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Abstract: Autonomous vehicles can obtain real-time road information using 3D sensors. With road
information, vehicles avoid obstacles through real-time path planning to improve their safety and
stability. However, most of the research on driverless vehicles have been carried out on urban even
driveways, with little consideration of uneven terrain. For an autonomous full tracked vehicle (FTV),
the uneven terrain has a great impact on the stability and safety. In this paper, we proposed a method
to predict the pose of the FTV based on accurate road elevation information obtained by 3D sensors.
If we could predict the pose of the FTV traveling on uneven terrain, we would not only control the
active suspension system but also change the driving trajectory to improve the safety and stability. In
the first, 3D laser scanners were used to get real-time cloud data points of the terrain for extracting
the elevation information of the terrain. Inertial measurement units (IMUs) and GPS are essential
to get accurate attitude angle and position information. Then, the dynamics model of the FTV was
established to calculate the vehicle’s pose. Finally, the Kalman filter was used to improve the accuracy
of the predicted pose. Compared to the traditional method of driverless vehicles, the proposed
approach was more suitable for autonomous FTV. The real-world experimental result demonstrated
the accuracy and effectiveness of our approach.

Keywords: autonomous vehicle; LiDAR point cloud; Kalman filter; vehicle dynamics; active
suspension system

1. Introduction

Thanks to the efforts of many researchers, driverless technology has developed rapidly in the
21st century. Several research teams developed advanced autonomous vehicles to traverse complex
terrain in the 2004 and 2005 DARPA grand challenges [1], and then urban roads in the 2007 DARPA
urban challenge (DUC) [2]. Research related to self-driving has continued at a fast pace not only in
the academic field but also in the industrial field. Some driverless taxis from Google and driverless
trucks from TuSimple have entered the stage of commercial operation. Localization and perception are
two significant issues relating to driverless technology. Accurate localization can ensure the safety of
autonomous vehicles on the road without collision with surrounding objects. Multi-sensor fusion is a
stable and effective method for locating autonomous vehicles on the road [3–6], which can achieve
centimeter-level localization accuracy by fusing data from GNSS, LiDAR, and inertial measurement
unit (IMU). The perception element of vehicles is mainly completed by cameras equipped to the inside
of the car. Onboard computers use some algorithms to detect, classify, and identify the information
captured by the camera. The deep neural network is an effective method for recognizing the information
obtained from the camera [7–9]. Although researchers have done a lot of research on driverless cars,
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most of the research on autonomous vehicles has been carried out on an urban even road, rarely
considering uneven terrain. However, uneven terrain can seriously affect the stability of autonomous
full tracked vehicle (FTV), especially some vehicle-mounted equipment, such as laser lidar and inertial
navigation system (INS). How to maintain the stability and safety of the vehicle on uneven terrain
is an important issue. One way to solve the problem is to apply an active suspension system to the
vehicle, which calculates the road inputs of vehicles in advance through preview information [10–16].

In the last two decades, 3D laser scanners were widely used in autonomous vehicles because
it could provide high-precision information about the surrounding environment [17–20]. Several
methods to combine 3D sensors with preview control have been proposed. Youn et al. [21] investigated
the stochastic estimation of a look-ahead sensor scheme using the optimal preview control for an active
suspension system of a full tracked vehicle (FTV). In this scheme, the estimated road disturbance input
at the front wheels was utilized as preview information for the control of subsequently following wheels
of FTV. Christoph Göhrle [22] built a model predictive controller incorporating the nonlinear constraints
of the damper characteristic. The approximate linear constraints were obtained by a prediction of
passive vehicle behavior over the preview horizon using a linearized model. The simulation result
showed improved ride comfort.

Accurate pose estimation can be used not only as an input parameter of the active suspension
system but also as a reference for path planning. Yingchong Ma [23] presented a method for pose
estimation of off-road vehicles moving over uneven terrain. With the cloud data points of terrain,
accurate pose estimations can be calculated used for motion planning and stability analyses. Julian
Jordan [24] described a method for pose estimation of four-wheeled vehicles, which utilized the fixed
resolution of digital elevation maps to generate a detailed vehicle model. The result showed that the
method was fast enough for real-time operation. Jae-Yun Jun [25] proposed a novel path-planning
algorithm as a tracked mobile robot to traverse uneven terrains, which could efficiently search
for stability sub-optimal paths. The method demonstrated that the proposed algorithm could be
advantageous over its counterparts in various aspects of the planning performance.

Many filtering techniques have been widely used in engineering practice. Kalman filter is a kind
of filtering technology, which is mainly used to correct errors caused by model inaccuracies. Dingxuan
Zhao [26] proposed an approach using the 3D sensor, IMU, and GPS to get accurate cloud data points
of the road. Both GPS/INS loosely-coupled integrated navigation and Kalman filter (KF) were used
to get accurate attitude angle and position information. The results demonstrated that the KF could
effectively improve the performance of the loosely coupled INS/GPS integration. Hyunhak Cho [27]
presented an autonomous guided vehicle (AGV) with simultaneous localization and map building
(SLAM) based on a matching method and extended Kalman filter SLAM. The proposed method was
more efficient than the typical methods used in the comparison.

In these theses of pose prediction, vehicles were generally regarded as a rigid body, which
was not in line with the characteristics of the vehicle’s wheels. Moreover, most of the research on
preview control did not give a detailed description of adjusting the suspension system through terrain
information. Furthermore, there are few studies on autonomous FTV. In this paper, we proposed an
approach to predict the pose of autonomous FTV using GPS, IMU, and 3D laser scanner. In Section 2,
we introduced the configuration of the autonomous FTV and the overall flow of our approach. In
Section 3, the dynamic model of autonomous FTV was established. Then, we presented the process of
combining a Kalman filter with a dynamic model of the vehicle and the control method of the active
suspension system. Finally, we demonstrated the effectiveness and accuracy of our approach with
real-world experiments.

2. System Structure

In the driverless field, how to ensure the safety and stability of vehicles on uneven roads is
a significant issue. Changing the control strategy by getting road information and calculating its
impact on vehicles in advance is an almost perfect way to solve the issue. Three-dimensional laser
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scanners, IMU, and GPS are necessary to implement the above method. Our vehicle was equipped
with an IMU, two GPS, two 3D laser scanners, and an active suspension system, as shown in Figure 1.
With 3D laser scanners, we could obtain real-time points cloud data around the vehicle for extracting
elevation information of the road. The IMU and GPS were used to get accurate attitude angle and
position information of the vehicle. Then, the contact height between wheels and the ground could
be obtained by integrating the 3D laser scanner, IMU, and GPS data. Ultimately, the vehicle’s pose
could be calculated by importing the wheels’ height information into the dynamic model. However,
the predictive pose was inaccurate due to the error caused by sensors. To improve the precision of the
pose, a Kalman filter was used to compensate for the errors caused by sensors. Figure 2 shows the
main steps.
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Mapping and Location

In the last two decades, sensor technology that can obtain information about the surrounding
environment has been rapidly developed, such as depth camera, lidar, and vision sensors. With
real-time environmental information, autonomous vehicles can achieve safe autonomous navigation
in a complex environment. In this paper, we selected 3D laser scanners to obtain road information
because of their many advantages, such as high precision of measurement and good stability in
complex environments.

Two Velodyne lidars were chosen as the 3D sensor of our autonomous vehicle in our research,
just as shown in Figure 1. The 3D sensor has a sweep angle of 360◦ and a horizontal angle resolution
of 0.1◦–0.4◦, which ensures to obtain high-density points cloud data. The lidar has many kinds of
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frequencies. The scanning frequency of 20 Hz meets the need for extracting the height information
of the vehicle’s wheels. Furthermore, a lidar was installed at the bottom of the vehicle in our study,
which means that it needed a larger measuring range. Velodyne lidar could meet our needs. Table 1
shows the main performance index of the lidar.

Table 1. Performance index of 3D-sensor.

Performance Index Parameter

Scanning frequency 5–20 Hz

Measuring range 0–100 mm

Horizontal angular resolution 0.1◦–0.4◦

Vertical angular resolution 2◦

Precision of distance measurement ±3 cm

Number of laser lines 16 L

Location is significant because it is a prerequisite for us to extract the height information of the
vehicle’s wheels. Inertial measurement units are used to measure the physical information of the
vehicle. For example, we could calculate the position, velocity, and attitude angle of the vehicle with
the outputs of IMU. However, the IMU has accumulated errors because it obtains location information
of vehicles in the form of mathematical integration. The global position system is widely used in the
field of autonomous vehicles because of its advantage of providing a long-term stable location in all
weathers. Although GPS has a higher positioning accuracy and better stability than other positioning
methods, it will cease to be effective in some scenarios. For example, GPS signals will be interfered
with by high buildings in cities and shielded in tunnels, which causes the car to be unable to locate
itself. Some studies have been carried out on the integration of IMU and GPS data for positioning. Our
GPS/INS system was based on differential positioning and RTK technology, ensuring centimeter-level
positioning accuracy. Table 2 shows the performance index of our system.

Table 2. Performance index of GPS/INS.

Performance Index Parameter

Data out frequency 100 Hz

Precision of heading ±0.3◦

Precision of horizontal attitude ±0.3◦

Precision of horizontal position ±2 cm

Precision of Altitude position ±3 cm

3. Method

3.1. Vehicle Dynamics

Our autonomous FTV mainly adopted the multi-axle steering method to improve its flexibility,
ensuring that it could choose more control strategies for avoiding obstacles on the terrain. The front
axle and rear axle were steering axles, which were used to change the vehicle’s direction, and the
middle shaft is the driven shaft. Figure 3 shows the simplified model of the vehicle.
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The steering angle of each wheel could be calculated as follows:

(1) when turning right, θ > 0 
θ1 = θ = tan−1 LI

N , θ2 = tan−1 LI
B+N

θ3 = 0, θ4 = 0
θ5 = − tan−1 LII

N , θ6 = − tan−1 LII
B+N

(1)

(2) when turning left, θ < 0 
θ1 = − tan−1 LI

N+B , θ2 = θ = − tan−1 LI
N

θ3 = 0, θ4 = 0
θ5 = tan−1 LII

N+B , θ6 = tan−1 LII
N

(2)

where θ is the steering angle of the vehicle, which is positive when turning right or negative
when turning left, and LI and LII represent the distance from the front axle and rear axle to the
middle shaft, respectively.

Some of the existing approaches simplified the vehicle model into a rigid body structure, resulting
in lower accuracy of vehicle models. Moreover, the research field on predictive control generally
simplified the car body into a spring-damped structure only with a vertical direction, which is not
suitable for three-dimensional uneven roads. Considering the characteristics of the suspension and
tires, we constructed a segmented spring damping system to make the model more realistic, as shown
in Figure 3b.

The Euler–Lagrange equation was chosen as the dynamics equation of our vehicle through
comprehensive consideration of the vehicle’s characteristics.

d
dt

(
∂(K − P)
∂

.
qi

)
−
∂(K − P)
∂qi

+
∂F
∂

.
qi

=
∂E
∂

.
qi

(3)

Assume that the coordinates of the vehicle mass center is expressed in M(xm, ym, zm), and M(m, l, n)
is the center of mass coordinates with respect to the vehicle center O(x, y, z). According to the geometric
knowledge, the following equation could be deduced:

xm = x + m + nβ− lγ
ym = y + l− nα+ mγ
zm = z + n + lα−mβ

(4)
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The velocity of the mass center could be deduced by taking the derivative of Equation (4):
.
xm =

.
x + n

.
β− l

.
γ

.
ym =

.
y− n

.
α+ m

.
γ

.
zm =

.
z + l

.
α−m

.
β

(5)

The kinetic energy of the system K was as follows:

K = Kl + Kr

= 1
2 M

( .
x2

m +
.
y2

m +
.
z2

m

)
+ 1

2

(
α2 JXX

.
α

2
+ JYY

.
β

2
+ JZZ

.
γ

2
)

−

(
JXY

.
α

.
β+ JYZ

.
β

.
γ+ JXZ

.
α

.
γ
) (6)

where JXX, JYY, JZZ are the vehicle’s moment of inertia, and JXY, JYZ, JXZ are the vehicle’s product
of inertia.

According to the geometric relations in Figure 3a, the tangential, lateral, and radial displacement
of each wheel could be calculated:

ui = (x− rβ− Liγ) cosθi − [y + rα+ biγ] sinθi
vi = (x− rβ− Liγ) sinθi + [y + rα+ biγ] cosθi
wi = z− biβ+ Liα

(7)

b =
B
2

, bi = (−1)i+1b

The potential energy of the system could be expressed as the combination of gravitational potential
energy and elastic potential energy of the vehicle. The formula was as follows:

P = 1
2 (

6∑
i=1

[Kix
(
ui − u′i

)2
] +

6∑
i=1

[Kiy
(
vi − v′i

)2
] +

6∑
i=1

[Kiz
(
wi − δ0 −w′i

)2
])

+Mg(−xm sinλ cosϕ− ym sinλ sinϕ+ zm cosλ)
(8)

The energy dissipation of the system was as follows:

F =
1
2
(

6∑
i=1

[Cix
( .
ui −

.
u′i

)2
] +

6∑
i=1

[Ciy
( .
vi −

.
v′i

)2
] +

6∑
i=1

[Ciz
( .
wi −

.
w′i

)2
]) (9)

where Kix, Kiy, Kiz(i = 1, 2...6) and Cix, Ciy, Ciz(i = 1, 2...6) denote the stiffness coefficient and damping
coefficient of each wheel in three directions, respectively. Further, u′i , v′i , w′i (i = 1, 2...6) are the lateral,
tangential, and radial displacement caused by the influence of the terrain, respectively.

Then, the work done by the wheels on the possible displacement and the force of friction on each
wheel were as follows:

E =
6∑

i=1

[(
Pi − F′i

)
vi − S′i ui

]
(10)

Fi = µ ·Kiz
(
wi −w′i

)
+ Ciz

( .
wi −

.
w′i

)
(11)

where F′i and S′i represent the lateral and tangential forces on the tire, respectively. Pi denotes the
traction of each wheel, which can be obtained from the controller area network (CAN) of the FTV.
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Combining Equations (1)–(11), the dynamic equation of autonomous (FTV) could be deduced:
X-direction:

M
( ..
x + n

..
β− l

..
γ
)
−Mg sinλ cosϕ+

6∑
i=1

cosθi ·Kix
(
ui − u′i

)
+

6∑
i=1

sinθi ·Kiy
(
vi − v′i

)
+

6∑
i=1

cosθi ·Cix
( .
ui −

.
u′i

)
+

6∑
i=1

sinθi ·Ciy
( .
vi −

.
v′i

)
= 0

(12)

Y-direction:

M
( ..
y− n

..
α+ m

..
γ
)
−Mg sinλ sinϕ−

6∑
i=1

sinθi ·Kix
(
ui − u′i

)
+

6∑
i=1

cosθi ·Kiy
(
vi − v′i

)
−

6∑
i=1

sinθi ·Cix
( .
ui −

.
u′i

)
+

6∑
i=1

cosθi ·Ciy
( .
vi −

.
v′i

)
= 0

(13)

Z-direction:

M(
..
z + l

..
α−m

..
β) + Mgcosλ+

6∑
i=1

Kiz
(
wi − δ0 −w′i

)
+

6∑
i=1

Ciz
( .
wi −

.
w′i

)
= 0 (14)

α-direction:

−Mn
..
y + Ml

..
z +

[
JXX + M

(
n2 + l2

)] ..
α− (Mml + JXY)

..
β− (Mmn + JXZ)

..
γ

+Mg(n sinλ sinϕ+ l cosλ) −
6∑

i=1

[
r · sinθi ·Kix

(
ui − u′i

)
+ r · cosθi ·Kiy

(
vi − v′i

)
+ LiKiz

(
wi − δ0 −w′i

)]
+

6∑
i=1

[
−r · sinθi ·Cix

( .
ui −

.
u′i

)
+ r · cosθi ·Ciy

( .
vi −

.
v′i

)
+ Li ·Ciz

( .
wi −

.
w′i

)]
= 0

(15)

β-direction:

Mn
..
x−Mm

..
z− (JXY + Mml)

..
α+

[
JYY + M

(
m2 + n2

)] ..
β− (JYZ + Mnl)

..
γ

−Mg(n sinλ cosϕ+ m cosλ) −
6∑

i=1

[
r · cosθi ·Kix

(
ui − u′i

)
+ r · sinθi ·Kiy

(
vi − v′i

)
+ biKiz

(
wi − δ0 −w′i

)]
+

6∑
i=1

[
r · cosθi ·Cix

( .
ui −

.
u′i

)
− r · sinθi ·Ciy

( .
vi −

.
v′i

)
− bi ·Ciz

( .
wi −

.
w′i

)]
= 0

(16)

γ-direction:

−Ml
..
x + Mm

..
y− (JXZ + Mmn)

..
α− (JYZ + Mnl)

..
β+

[
JZZ + M

(
l2 + m2

)] ..
γ

+Mg(l sinλ cosϕ−m sinλ sinϕ) +
6∑

i=1
(−Li cosθi − bi sinθi) ·

[
Kix ·

(
ui − u′i

)
+ Cix ·

( .
ui −

.
u′i

)]
+

6∑
i=1

(−Li sinθi + bi cosθi) ·
[
Kiy ·

(
vi − v′i

)
+ Ciy ·

( .
vi −

.
v′i

)]
= 0

(17)

ui-direction:
Kix ·

(
ui − u′i

)
+ Cix ·

( .
ui −

.
u′i

)
= Si(i = 1, 2...6) (18)

vi-direction:
Kiy ·

(
vi − v′i

)
+ Ciy ·

( .
vi −

.
v′i

)
= Pi − Fi(i = 1, 2...6) (19)

The matrix form of the above equation was expressed as follows:[
[M6×6] [0]6×12
[0]12×6 [0]12×12

]{ ..
q6..
q12

}
+

[
[C6×6] [C6×12]

[C12×6] [C12×12]

]{ .
q6.
q12

}
+

[
[K6×6] [K6×12]

[K12×6] [K12×12]

]{
q6

q12

}
=

{
F6

F12

}
(20)
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[M6×6] =



M 0 0 0 M · n −M · l
0 M 0 −M · n 0 M ·m
0 0 M M · l −M ·m 0
0 −M · n M · l JXX + M · (n2 + l2

)
−(JXY + M ·m · l) −(JZX + M ·m · n)

M · n 0 −M ·m −(JXY + M ·m · l) JYY + M · (n2 + m2) −(JYZ + M · l · n)
−M · l M ·m 0 −(JZX + M ·m · n) −(JYZ + M · l · n) JZZ + M · (l2 + m2)


{
q6

}
=

{
x y z α β γ

}
,
{
q12

}
=

{
u′1...u′6 v′1...v′6

}
where [C6×6], [C6×12], [C12×12] consists of the coefficient of

{ .
q6

}
and

{ .
q12

}
in Equations (12)–(19); [K6×6],

[K6×12], [K12×12] consists of the coefficient of and in Equations (12)–(19); F6 and F12 consist of the
generalized force in Equations (12)–(19). All of the above parameters are known.

3.2. Kalman Filter Algorithm

The dynamic model derived in the previous chapter could be used to calculate the pose when the
vehicle was on an uneven road. However, the accuracy of the predicted pose was low, owing to the
errors caused by IMU and the accuracy of the dynamic model. Several methods have been proposed to
compensate for these errors. An effective method is the Kalman filter technique, which was proposed
by Kalman in 1960 [28]. In this paper, the KF algorithm was used to compensate for the errors caused
by a dynamic model and IMU for improving the accuracy of pose predicted.

The KF algorithm mainly includes two steps: predict and update. In the predict step, the state of
the system is predicted with the following two equations:

X̂k = AkX̂k−1 + Bk
→
u k + wk (21)

P̂k = AkP̂k−1Ak
T + Qk−1 (22)

where X̂k and P̂k represent the system predicted vector and predicted covariance matrix at time tk,
respectively; X̂k−1 and P̂k−1 represent the system condition vector and system covariance matrix at
time tk−1, respectively; wk and Qk−1 represent system error and corresponding covariance matrix at
time tk−1, respectively.

The above equations are linear system equations, which could not be used in the dynamic
model. Thus, we needed to convert Equation (20) into a linear system equation to match the Kalman
filter algorithm.

Firstly, Equation (20) could be rewritten as follows:{..
q18

}
= [M18×18]

−1
{F18} − [M18×18]

−1[C18×18]
{ .
q18

}
− [M18×18]

−1[K18×18]
{
q18

}
(23)

Then, a vector with 24 state variables was used to convert Equation (23) into a 1-order differential
equation, and Equation (23) could be rewritten as follows:{ .

X
}
= [E]{X}+ {F∗} (24)

{X} =
{

q18
.
q6

}
=

{
x y z α β γ u′1 . . . u

′

6 v′1 . . . v
′

6
.
x

.
y

.
z

.
α

.
β

.
γ
}

[E] =


[0]6×6 [0]6×12 [I]6×6
−[C12×12]

−1[K12×6] −[C12×12]
−1[K12×12] −[C12×12]

−1[C12×6]

[T6×12][K12×6] − [M6×6]
−1[K6×6] [T6×12][K12×12] − [M6×6]

−1[K6×12] [T6×12][C12×6] − [M6×6]
−1[C6×6]
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{F∗} =


{0}6
[C12×12]

−1
{F12}

[M6×6]
−1
{F6} − [T6×12]{F12}


[T6×12] = [M6×6]

−1[C6×12][C12×12]
−1

Secondly, we used a 4-order Runge–Kutta equation to solve Equation (24) for combining with the
Kalman filter algorithm: 

{X}k = {X}k−1 +
1
6 (K1 + 2K2 + 2K3 + K4)

K1 = ∆T ·Φ({X}k−1)

K2 = ∆T ·Φ({X}k−1 +
1
2 K1)

K3 = ∆T ·Φ({X}k−1 +
1
2 K2)

K4 = ∆T ·Φ({X}k−1 +
1
2 K3)

(25)

Finally, Equations (21) and (22) were rewritten as follows:

Xk = AkXk−1 + Fk + wk (26)

Pk = AkPk−1Ak
T + Qk−1 (27)

Ak = φ([E] k−1) (28)

Bk = ψ({F∗}k−1) (29)

where Xk−1 and Pk−1 represent state vector of the vehicle consisting of 24 variables and corresponding
covariance matrix at time tk−1, respectively; Xk and Pk represent the predicted state vector and predicted
covariance matrix at time tk, respectively; Ak is a matrix composed of mass, stiffness coefficient, and
damping coefficient of the vehicle at time tk−1; Fk is a matrix composed of the vehicle’s generalized
force at time tk−1; Ak and Bk can be calculated through Equation (25); Qk is the system noise covariance
at time tk−1.

The state vector of the vehicle measured by sensors could be calculated with the following two
equations:

Zk = HkXk + vk (30)

Sk = HkP̂k−1Hk
T + Rk (31)

where Xk is a state vector measured by sensors; vk and Rk represent the observation noise and
corresponding covariance matrix of sensors, respectively.

In the update step, the state and covariance estimates of the heavy-duty vehicle were corrected by
the following equations:

Kk = P̂kHk
T[HkP̂kHk

T + Rk]
−1

(32)

Pk = [I + HkKk]P̂k (33)

Xk = X̂k + Kk[Zk −HkX̂k] (34)

The flow chart of the Kalman filter is shown in Figure 4:
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3.3. Active Suspension System Control

The active suspension system can control the vehicle vibration and pose by changing the height,
shape, and damping of the suspension system, so as to improve the performance of the vehicle’s
operating stability and ride comfort. The automobile’s active suspension system can be divided into
three categories according to the control type: hydraulic control suspension system, air suspension
system, and electromagnetic induction suspension system. Our car adopts a hydraulic suspension
system to support such a heavy body of FTV. Most of the methods on the control of suspension are
based on the IMU or other three-dimensional sensors on the car to measure the state of the car, and
then according to the state, to adjust the suspension to maintain the stability. However, this method
has some defects. On the one hand, IMU does not output data in continuous time, which leads to the
inaccuracy of suspension control. On the other hand, the INS only measures the current state of the
vehicle, which results in a delay in suspension adjustment. Our proposed pose prediction could not
only solve the discontinuity of IMU but also solve the delay of IMU.

Figure 5 shows the active suspension system of our FTV. According to the geometric relationship,
the kinematic equation of FTV could be obtained:

Z1 = Z− L f sinθ+ 1
2 a cosθ sinϕ

Z2 = Z− L f sinθ− 1
2 a cosθ sinϕ

Z3 = Z + Lr sinθ+ 1
2 a cosθ sinϕ

Z4 = Z + Lr sinθ− 1
2 a cosθ sinϕ

Z5 = Z + 1
2 a sinϕ

Z6 = Z− 1
2 a sinϕ

(35)

where θ, ϕ, and Z could be predicted through our dynamic model. Then, we could get the z-direction
displacement of the body at the connection with the hydraulic cylinder. Finally, we controlled the
hydraulic cylinder to maintain the stability and safety of the FTV.
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mounted on the vehicle. The red solid line represents position error predicted by the dynamic model 
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Figure 5. Model of the active suspension system.

4. Discussion

We used four experiments to verify the effectiveness and feasibility of our method. The first
experiment was to confirm that our pose prediction using a Kalman filter was more accurate and
stable than using the dynamic model alone. The second experiment was to verify the accuracy of our
proposed method over a while compared with the real vehicle pose. The third experiment was to
verify the effectiveness of our active suspension system control method. The last experiment was to
verify the stability of our method in more situations for a long period.

The experiment was first carried out on the test site with two kinds of obstacles, as shown in
Figure 6a. We used the nearest neighbor interpolation (NNI) algorithm to process cloud data points
obtained from 3D sensors, as shown in Figure 6b.
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Figure 6. Two kinds of obstacles in the test site. (a) Real obstacles in the test site. (b) Points cloud data
of an obstacle processed by the nearest neighbor interpolation (NNI) algorithm.

The vehicle’s pose at time tk+1 was predicted by inputting information about the vehicle and the
road at time tk to the dynamic model and compared with the data of GPS/INS at time tk+1. The position
errors relative to GPS/INS data are shown in Figure 7. The blue dotted line represents position error
only predicted by the dynamic model. As the curve shows, using the dynamic model to predict the
pose produced a large error due to its iterative algorithm and the accuracy of sensors mounted on the
vehicle. The red solid line represents position error predicted by the dynamic model using a Kalman
filter algorithm. The curve demonstrated that the combination of a dynamic model and Kalman filter
algorithm could effectively eliminate the error, which could ensure accurate positioning. The attitude
angle errors are shown in Figure 8. For the same reason, using a Kalman filter algorithm could get
more accurate positioning and attitude angle information.



Sensors 2019, 19, 5120 12 of 18

Sensors 2019, 19, x FOR PEER REVIEW 12 of 18 

 

 

(a) 

 

(b) 

 

(c) 

Figure 7. Positioning error with and without Kalman filter algorithm. (a) X position error. (b) Y 
position error. (c) Z position error. 

  

Figure 7. Positioning error with and without Kalman filter algorithm. (a) X position error. (b) Y
position error. (c) Z position error.



Sensors 2019, 19, 5120 13 of 18Sensors 2019, 19, x FOR PEER REVIEW 13 of 18 

 

 

(a) 

 

(b) 

 

(c) 

Figure 8. Angle errors with and without the Kalman filter algorithm. (a) Alpha angle error. (b) Beta 
angle error. (c) Gamma angle error. 

For our autonomous FTV, active suspension system control and advanced risk analysis were 
implemented to maintain stability and safety on uneven terrain. To achieve the above method, we 
needed to accurately predict the attitude information of the vehicle in the next period of time. The 
second experiment was carried out to verify the effect of our method. We made the vehicle pass an 
obstacle directly at a constant slow speed, and, at the same time, recorded the vehicle pose 
information and vehicle input information in this period. Then, we imported the same vehicle input 
information into the dynamic model to get the prediction information. The result is shown in Figure 
9—the purple line and the red line show the attitude angle information of the vehicle and the 
predicted attitude angle information, respectively. The result showed that the predicted pose had 
high accuracy. It means that we could calculate how much speed and traction were needed to pass 
some obstacles, as there was a risk of rollover when passing obstacles at a certain speed in advance. 

Figure 8. Angle errors with and without the Kalman filter algorithm. (a) Alpha angle error. (b) Beta
angle error. (c) Gamma angle error.

For our autonomous FTV, active suspension system control and advanced risk analysis were
implemented to maintain stability and safety on uneven terrain. To achieve the above method, we
needed to accurately predict the attitude information of the vehicle in the next period of time. The
second experiment was carried out to verify the effect of our method. We made the vehicle pass an
obstacle directly at a constant slow speed, and, at the same time, recorded the vehicle pose information
and vehicle input information in this period. Then, we imported the same vehicle input information
into the dynamic model to get the prediction information. The result is shown in Figure 9—the purple
line and the red line show the attitude angle information of the vehicle and the predicted attitude angle
information, respectively. The result showed that the predicted pose had high accuracy. It means that
we could calculate how much speed and traction were needed to pass some obstacles, as there was a
risk of rollover when passing obstacles at a certain speed in advance.
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The data after adjusting the suspension of the vehicle are shown in Figure 10—the purple line
shows the attitude angle information when passing through an obstacle, and the red line shows the
attitude angle information after the vehicle continuously adjusts the suspension when passing through
the same obstacle at the same speed. The result showed that the attitude was maintained within
5 degrees by continuous suspension adjustment, which means that the stability of the vehicle could be
well guaranteed by our proposed method.
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The last experiment was carried out to further verify the feasibility of our method and its stability
in complex environments. The experiment was carried out in a field around our university, with
various obstacles on the road. As shown in Figure 11b, the black line shows the real trajectory of the
FTV, and the blue line and red line represent the trajectories predicted by the dynamic model with
and without Kalman filter, respectively. The experiment result showed that the method, combining a
Kalman filter with a dynamic model, had higher accuracy and stability over a long period. The three
points where the car passed through the obstacle were A, B, and C. Figure 12 shows the change of
attitude angle during driving. The vehicle attitude angle maintained within 5 degrees during the
whole driving process. The result showed that the vehicle could maintain stability for a long time
through suspension system control.
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5. Conclusions

This paper presented a method of pose prediction of autonomous FTV on uneven roads, which
could be used as a reference index for adjusting active suspension and planning path. The first was
the way to extract road real-time elevation information through GPS/INS and 3D laser scanners. The
second was the description of a method that established the vehicle’s dynamic model and imported the
elevation information extracted from the previous step into it for pose estimation. Finally, the dynamic
model was combined with a KF to obtain a more accurate pose prediction. Real experiments results
demonstrated that the safety and stability of vehicles driving across complex uneven terrain could be
ensured by using our method. There were also some defects in the whole study. For example, the
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accuracy of the vehicle’s dynamic model was reduced when adjusting the active suspension system.
In the future, we would consider how to improve the accuracy of a dynamic model of the vehicle
and adjust the suspension system in more forms to maintain the vehicle’s stability. Furthermore, we
need to do in-depth research on the path planning across complex uneven terrain to make the vehicle
truly unmanned.
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