that is
caused by Gaussian noise. At the same time, the FOPDEs method has faster convergence speed than
the traditional OPDEs method.

The validity of the proposed method has been verified above by the simulated fringe images. The
actual fringe images will be further validated. Figure 9 shows two actual stepped parts. Figure 9a is a
coaxial cylinder part with several different diameters. Figure 9b is a part with multiple steps. The
surfaces of both parts belong to a diffuse surface. Figure 10 shows the four-step phase-shifting images
of the two stepped parts.

Figures 11 and 12 show the filtering effect with Gaussian filtering and FOPDEs method for
Figure 10c,g, respectively, in order to verify the filtering effect of the FOPDEs method. Figures 11c
and 12c show the cross sections of fringe intensity at the row 800th and the 500–950th columns of
Figure 11a,b and Figure 12a,b, respectively. According to Figures 11c and 12c, due to the effect of
Gaussian noise, the cross sections of original fringe images show unideal sine curves. After Gaussian
filtering, the valleys of the cross sections obviously fluctuate, which shows that the Gaussian filtering
method has obvious deviation when it acts on the low gray values. The Gaussian filtering method is
easy to cause phase shifting, which results in measurement error, while the FOPDEs method belongs
to zero-phase-shifting filtering. When compared with the original fringe images and Gaussian filtering
images, the FOPDEs method reduces the effect of Gaussian noise.



Sensors 2019, 19, 5202 14 of 22

Sensors 2019, 19, x FOR PEER REVIEW  13 of 23 

blurred phenomenon appears. While, when the noise variance is weak ( 0.05%< ), the PSNR will be 
reduced after Gaussian filtering. Gaussian filtering and median filtering belong to isotropic filtering. 
The fringe edges become blurred while filtering, which easily leads to a phase shift. Similarly, after 
wavelet transform, although the visual observation effect is better, with the increase of noise 
variance, the PSNRs, and STDs have little change and they are obviously lower than the noisy 
image. The TV method is superior to the wavelet transform method, but there has a ladder effect in 
the fringe pattern. The OPDEs method achieves a well filtering effect, and the PSNR is significantly 
improved. When compared with other methods, the proposed FOPDEs method has the best 
filtering effect, which achieves the optimal PSNR and minimum STD for the above noise variances. 
When compared with the noisy images, the proposed method can increase the PSNR by 27.24% and 
STD by 44.39%. 

Figure 6 shows the phase error maps of the simulated fringe image that was filtered by various 
methods. From Table 1 and Figure 6b, we can see that, although the phase-shifting algorithm is noise 
resistant, the phase error that is caused by Gaussian noise still exists and it cannot be ignored. From 
Figure 6, we can see that Figure 6g,h are more close to the phase error distribution of the original 
noisy fringe images. According to the Table 1, as compared with OPDEs and other methods, FOPDEs 
has the smallest STD and highest PSNR. From Table 1 and Figure 6, the FOPDEs method retains more 
original image details than other methods. Figure 7 shows the phase error curves at the 20th row of 
Figure 6b–h with various filtering methods. As can be seen from Figure 7, when compared with other 
methods, the phase error curve with the proposed FOPDEs method is more close to 0, and it has the 
smallest error values. According to Figures 6 and 7, there are edge effects in the Gaussian filtering, 
mean filtering, wavelet transform, and TV method. The phase error distribution with the Gaussian 
filtering, mean filtering, and wavelet transform vary greatly from that of original noised image. The 
TV method retains the phase error distribution characteristics of original noised image. From Figures 
6 and 7, although the curve fluctuation after Gaussian filtering is also smaller, the phase error with 
Gaussian filtering changes the characteristics of the original phase error map. The OPDEs method 
obviously retains more original image details than TV. As the fidelity item is added to the energy 
function of FOPDEs, the proposed method retains most of original image information. As can be seen 
from Table 1 and Figures 5–7, the proposed method achieves optimal filtering performance while 
retaining more details. 

 

(a) 

 

(b) 

Sensors 2019, 19, x FOR PEER REVIEW  14 of 23 

 

(c) 

 

(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 6. Phase error maps of simulated fringe image with various filtering methods. (a) 
Unwrapping phase, (b) phase error with noisy image, (c) phase error with Gaussian filtering, (d) 
phase error with median filtering, (e) phase error with wavelet, (f) phase error with TV, (g) phase 
error with OPDEs, and (h) phase error map with FOPDEs. 

Figure 6. Phase error maps of simulated fringe image with various filtering methods. (a) Unwrapping
phase, (b) phase error with noisy image, (c) phase error with Gaussian filtering, (d) phase error with
median filtering, (e) phase error with wavelet, (f) phase error with TV, (g) phase error with OPDEs, and
(h) phase error map with FOPDEs.
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Figure 11. Fringe images of Figure 10c filtered by different filtering methods. (a) Fringe image with
Gaussian filtering, (b) fringe image with FOPDEs, (c) cross sections of fringe intensity curves of (a,b) and
the noisy image.
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Figure 12. Fringe images of Figure 10g filtered by different filtering methods. (a) Fringe image with
Gaussian filtering, (b) fringe image with FOPDEs, (c) cross sections of fringe intensity curves of (a,b) and
the noisy image.

The four-step phase shifting with non-filtering (four-step) method, four-step phase shifting with
Gaussian filtering (Gaussian filtering), and four-step phase shifting with FOPDEs filtering method
(FOPDEs) are used to process the fringe images above in Figure 10, respectively, in order to verify the
filtering effect on phase error of the FOPDEs method proposed in this paper again, taking STD as the
evaluation index. Subsequently, we calculate the STD results and the Mean STD values under different
methods 10 times, respectively, as shown in Table 2. It can be seen that the FOPDEs method obtained
the optimal results for both parts, which shows the excellence and stability. According to Equation (5),
when the number N of phase shifting step is infinite, the phase error that is caused by noise can be
neglected. Therefore, we choose the phase that was obtained by the 16-step phase-shifting algorithm
as the real phase value of the object. Gaussian filtering and the proposed FOPDEs method process the
four-step phase-shifted images respectively, in order to facilitate comparison. In order to better display
the experimental results, we randomly choose the phase region for comparison, which is the 700–900th
rows and the 500–950th columns of both phase error maps. When compared with the real phase, the
phase error maps can be shown in Figures 13 and 14 for both parts.
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Figure 13. Phase maps of multi-step cylinder part. (a) Real phase unwrapping map with 16-step
phase-shifting algorithm, (b) phase error obtained by four-step phase-shifting algorithm, (c) phase error
obtained by four-step phase-shifting algorithm with Gaussian filtering, (d) phase error obtained by
four-step phase-shifting algorithm with FOPDEs, and (e) phase error curves at the 100th row of (c,d).



Sensors 2019, 19, 5202 19 of 22

Sensors 2019, 19, x FOR PEER REVIEW  20 of 23 

obtained by four-step phase-shifting algorithm with FOPDEs, and (e) phase error curves at the 100th 
row of (c,d). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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Figure 14. Phase maps of multi-step plane part. (a) Real phase unwrapping map with 16-step
phase-shifting algorithm, (b) phase error obtained by four-step phase-shifting algorithm, (c) phase error
obtained by four-step phase-shifting algorithm with Gaussian filtering, (d) phase error obtained by
four-step phase-shifting algorithm with FOPDEs, and (e) phase error curves at the 100th row of (c,d).
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Table 2. Standard deviation of phase error (STD) results with different methods.

No.
Multi-Step Cylinder Part Multi-Step Plane Part

Four-Step Gaussian Filtering FOPDEs Four-Step Gaussian Filtering FOPDEs

1 0.0164 0.0150 0.0123 0.0177 0.0161 0.0125
2 0.0165 0.0155 0.0122 0.0174 0.0163 0.0127
3 0.0158 0.0153 0.0127 0.0174 0.0161 0.0127
4 0.0166 0.0149 0.0124 0.0179 0.0169 0.0125
5 0.0159 0.0148 0.0125 0.0181 0.0168 0.0131
6 0.0165 0.0157 0.0127 0.0179 0.0163 0.0129
7 0.0167 0.0155 0.0124 0.0183 0.0166 0.0130
8 0.0166 0.0148 0.0121 0.0185 0.0161 0.0128
9 0.0168 0.0149 0.0122 0.0179 0.0165 0.0129
10 0.0169 0.0148 0.0122 0.0171 0.0160 0.0127

Mean 0.0165 0.0151 0.0124 0.0178 0.0163 0.0128

According to Figures 11–14, the FOPDEs method can not only suppress the Gaussian noise of
single fringe image, but also reduce the phase error that is caused by the Gaussian noise. From
Figure 13 and Table 2, if the four-step phase-shifting algorithm was used, mean STD is 0.0165 rad,
while Gaussian filtering, mean STD is 0.0151 rad. If the four-step phase-shifting images were filtered
by FOPDEs, the mean STD is 0.0124 rad, which means that the FOPDEs method reduces the mean
STD by 24.8% and 17.88% as compared with only the four-step phase-shifting algorithm and Gaussian
filtering. From Figure 14 and Table 2, if the four-step phase-shifting algorithm was used, mean STD is
0.0178 rad, while the mean STD is 0.0163 rad after Gaussian filtering. If the four-step phase-shifting
images were filtered by FOPDEs, mean STD is 0.0128 rad, which means that FOPDEs method reduces
the mean STD by 28.1% and 21.47% as compared with only the four-step phase-shifting algorithm and
Gaussian filtering. From Figures 11–14, due to the phase error being not only affected by the noise, but
also by the projection nonlinear effect and the influence of the phase unwrapping performance, the
phase error is not completely eliminated, even if filtering. After Gaussian filtering, the distribution of
the phase error is obviously different from the distribution of phase error with four-step phase-shifting,
while the distribution of the phase error with FOPDEs is closer to the phase error distribution with
four-step phase-shifting. The proposed FOPDEs method can effectively filter the Gaussian noise
while keeping the detail information regarding the original fringe image better. Figures 13 and 14
show the phase error curves with various methods. It can be seen that, after filtering with FOPDEs
method, the phase errors have been reduced. It can be seen from Sections 2 and 3 that, unlike the
traditional single image filtering method, the proposed FOPDEs method belongs to multi-image
filtering in fringe phase-shifting field, which requires complex operations, such as pixel direction,
fuzzy hierarchical clustering, and fourth-order OPDEs filtering. The proposed FOPDEs method has
the largest computational burden. The proposed method is more suitable for the situation of requiring
higher measurement accuracy. Therefore, through the above simulated fringe images experiment and
actual fringe images experiment, the proposed FOPDEs method can not only improve the PSNR and
the standard deviation of phase error (STD), but also retain more details of original fringe images.

5. Conclusions

Fringe phase-shifting field based fuzzy quotient space-direction partial differential equations
filtering method is proposed in order to reduce the phase error caused by Gaussian noise. Firstly,
the concept of fringe phase-shifting field is established, transforming the independent filtering by
traditional methods into multi-image filtering in phase-shifting field. Afterwards, the direction
correction method that is based on fuzzy quotient space and the direction partial differential equations
filtering method with fidelity item are proposed to adaptively determine the filtering direction and
retain more details while smoothing the image. The proposed FOPDEs method can improve the PSNR
through the experiments, and reduce the phase error caused by noise while retaining more details.
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In future, the fringe image filtering method under various noises and how to extend the theory of
fringe phase-shifting field to N-step (N > 4) phase shifting will be studied further.
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