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Abstract: Software-defined acoustic modems (SDAMs) for underwater communication and
networking have been an important research topic due to their flexibility and programmability.
In this paper, we propose a reconfigurable platform for SDAMs based on the TI AM5728 processor,
which integrates dual-core ARM Cortex-A15 CPUs and two TI C66x DSP cores. The signal processing
and A/D, D/A for physical-layer communication are implemented in the DSP cores. The networking
protocols and the application programs are implemented in the ARM cores. The proposed platform
has the following characteristics: (1) Due to the high-performance dual-ARM cores, the whole
NS3 network simulator can be run in the ARM cores. Network protocols developed in a software
simulation platform (e.g., NS3 platform) can be seamlessly migrated to a hardware platform without
modification. (2) A new physical-layer module associated with real acoustic channel is developed,
such that a data packet generated from the application layer will be transmitted through a real acoustic
channel. The results of networking experiments with five nodes are presented to demonstrate the
effectiveness of the proposed platform.

Keywords: open architecture; software-defined modems; underwater acoustic communications;
underwater wireless networks

1. Introduction

Marine resource exploitation is receiving increased attention. Moreover, marine activities have
gradually expanded from shallow-water areas to deep ocean areas. Marine resource exploitation is
inseparable from the support of underwater communication networks. The Ocean Internet of Things
(OIoTs), usually defined as a network of smart, interconnected underwater objects, is considered
a promising technology to implement systematic management of miscellaneous marine data [1–3].
Due to the fast attenuation of electromagnetic waves, acoustic waves are the most important media of
underwater wireless communication [1]. Underwater acoustic communication and networking has
become an important research topic in the field of marine information technology. In general, from
theoretical research to practical application, underwater acoustic communication technology can be
divided into three stages: (1) software simulation, (2) hardware emulation, and (3) experiments and
sea tests [2,3].

Field tests in marine environments are challenging and costly. In order to improve the reliability
of hardware emulation and tests, it is necessary to minimize the workload of secondary development
from software simulations to hardware emulation. Therefore, a reconfigurable, software-defined
hardware platform is of great significance to marine communication and networking tests. Early
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reconfigurable underwater acoustic communication platforms mainly focused on the physical layer.
These systems are usually composed of a DSP chip (signal processing module) and a FPGA chip
(DA/AD module). For example, the reconfigurable modem designed by the Massachusetts Institute
of Technology is composed of one motherboard and one daughtercard. It includes four configurable
input/output (I/O) channels suitable for multiple-input-multiple-output (MIMO) algorithms and analog
anti-aliasing filters implemented by an onboard FPGA and a 300 MHz floating-point DSP with 32 MB
SDRAM and 32 MB of flash memory [4]. The daughtercard hosts signal conditioning and amplification
stages. The underwater sensor network (UWSN) lab at the University of Connecticut has been actively
developing an underwater modem based on MIMO orthogonal frequency-division multiplexing
(OFDM). A real-time DSP implementation of both a single-input-single-output (SISO) and a MIMO
version of the modem is detailed in [5]. The implementation detailed in [6] demonstrates the real-time
capabilities with both a floating-point (TI TMS320 C6713) and a fixed-point (TI TMS320 C6416) DSP,
achieving data rates of 3.2 and 6.4 kb/s with a SISO and a 2 × 2 MIMO modem. Readers may refer
to [2,3] for more literature about reconfigurable underwater acoustic modems.

Due to the increasing interest in underwater acoustic networking, it is a trend to add the networking
protocols in reconfigurable underwater acoustic processing platforms. Traditional DSP chips focus
on pipeline signal processing problems, which are not suitable for multithread processing. A general
MCU processor has been applied to solve this problem. In [7], an ARM 6410 processor with an
external underwater acoustic modem is used to implement the underwater acoustic network protocols.
Demirors et al. [8] applied a General-Software-defined Radio Peripheral (USRP) to implement the whole
set of communication networking systems from physical layer to network layer. Another common
architecture is ARM + DSP dual-core architecture, where the ARM core manages the networking
protocols and the peripheral device and the DSP core takes charge of the underwater communication
programs [9]. The main disadvantage of the above methods is the poor compatibility between the
software simulation and hardware emulation. For example, in a pure software simulation on a network
protocol, NS2 and NS3 are the widely used simulation platforms. However, the program of network
protocols based on NS2 and NS3 usually cannot be directly applied in the above hardware verification
system, and a secondary development, such as code immigration, is required. The University of
Padova proposed a simulation platform called SUNSET [10], based on NS2, which is compatible with
the hardware verification system, so that the software code can be directly used in the hardware
verification system without modification. However, SUNSET considered only the reconfigurable
networking protocols. It is interesting to integrate reconfigurable communication and networking.

A reconfigurable software-defined acoustic modem (SDAM) based on the multicore processor,
AM5728 [11], is proposed in this paper. AM5728 is a floating-point, high-performance processor
with dual DSP C66x and dual ARM Cortex-A15 clocked at 750 MHz (DSP) and 1.5 GHz (ARM).
In our proposed solution, DSP cores host the signal processing for physical layers such as modulation,
demodulation, and AD/DA conversion. ARM cores host the networking protocols and extended
peripheral drivers (GPS system, remote wireless communication module, etc.), so the platform can
run the complete NS3 based on the LINUX system with external memory. NS3 is one of the most
common software simulation platforms for networking protocols. Network protocols developed in
software simulation platforms (e.g., NS3 platform) can be seamlessly migrated to hardware platforms
without modification. Moreover, a new physical-layer module associated with a real acoustic channel
is developed, such that a data packet generated from the application layer will be transmitted through
a real acoustic channel. The proposed SDAM platform has high integrity and high scalability, and the
multiple peripheral devices can be accessed to ARM core to expand the platform functionality.
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2. Architecture of the Proposed SDAMs

2.1. Hardware Architecture

The proposed hardware platform is composed of a coreboard JN-SOM5728 [12], an interface
expansion board JN-OPEN57x [12], a signal-receiving board, and a signal-transmitting board.

The coreboard JN-SOM5728 includes a TI AM5728 CPU and storage resources. JN-OPEN57x is
the interface board for the AM57 series, which can be used with coreboard JN-SOM5728. It supports
a variety of functional module interfaces, such as dual gigabit Ethernet ports, HDMI, PCIE, SATA,
RS232/RS485/CAN, USB2.0/USB3.0, WIFI, GPMC, CSI, and VIN/VOUT. The interface board and the
corresponding extension interface modules of the underwater acoustic receiver/transmitter are shown
in Figure 1.
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Figure 1. The interface board and the extension modules of an underwater acoustic receiver/transmitter.

The receiving board is composed of an operational amplifier circuit and an ADC sampling circuit.
The transmitting board is composed of a DAC output circuit and a power amplifier. The hardware
design block diagram and some key parameters are shown in Figure 2. The core chips for the
receiving/transmitting module are DAC7741 and ADS8588S. The connections between the receiving
board, the transmitting board, the coreboard, and the interface board are as shown in Figure 3.
The receiving board can be connected to one to four hydrophones, and the transmitting board can
be connected to one transducer. The drivers of the receiving board and the transmitting board are
implemented in the DSP.
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Figure 3. The physical picture of the receiving/transmitting board for the proposed SDAM (yellow—
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2.2. Software Architecture

The software architecture is shown in Figure 4. There are two main processes, the ARM process
and the DSP process, which are run in the ARM cores and the DSP cores, respectively. The DSP
process responds to the physical-layer algorithms and the driver of the transmitting/receiving hardware.
The ARM process responds to the network protocols and the applications. The ARM core and DSP
core communicate via the interprocess communication (IPC) scheme provide by TI AM5728. The ARM
process can be further divided into two subprocesses—the networking process and the ARM-DSP
interaction process. When a data packet is generated by an application and its transmission request is
triggered, the packet is sent to the networking process, where the packet header is inserted into the
packet. Then, the packet passes through the ARM-DSP process and reaches the DSP process, where
the data packet is segmented into frames and standard physical-layer processing, including channel
coding. Modulation is applied to each frame to produce an acoustic waveform. The waveform is
amplified and sent out by a transducer. The complete flow of packet processing is shown in Figure 5.
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2.2.1. NS3 Networking Process

The NS3 simulator [13] is a widely applied software simulation platform. Due to the
high-performance AM5728 processor, we can run a complete NS3 program in a single ARM core.
Further, the underwater-acoustic-network (UAN) module [14] developed by Washington University is
embedded in NS3 as the basic for protocol development. At first, we port the NS3 simulator over the
AM5728 ARM core process, and then the protocol modules of the NS3 and UAN are applied directly to
build the stacks on the SDAM. Hence, the proposed SDAM can run the NS3 scripts and use the UAN’s
network protocol, including the original built-in protocols or our own designs.

Generally, in NS3-based software simulations, when a packet transmission request is triggered
by an application, no real information bit is generated, and the application layer sends an indication
message to the transmission layer. When the packets are delivered layer by layer through the protocol
stacks, real information bits are added to the packet header, but the data section remains empty to
reduce the memory consumption during the simulation. In the proposed platform, the data packet
will be transmitted through a real acoustic channel, hence the data section cannot be empty. In the
proposed platform, a new application layer is developed to generate data and fill it into the proper
content section of the data packets.

The real information data for transmission can be randomly generated or collected from external
sensors. The interface board provides interfaces to various peripherals such as USB, LAN, PCI, and
HDMI; hence, the platform can be connected with various sensors. The processes for sensor data
acquisition are embedded in the developed application layer module. Multiple application layer
modules are defined to meet different application requirements; for example, the trigger timing of the
packet sending in an application layer can be selected to regular trigger or random trigger.

Since the whole NS3 simulator can be loaded in the ARM core, the existing protocols in the NS3
platform and UAN module can be directly applied. In the proposed framework, we apply the standard
UDP protocol for the transmission layer. In the routing layer, we implement the static routing protocol
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as outlined in the previous demonstration. In the static routing protocol, the routing table is predefined
and the relay node always knows the next hop for transmission. In the UAN modular, without
acknowledgement, the Aloha protocol was applied in the MAC layer. In the proposed framework, we
extend the Aloha protocol by employing the packet acknowledgement technique. Further, we develop
a new physical-layer module in the UAN module and implement bidirectional processing between the
NS3 process and the ARM-DSP interaction process. The details of the bidirectional processing are as
follows. First, the ARM-DSP interaction process sends the packets received by DSP to the NS3 process
via the local socket, and then the UAN physical-layer module generates a receiving event and transfers
the packets up to the MAC layer. Second, when data is delivered up to the UAN physical-layer module
via the NS3 process, the module sends the packets to the ARM-DSP interaction process via the local
socket, which then passes the packets to the DSP core program. A new thread is created to listen to the
socket to control the bidirectional data flow. The processing flow of the NS3 protocol process is shown
in Figure 6.
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2.2.2. ARM-DSP Interaction Process

The function of the ARM-DSP interaction process is to enable data transmission between the NS3
process and the DSP process.

TI’s AM57xx family processors are the ARM application processors built to meet the intense
processing requirements of modern embedded products. In an AM57xx processor, different cores in
the chip can exchange messages and trigger interrupts with each other via the MAILBOX module.
Each core can be configured with the MAILBOX module and read or write messages by DBUS. There
are three methods to realize ARM and DSP communication based on the MAILBOX module:

1. The DSP process is called by the OpenCL interface, and the DSP process is considered as an
accelerator for the OpenCL interface.

2. The DSP process runs the SYSBIOS system by TI’s RTOS SDK, and then the ARM process and the
DSP process communicate via the IPC API message mechanism.
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3. The ARM process and the DSP process communicate by the MAILBOX register directly.

The above methods have different efficiencies and complexities. Method 1 has the lowest
complexity and highest efficiency, while Method 3 has the highest complexity and the lowest efficiency.
In this paper, we apply Method 2, which exhibits satisfactory tradeoff between efficiency and complexity.

The Message-Q module and the CMEM module provided by TI are employed to realize the
ARM and DSP intercore communication via IPC. Message-Q supports transmitting and receiving
variable-length, structured messages. It provides APIs for message transmitting and receiving, which
are suitable for message exchange between two heterogeneous processing cores. The CMEM module
manages one or several consecutive physical block memories and provides address exchanges. In this
paper, the Message-Q module is adopted to deliver custom-defined, structured messages such as
message type, memory address, and data length. The CMEM module is adopted to address exchange
and data copy. The combination of the above two modules more efficiently achieves large amounts of
data exchanges between the ARM and DSP cores.

To detect the message in Message-Q or socket, there are two methods: blocking or nonblocking.
Single-thread, nonblocking polling detection or dual-thread blocking detection can be adopted in the
ARM-DSP interaction process to implement the data arrival detection in NS3 or DSP. However, the
nonblocking polling methods occupy CPU resources for a long time, so we choose the dual-thread
blocking detection method. The processing flow of the ARM-DSP interaction process is shown in
Figure 7.
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2.2.3. DSP Process

The processing flow of the DSP process is shown in Figure 8. After initialization, the DSP process
waits for the call from the ARM process. According to the demand from the ARM process, the DSP
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process may call the receiving subprocess or the transmitting subprocess and turn into the receiving or
transmitting state.
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The receiving subprocess is a process of cyclically sampling ADC data and receiving ARM
messages. The receiving loop ends only when the DSP process receives the receiving end command
from the ARM process. The transmitting subprocess is not a loop; it ends the transmitting state after the
data is transferred and returns to the main function. At the end of the receiving loop or the transmitting
process, a corresponding process end message is sent to the ARM process.

3. Experiments and Validations

3.1. Experiments of Physical-Layer Communication

MFSK modulation is adopted in the physical layer. Before modulation, the information bits are
processed with CRC validation, scrambling, convolutional coding, and interleaving. The data frame
structure is shown in Figure 9, where the hyperbolic frequency modulation (HFM) signal with 6 KHz
bandwidth and length of 25.6 ms is for synchronization and Doppler compensation. The HFM signal
is followed with silence time, forward training symbols, data symbols, and time-reversal training
symbols. The parameter list of MFSK modulation is presented in Table 1.
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Figure 9. The frame structure (contains two data frames).

The experiments are conducted in an indoor pool. We assemble two nodes, and the distance
between the transducer and hydrophone of the two nodes is about 2 m. Node 1 sends the sensor data,
and its ARM process transfers the data to the DSP process. After the MFSK modulation, the DSP
generates the waveform to be transmitted, as shown in Figure 10. The whole waveform has 110080
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points (1.376 s). The waveform contains two frames, and each frame contains 21 bytes of effective
information. The received waveform, which is obtained by the receiving circuit in Node 2, is shown in
Figure 11. When compared with Figure 10, one observes that the received waveforms in Figure 11 suffer
from noise and attenuation. However, the data frames are separable and signal-to-noise ratio is high.
After demodulating and decoding, the receiving node can completely recover the transmitted data.

Table 1. The parameter list of MFSK communication.

Parameter Value

Frequency/kHz 9–15
Sampling frequency/kHz 80
Cyclic prefix length/ms 20

Hadamard coding efficiency 1/4
Detect synchronization duration/ms 25.6

Data synchronization signal duration/ms 25.6
Protection interval duration of/ms 25.6

Coded data frame duration/ms 547.2
Peak data rate/bps 258
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3.2. Networking Experiments

To validate the feasibility of the proposed SDAM, we arranged five nodes in a pool 48 m in length
and 22 m in width. The positions of the nodes are shown in Figure 12.

The physical layer applied the MFSK modulation as described above, and is implemented in the
DSP codes. The MAC layer, the routing layer, and the application layer were configured in NS3 script,
and were then run, scheduled, and processed by the NS3 process. The MAC layer adopted the ACK
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Aloha protocol, and the routing layer applied the static routing protocol. The data link between nodes
was set to a line topology, as shown in Figure 13. The triggering time of the packet send event in the
application was set to fixed interval time (30 s) or random interval time (0 to 30 s). The destination
node was randomly selected to form the other four nodes. The hop address was obtained by the static
routing table, and the length of the whole packet was 42 bytes.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 12 

 

 
Figure 12. The positions of the five nodes. 

 
Figure 13. The line topology of the nodes. 

After about 70 min, we collected the NS3 running logs saved by each node, then extracted the 
log time and the corresponding packed IDs of the successful sending and receiving packets of each 
node. Based on the collected information, the system average throughput and the point-to-point 
average delay were calculated and plotted in Figures 14 and 15, where the delay and throughput 
were updated every 20 s. From Figures 14 and 15, one observes that at the beginning, the delay and 
throughput vary rapidly; however, after a period, the average throughput and average delay become 
stable. 

 
Figure 14. The average delay of point-to-point transmission. 

Figure 12. The positions of the five nodes.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 12 

 

 
Figure 12. The positions of the five nodes. 

 
Figure 13. The line topology of the nodes. 

After about 70 min, we collected the NS3 running logs saved by each node, then extracted the 
log time and the corresponding packed IDs of the successful sending and receiving packets of each 
node. Based on the collected information, the system average throughput and the point-to-point 
average delay were calculated and plotted in Figures 14 and 15, where the delay and throughput 
were updated every 20 s. From Figures 14 and 15, one observes that at the beginning, the delay and 
throughput vary rapidly; however, after a period, the average throughput and average delay become 
stable. 

 
Figure 14. The average delay of point-to-point transmission. 

Figure 13. The line topology of the nodes.

After about 70 min, we collected the NS3 running logs saved by each node, then extracted the log
time and the corresponding packed IDs of the successful sending and receiving packets of each node.
Based on the collected information, the system average throughput and the point-to-point average
delay were calculated and plotted in Figures 14 and 15, where the delay and throughput were updated
every 20 s. From Figures 14 and 15, one observes that at the beginning, the delay and throughput vary
rapidly; however, after a period, the average throughput and average delay become stable.
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4. Conclusions 

A reconfigurable SDAM based on the multicore processor AM5728 is proposed in this paper. 
The DSP cores host the signal processing for physical-layer communication, including modulation, 
demodulation, and AD/DA conversion. ARM cores host the networking protocols and extended 
peripheral drivers. The proposed platform can run NS3 with high-performance, dual-core ARM. 
Additionally, due to the bidirectional interactions between the DSP and the ARM cores, the sensor 
data of network nodes can be transferred in realistic underwater acoustic channels. We have 
presented the experimental results of physical-layer communication and networking, which validate 
the feasibility of the proposed SDAM. 
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4. Conclusions

A reconfigurable SDAM based on the multicore processor AM5728 is proposed in this paper.
The DSP cores host the signal processing for physical-layer communication, including modulation,
demodulation, and AD/DA conversion. ARM cores host the networking protocols and extended
peripheral drivers. The proposed platform can run NS3 with high-performance, dual-core ARM.
Additionally, due to the bidirectional interactions between the DSP and the ARM cores, the sensor data
of network nodes can be transferred in realistic underwater acoustic channels. We have presented the
experimental results of physical-layer communication and networking, which validate the feasibility
of the proposed SDAM.
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