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Abstract: Increasingly more patients exposed to radiation from computed axial tomography (CT)
will have a greater risk of developing tumors or cancer that are caused by cell mutation in the future.
A minor dose level would decrease the number of these possible cases. However, this framework can
result in medical specialists (radiologists) not being able to detect anomalies or lesions. This work
explores a way of addressing these concerns, achieving the reduction of unnecessary radiation without
compromising the diagnosis. We contribute with a novel methodology in the CT area to predict the
precise radiation that a patient should be given to accomplish this goal. Specifically, from a real dataset
composed of the dose data of over fifty thousand patients that have been classified into standardized
protocols (skull, abdomen, thorax, pelvis, etc.), we eliminate atypical information (outliers), to later
generate regression curves employing diverse well-known Machine Learning techniques. As a result,
we have chosen the best analytical technique per protocol; a selection that was thoroughly carried
out according to traditional dosimetry parameters to accurately quantify the dose level that the
radiologist should apply in each CT test.
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1. Introduction

Nowadays, one of the most frequently carried out medical tests is the so-called computed axial
tomography (CT), which is used to obtain a precise human body image while using X-Rays [1].
Radiologists are able to observe anomalies or lesions in patients without performing other invasive
techniques by means of this non-invasive technique. This is the reason why the number of CT-based
tests has grown enormously in recent years [2]. However, an inadequate dose of X-rays delivered to
the human body over time could result in serious diseases, even increasing the risk of cell mutation,
which can lead to the proliferation of tumors. In addition, the younger the patient is, the greater the
probability that he/she could develop cancer due to increased cellular activity [3].

Keeping the well-known risks of computed tomography-related radiation in mind, there is another
factor to take into account; the clarity of the image. The higher the dose applied to the body, the higher
the quality of the image, which therefore makes it easier for radiologists to make diagnoses. Thus,
adjusting the dose that is received by a patient is mandatory for allowing the detection and accurate
identification of lesions or diseases, even in their earliest stages, while minimizing the possible risks for
patients. For instance, a well-known practice among radiologists is ALARA (As Low As Reasonably
Achievable) [4]. This consists of reducing radiation exposure by computed tomography scanning,
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encouraging the use of alternative techniques, such as ultrasound and magnetic resonance, while also
maintaining the efficiency and reliability of clinical diagnoses.

Guided by the current concern about patient healthcare, the scientific community establishes
dose reference levels (DRL) [5], statistically calculated from the gathering of data on doses received
by patients radiated by different CT machines at the regional and national level. The goal of dose
reference levels is to determine an upper limit, while considering those values that are above these
limits to be dangerous. The results of DRL differ from the protocol employed; that is, DRL values
depend on the part of the human body studied in the computed tomography test. There are different
protocols (skull, thorax, abdomen, pelvis, or combinations of them), where, if required, medical staff

will administer a contrast medium to increase the accuracy of the diagnosis [6].
According the authors’ knowledge, the academic community, medical staff, or practitioners lack

broad and detail-oriented studies that adjust the radiological doses to the patient’s morphology or size
while considering the aforementioned protocols. The objective of this work is twofold to address this
drawback. First, we accurately predict the doses of radiation that patients should receive by means of
artificial intelligence systems; in particular, the subset denoted as Machine Learning (ML) techniques.
Applied to CT protocols, they improve the results that were obtained by the current metrics used in
conventional radiology (Computed Tomography Dose Index—CTDIVOL—[7] or Size-Specific Dose
Estimate—SSDE—[8]). Second, predictive techniques will, in many cases, result in lower thresholds
than standardized DRLs.

We determine the most appropriate ML technique for the top five most often used protocols
from thousands of studies classified into their corresponding protocols to achieve these objectives.
These cover nearly 92% of all CT examinations, thus comparing different regression schemes and
providing a useful tool that allows for us to plan the dose that each patient should receive. This tool
helps radiologists or medical staff in the decision-making process. They are the ones who should make
the final decision based on their clinical experience or knowledge. Nevertheless, the system is already
trained to learn and act automatically when radiologists consider this to be advisable. We will focus
our study on eight large hospitals in the Region of Murcia, located in the Southeast of Spain, collecting
all of the dose data from May 2015 to December 2017 for each protocol.

2. Terminology

The dosimetry measurements used in this work are defined in the following paragraphs:

• CTDIVOL (Computed Tomography Dose Index):

This is a measurement of the absorbed dose in a slice of a standard volume, which is characterized
by a cylinder or phantom. The most common measurements are 16 cm in diameter to simulate the head
of the patient and 32 cm for the body. It is important to mention that this is not the real dose absorbed
by the patient, but a measurement of the radiation output from the scanner. It is measured in mGy and
its value is intrinsically related to other parameters set in the device, such as voltage or current.

Due to this, it is a good indicator for quantifying dosimetry changes when scanner parameters
are modified, which helps to relatively identify high or low radiation values for a specific protocol.
Furthermore, as CTDIVOL is physically measured, it is also useful for detecting whether a CT machine
is working properly or not.

• SSDE (Size-Specific Dose Estimate):

The SSDE parameter provides a better approach to the dose applied in each slice, while considering
the real size of the patient, due to the fact that the morphology of a patient does not necessarily fit the
standard sizes employed in the CTDIVOL metric (16/32 cm). To this end, it is necessary to carry out
a scanogram before performing the CT test on a patient. This technique determines the morphology
of the patient to adjust the radiation in each slice. The importance of SSDE is clear. It is able to set
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personalized doses to patients, preventing, for instance, smaller patients from receiving more radiation
than required.

• DRL (Dose Reference Level)

The DRL level indicates the dose that is received by a patient or the amount of radiopharmaceutics
administered for a certain medical exam. This reference level determines whether a dose is unusually
high or low for that exam.

• BMI (Body Mass Index)

Body mass index (BMI) is a metric that relates the mass and weight of an individual. BMI is
defined as the mass of the individual (expressed in kg) divided by his/her height squared (expressed in
m2), providing a value that helps us to interpret his/her morphology [9].

3. Related Work

In the scientific literature, we can find diverse works related to the radiologic dosimetry field and
its associated technical parameters. Many of them compared the delivered dose in relation to patient
morphology. Thus, in [10], the authors analyzed the relationship among patient size, the radiation
delivered by the scanner (CTDIVOL), and the dose estimated for the size of the patient by means of
the anteroposterior (AP) and lateral (LAT) lengths for thorax examinations. In this study, authors
observed a high linear correlation between patient size and the CTDIVOL metric. Unlike the results
of previous studies, the authors in [10] demonstrated that the SSDE metric is independent of patient
size. Following this line, the work [9] evaluated the use of both body mass index (BMI) and weight
in thorocoabdominal tests, obtaining the SSDE metric from CT scans. BMI and weight showed a
high correlation with the effective diameter in adults, making their use possible as a substitute in the
calculation of SSDE. However, BMI demonstrated a greater correlation with the effective diameter than
the weight of the patient in abdominal CT probes, while, in chest CTs, the results indicated that weight
was more closely correlated with the effective diameter than the figure of merit BMI.

On the other hand, the scientific community is currently recognizing the value of using Big
Data and Machine Learning techniques in the medical field. In this regard, work [11] highlighted
the importance of data to improve clinical practices and diagnoses. Access to information regarding
thousands of patients and its subsequent analysis allows for us to obtain models and patterns that
can be used for personalized medical treatments. Furthermore, the application of ML techniques in
the medical field is emerging as a technique that supports, among other things, image reconstruction
in CT tests. Under these premises, in 2017, a model was proposed in [12] to enhance image clarity
by reducing the number of projection views, achieving better edge reconstruction. In the work [13],
the authors designed a solution to locating the limits of liver tumors in CT images, while employing
a specific machine learning technique (AdaBoost learning). This algorithm learned how to classify
border points as true or false. In [14], the authors aimed to develop a classification algorithm to
segment seven biological tissues in the neck, chest, abdomen, and pelvis through CT images. To this
end, tools such as Matlab and its ML Random Forest toolbox assured a clear segmentation of “shapes”,
such as air, bone tissue, fat, or muscle.

Currently, another medical research area in which Machine Learning has had great impact is that
related to radiological doses. In 2015, the work [15] extensively analyzed three ML models (logistic
regression, support vector machines, and neuronal networks) to predict whether a patient would suffer from
symptoms after receiving a certain radiotherapy dose. In 2018, the work [16] proposed radiotherapy
plans in patients with oropharyngeal cancer. KBP (knowledge-based planning) was employed from
a twofold perspective: the bagging query method (BQ) and the generalized principal component
analysis-based method (gPCA). The main goal was to predict Dose Valued Histograms [17], which
relate doses to tissue volume. The gPCA method showed results that were similar to the clinical plans;
however, the BQ solution differed greatly. Finally, the work [18] dealt with the detection of lesions in
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CT from the image perspective, in particular to assisting the radiologist in the recognition of nodules
in the lung while using a deep learning technique. Note that the analysis of CT images is out of the
scope of this work. Authors in other research fields apply this know-how in ML techniques [19].

The aforementioned works applying ML techniques to dosimetry in CT tests contribute with
spot advances, making specific improvements. We offer a step forward to achieve a broader solution
considering the most remarkable protocols. We precisely predict the radiation level that a patient
should receive by analyzing a set of well-known ML techniques, selecting the best for each protocol.
Furthermore, as a second contribution, we compare these values to the DRLs that were obtained by the
scientific community, suggesting recommendations and guidelines.

4. Materials and Methods

The Ethics Committee for Clinical Research, which accepted the waiver of the requirement to
obtain patient informed consent, approved the study.

4.1. Data Collection

This work is supported by dosimetry data that were collected from thirteen CTs operating in eight
hospitals in the Region of Murcia (Table 1), between May 2015 and December 2017.

Table 1. Technical information on each computed axial tomography (CT) used in this work.

Manufacturer Model # Slices Enabled SSDE Hospital # CT

GE LightSpeed VCT 64 YES A CT1
TOSHIBA Aquilion 16 YES A CT2
SIEMENS Somaton Def. AS 64 YES B CT3
SIEMENS Somaton D. AS+ 128 YES B CT4

GE LightSpeed VCT 64 YES C CT5
SIEMENS Somaton Emotion 16 NO C CT6
SIEMENS Somaton Emotion 16 NO D CT7
SIEMENS Somaton Def. AS 64 NO D CT8
PHILIPS Brilliance 6 NO E CT9
PHILIPS Brilliance 16 NO E CT10
PHILIPS Brilliance 16 NO F CT11

GE LightSpeed VCT 64 YES G CT12
SIEMENS Somaton Emotion 16 NO H CT13

The total number of analyzed exams was 58,571. In addition to the diagnosable image, the data
attached to the exams include information regarding the gender, the type of protocol (listed in Table 2),
the dose received by each patient in terms of CTDIVOL and SSDE metrics (if applicable), the type of
phantom, the CT employed, the age of the patient, and the BMI metric for those exams carried out
from 2015 to 2017.

Table 2. Exam distribution by protocol and gender.

Protocol 2015–2016 2017 Men 2017 Women TOTAL

Head 27,785 1380 1210 30,375
Thorax 3817 769 534 5120

Abdomen 2221 541 407 3169
Abdomen & Pelvis 7518 1459 1495 10,472

Thorax, Abdomen & Pelvis 6288 1808 1339 9435

The DRL figure associated to CTDIVOL metric is also included in this work. DRLs are obtained
through studies of dosimetry that were carried out in different countries. A summary of DRL values
per country/protocol can be found in [20,21], where we have selected the most representative ones:
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Belgium (2017), Denmark (2015), Finland (2013), France (2012), Germany (2010), Greece (2013), Ireland
(2011) [22], Luxembourg (2001), Norway (2010), Poland (2011), Sweden (2002), Switzerland (2018) [23],
the Netherlands (2012), and the United Kingdom (2011).

Matlab is the mathematical tool selected to manage and analyze the entire data, in its version
R2017a, together with its Statistics and Machine Learning Toolbox libraries. The simulations were
executed in a computer whose main features are an Intel Core i7-8700K processor and 16 GB of
RAM memory.

4.2. Methodology

To achieve an appropriate prediction of the dose to be radiated in patients, it is necessary to carry
out the following steps (see Figure 1):

1. From all of the CT tests, the radiology team sets the diagnosable images by protocol. The remaining
images, the non-diagnosable ones, are not considered in our work.

2. A CT test contains a large amount of information (sequence of images, patient’s data, physical
magnitudes, etc.). From all of them, we extract the following interest parameters: CTDIVOL, BMI,
and SSDE (if the CT has this feature). These parameters comprise the Dataset.

3. It is necessary to discard the data that can jeopardize the prediction of future results. This phase
consists of removing this unrepresentative information, which is also called outliers.

4. Applying different well-known Machine Learning techniques to each protocol, we obtain the
regression curve that best fits the data.

5. In the decision-making process, we select the best ML technique, while employing an objective
metric as the root of the quadratic mean error (RMSE), along with the computational cost.

6. Once the ML technique is selected, a precise CTDIVOL value is calculated from the regression
curve, taking the BMI (or SSDE) as the input parameter. The CTDIVOL value is, a priori, the new
calculated dose to deliver to the patient.
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4.2.1. Removing Outliers

Once the data are gathered, those considered to be atypical (outliers); that is, values denoted as
errors or unrepresentative are eliminated from the population (in this work, the sample values match
the population). There are diverse techniques in order to do this [24], which are applied according to
the distribution of the sample and the data percentage to be removed.

If the data are treated as separated variables, outliers are eliminated while using the univariate
method. Figure 2 shows the boxplot diagram that was proposed by Tukey in 1977 [25], in
which the distribution of a set of data is observed, and different regions are identified from their
statistical information.
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As Figure 2 shows, we define the Interquartile range (RIC) as the difference between Q3 (third
quartile or 75th percentile) and Q1 (first quartile or 25th percentile). In this way, if we want to remove
extreme values, those greater than Q3 + 3 *RIC and those less than Q1 − 3 *RIC will be eliminated.
Even if we intend to be more restrictive, data that are higher than Q3 + 1.5 *RIC and lower than
Q1 − 1.5 *RIC can be eliminated from our samples. However, the univariate method has a clear drawback;
the data removed are located at the ends of each variable and outside of these zones there could be
undetected outliers.

Another way of eliminating outliers is to employ the multivariate method. This is ideal for internal
areas with low data density; meaning the number of data is not very representative in the whole sample.

To detect and remove outliers, we apply the technique called the density-based spatial clustering
of applications with noise technique, DBSCAN [26]. In this technique, the epsilon (euclidean distance)
and MinPts (threshold) parameters must be previously defined, to later operate, as follows: for each
particular data the number of neighbors in a certain epsilon must be quantified. If that number exceeds
the established threshold (MinPts), the specific data and their neighbors are included in a cluster,
as well as the neighbors of the previous data that fulfill the same condition. The iterative process
continues until all of the data are checked and a cluster of connected data is established. On the other
hand, if the number does not exceed the value of MinPts, the specific data will be considered to be
noise, and will therefore be eliminated from the sample (see Figure 3).
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The goal of both techniques is to eliminate the smallest number of data, trying not to exceed 5% of
the total data of the sample. Once the atypical data have been removed, the regression techniques that
are described in Section 4.2.2 will be applied to the remaining data.

The data are separated into two groups, called training and test, in order to obtain a good
regression model [27]. The cross-validation technique will be used, which divides the sample into k
groups of data. One of them will be used as a test and the rest for training.
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This process is repeated during k iterations, with each time using a different group as test, without
repetition. The value of k will vary depending on the number of available data. The value of 10 is the
one that is selected for this work.

The regression algorithm will be fed with the number of data allotted to training, which will fit a
curve with these data, obtaining the mathematical model as a result. For each iteration, the error Ek
will be estimated; the mean of all the errors results in the total error E, as shown in Figure 4.Sensors 2019, 19, x FOR PEER REVIEW 7 of 28 
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After training the algorithm and obtaining the model, we will verify its performance by means of
new data that have not been employed in the training process. We use the test data for this purpose.

If the error from the test data is much greater than the error committed by the training data, the
model is overfitting the training data, diminishing the generality for the test set. The reason is the
following: the algorithm extracts a large amount of information from the dataset to generate the training
data, deriving a complex model that is capable of precisely adjusting its predictions. This model can
include noise or random fluctuations due to the great number of data. When assessing new data (test),
a minor amount of them are selected, which implies a low probability of noise/random data. The result
is a clear deterioration in the performance of the model. This issue has a negative effect on the precision
of the predictions, to the point of making it unfeasible for the problem contemplated here.

4.2.2. ML Techniques

Machine learning (ML) algorithms, as a subfield of artificial intelligence (AI), have been providing
effective solutions in engineering applications and to scientific problems for many decades. The ML
methods have the ability to adapt to new conditions and detect and estimate patterns. To this end,
ML conceives self-learning algorithms to derive knowledge from data in order to carry out system
predictions. ML provides a suitable solution that captures the awareness present in data and gradually
enhances the performance of predictive models to build models that analyze a large amount of data.
The main goal is to make the best decisions, or to take the best actions based on these predictions.

ML is divided into three categories: supervised learning, unsupervised learning, and reinforcement
learning. In this work, we will focus our attention on supervised learning techniques, since they allow
for a model to learn from training data to make predictions about unseen or future data. In supervised
learning, the input data are defined by labels (such as, for instance, mail labels) or raw data. One
of the subcategories of supervised learning is regression analysis, which addresses the prediction
of continuous results from labels/raw data. Given a set of variables, x, named predictors, and their
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corresponding response variables, y, we can fit a curve graph (the simplest is a straight line) to these
data that minimizes the distance between the sample points and the fitted linear/non-linear graph.
The set unsupervised learning and regression analysis is adjusted to the requirements while observing
the nature of the data to analyze in this work, allowing for us to predict the continuous outcomes of
target variables.

In regression analysis techniques, the scientific literature presents different approaches that are
useful in the massive analysis of data (Big Data). Furthermore, these techniques help in the forecasting
of future doses to be received by patients, which is a distinctive objective of this work.

Regarding regression analysis models, we will concentrate our efforts on specifying (data selection),
accommodating (eliminating outliers and anomalous points), and analyzing our large amount of CT
exam data by using the following models:

1. Linear regression.

This technique consists of finding a line that fits a data set following a certain criterion. The most
common criterion, which will also be employed in this work, is least squares adjustment [28].

2. Decision Tree Learning.

This scheme breaks down our data by making decisions based on asking a series of questions.
In particular, in the training phase, the decision tree model learns questions that are used to stamp class
labels on the samples. As a tree model, the process starts at the root of the tree and then splits the data
along its branches. The splitting procedure is repeated at each child node up to the leaves (of the tree).
This means that the samples of each node belong to the same class. Note that the error is minimized if
the tree is deep, but it can lead to overfitting. Thus, the usual procedure is to prune the tree, restricting
its maximum depth. A better way to improve the results of the Decision Tree Learning algorithm is to
employ a technique, called Bagged Decision Tree, which reduces the variance of a decision tree.

3. Bagged Decision Tree.

In this technique, multiple regression trees are constructed. In particular, several subsets of data are
created from training samples, for each collection of them to be later used to train their own decision
trees. The average derived from these different decision trees provides a more robust solution than a
single decision tree. The use of several trees also reduces overfitting.

4. Artificial Neural Networks [29].

Our focus will be on analyzing the data for the training phase with a technique, called Bayesian
regularization [30]. This algorithm allows for us to perform binary classification, and we will use the
Levenberg-Marquardt optimization [31] to learn the weight coefficients of the model (in each iteration
of the training phase, the coefficients are updated). Furthermore, it is possible to obtain the optimal
weights employing cost functions, such as those called Sum of Squared Errors (SSE). To find the
predicted values, the solution involves connecting multiple single neurons to a multi–layer feedforward
neural network. This particular type of network is also called a multi–layer perceptron (MLP), which
consists of three layers (input, hidden, and output layers). Both techniques (Bayesian regularization
and Levenberg–Marquardt optimization), together with an infrastructure MLP achieve an optimal
model capable of generalizing the mathematical problem thanks to the minimization of a combination
of weights and errors. This algorithm allows for overfitting to be reduced at the cost of longer
execution time.

5. Gaussian Process Regression [32].

Parametric regression methods, for instance, linear/logistic regression, generate a line or a curve in
the graph of inputs and outputs, replacing the training data. Accordingly, once the regression weights
have been obtained, the original training data may be eliminated from the graph. On the other hand,
non-parametric regression methods may retain the initial training data (also called latent variables) to
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be used as a significant element in generating a regressor function. To this end, test data are compared
to the training data points; each output value of the test point is estimated via the distance of the test
data input to the training data input. It is notable that non-parametric regression considers that data
points with similar input values will be close in output space. The mathematical expressions include
the covariance function formed of latent variables, which reflects the smoothness of the response.
Covariance and mean functions were used in conjunction with a Gaussian likelihood for prediction,
employing f∗|X, y, X∗ as an initial expression. In it, f∗ is a posterior distribution, X is a matrix of training
inputs, y is a vector of training target, and X∗ is a matrix of test inputs.

To maximize this expression, we have carefully studied the mathematical model that was derived
in [33]. From this previous study, we opt as a useful equation for the problem here planned the
following exponential function, which will, in turn, be employed as a kernel function:

kexp(x, x′) = σ2
f exp

−
√√√√√ d∑

k = 1

(
xi,k − x j,k

)2

l2k

 (1)

where the parameter σ2
f is the standard deviation, while lk is the scalar dimension for each predictor, k

is the number of evaluations to fulfill the maximization problem, and x and x’ are two near values.

6. Support Vector Regression (SVR) [34].

In this case, we consider the following training data
{
(xi, yi), . . . .., (xl, yl)

}
, where

xi ⊂ Rn; yi ⊂ R indicate the input space of the sample and its corresponding target value,
respectively, and l denotes the size of the training data. Our objective is to find a function f (x) that has,
at most, ε deviation from the obtained targets yi for all of the training data, and at the same time is as
flat as possible. In other words, we do not care about errors because they are less than ε. Additionally,
the results must avoid senseless predictions to find a function f (x) that returns the best fit.

Regarding the relationship between x and y, it is approximately linear, which means that the
model is represented as: f (x) = 〈w, x〉+ b; w ⊂ Rn ; b ⊂ R (w represents coefficients and b is an
intercept). Therefore, this problem can be formulated as a convex optimization problem:

minimize
1
2
‖w‖2

subject to
{

yi − 〈w, xi〉 − b ≤ ε

〈w, xi〉 + b − yi ≤ ε
(2)

Here, our optimization problem is planned as a non-linear case. Keeping this in mind and, thanks to
the support of the work [35], the solution for (2) is the following Equation (3):

max

1
2

l∑
i = 1

(αi − α
∗

i )(α j − α
∗

j)〈ϕ(xi),ϕ(x j)〉 − ε
l∑

i = 1

(αi + α∗i ) +
l∑

i = 1

yi(αi − α
∗

i ) (3)

s.t.
l∑

i = 1

(αi − α
∗

i ) = 0 ; 0 ≤ αi,α∗i ≤ C

The constant C > 0 determines the trade-off between the flatness (this means that one seeks a small
w value) of f and the amount up to which deviations that are larger than ε are tolerated. On the other
hand, αi, α∗i , α j, and α∗j are Lagrange multipliers. Finally, 〈ϕ(xi),ϕ(x j)〉 = K(xi, yi) is a Kernel function.

A common kernel that is used for this model is the radial basis function: K(xi, yi) = e−
‖xi − yi‖2

2σ2 .



Sensors 2019, 19, 5116 10 of 27

A more detailed study of these aforementioned techniques can be found in the “Description of
Machine Learning Techniques” section in the Supporting Information for description. Finally, Table 3
shows the parameters used in the previously defined algorithms:

Table 3. Machine Learning (ML) Technique parameters.

Linear Regression
- Linear Model (yi = β0 + β1xi,). In Each Protocol/Gender, β0 and β1 Parameters are
Calculated
- Type of Fit: Least Squares Fit

Regression Trees

- Minimum number of data in non-terminal nodes: 10
- Minimum number of data in terminal nodes: 10 (in ’Skull’ protocol it increases to 20).
- Pruning criterion: MSE
- Data splitting criterion: MSE
- Number of trees in bagging: 50

Gaussian Process - Base function: constant H = 1 (vector of nx1 dimension, with n = number of data).
- Kernel function: exponential.

Support Vector
Regression

- Kernel function: the radial basis function (non-linear case).
High σ values involve overfitting. We have selected the range from 2 to 700 for our probes

Neural Networks

- Number of hidden layers: 1
- Number of neurons in the hidden layer: 10 in the ’Skull’ protocol, and 5 in the rest of the
protocols.
- Training function: Bayesian regularization.
- Normalization of entries between -1 and 1.
- Activation function of neurons in the output layer: linear.
- Activation function of neurons in the hidden layer: sigmoid (hyperbolic tangent).

4.2.3. RMSE Metric

We employ the root of the quadratic mean error (RMSE) metric as a measure of error. The RMSE is
a value that measures the standard deviation of the error. This is calculated by Equation (4) as the
average of errors squared, with n being the number of samples, y the real value, and ŷ the predicted
value. The RMSE metric presents a range from zero to infinite, especially punishing those data that are
far from the estimated value.

RMSE =

√√√
1
n

n∑
j = 1

(
yj − ŷj

)2
(4)

When the relationship between two variables is obtained by means of linear regression, we can
also employ the parameter R (correlation coefficient) in the analysis, which shows the degree of linear
correlation between the variables. When R approaches 1 or −1, there is a high linear correlation.
However, if its value is close to 0, both of the variables are said to be poorly correlated.

5. Results

In this section, two different comparisons are accomplished to predict the precise dose levels that
a patient should receive to obtain a diagnosable image. Firstly, we analyze the radiation output of
the CT set by the CTDIVOL parameter versus BMI, which depends on the patient’s height and weight.
Secondly, we compare the same figure of merit CTDIVOL with respect to the SSDE metric, which returns
his/her exact morphology. Although the SSDE parameter adjusts, a priori, the dose level better than
BMI, the unavailability of collecting it in some of the CTs (see Table 1), together with the possibility of
discerning gender, have motivated this twofold study. Finally, it is notable that a powerful tool for
dose optimization during CT examinations is the analysis of outliers, as we have shown in a previous
work [36].
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5.1. Comparison between CTDIvol and BMI

The main objective is the prediction of the optimal dose of radiation that a patient should receive,
while taking into account his/her BMI and the type of protocol. The parameter predicted is CTDIVOL,
so this will allow for technicians to adjust different parameters to achieve that radiation value in CT
output. Additionally, gender-segmented regression data for the five protocols indicated in Table 2
will be calculated while using each one of the ML techniques described above. However, we have
opted to only show the best ML technique to shorten the length of the paper and make the text more
understandable to readers. The remaining studies can be found in the “Results involving ML, Protocols,
and dose metrics” section in the Supporting Information for description.

Two figures are plotted for each protocol/gender. The first one illustrates the regression curve after
removing the outliers, together with the European DRL reference values. The second shows an error
histogram composed of 20 bars. This figure represents both training and test errors and it highlights
the relationship between both. The x-axis indicates the error made; that is, the distance between the
real data and the value predicted, while the y-axis points out the number of data that have an error of
that magnitude.

5.1.1. Skull Protocol

In this protocol, the data dispersion is clearly high, which demonstrates low linear correlation
between BMI and CTDIVOL. In the men’s case, the correlation coefficient R2 reaches a value of 0.000908
when all of the samples are adjusted by means of a linear regression. A slight improvement is obtained if
the anomalous data (outliers) are not computed; the value reached for R2 is 0.0467. As in the men’s case,
for women, a very low linear correlation between BMI and CTDIVOL is attained. By adjusting all of the
samples by means of a linear regression the parameter R2 reaches a value of 0.000154. When outliers
are eliminated there is a slight improvement; R2 increases to 0.0348. For both genders, when the total
number of samples is analyzed, Bagged regression trees is the technique that best adjusts the training
and test data. This conclusion comes from analyzing the results of Tables 4 and 5.

Table 4. BMI-CTDIVOL results for men’s Skull protocol.

ML
Technique

RMSE 100% of the
Sample

RMSE without Outliers
(96.4% of the Sample) RMSE of

Outliers
Execution Time

(seconds)
Train Test Train Test

L. Regression 6.6477 6.6255 5.6307 5.6248 2.4774e + 03 3.519739
Reg. Trees 5.8796 6.5221 5.0302 5.7588 334.8542 2.997568
B.R. Trees 5.7889 6.4314 4.9609 5.6237 337.4054 7.712964

GPR 6.3956 6.4565 5.5735 5.6148 337.6461 221.628132
SVR 6.5762 6.5937 5.6921 5.7273 362.0229 5.588844

N. Networks 6.4782 6.4620 5.6038 5.6090 350.0536 25.188203

Table 5. BMI-CTDIVOL results for women’s Skull protocol.

ML
Technique

RMSE 100% of the
Sample

RMSE without Outliers
(96.4% of the Sample) RMSE of

Outliers
Execution Time

(seconds)
Train Test Train Test

L. Regression 5.6609 5.6433 4.5959 4.6015 5.3330e + 03 15.052260
Reg. Trees 5.1083 5.7975 4.0426 4.6288 299.4519 8.581264
B.R. Trees 5.0274 5.6543 3.9596 4.5134 305.4321 11.127855

GPR 5.6008 5.5970 4.5444 4.5997 287.4341 241.964651
SVR 5.6552 5.6282 4.5980 4.6413 298.0206 7.459742

N. Networks 5.6618 5.6253 4.4972 4.5007 414.3626 22.069401
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The elimination of outliers was carried out in two phases. Firstly, from the set of samples, those
values that were higher than Q3 + 3 *RIC, and those lower than Q1 - 3 *RIC were ruled out through the
univariate method, as described in Section 4. Secondly, samples that were placed in areas with low
data density, far from the usual values, and with significant influence on the error, were also removed.
To this end, we employ the multivariate technique also mentioned in the previous section. Note that
this procedure was carried out in a similar way in the rest of the protocols analyzed in this section.

After the elimination of outliers, bagged regression trees continues as the best predictive technique,
obtaining the lowest RMSE of all the ML techniques analyzed. However, the same performance is not
achieved with the test data, showing a big difference between both (training and test data).

The Neural Networks technique provides excellent RMSE results for the test data and, therefore,
for the model presented. This technique also fits for the training data, with smooth transitions and
avoidance of overfitting. Thus, Neural Networks is the most suitable solution for predicting future
doses for the "Men’s/Women’s Skull" protocol and the CTDIVOL-BMI plots. Gaussian processes is
another technique that produces results that are similar to those of Neural Networks. Nevertheless, the
execution time of Gaussian processes is the longest, which is an inconvenience when the number of
samples increases.

Finally, it should be noted that the obtained dose does not exceed the DRL value for any of the
European countries comprised in this work, as shown in Figure 5.
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5.1.2. Thorax, Abdomen, and Pelvis Protocol

Regarding men, there is low linear correlation between BMI and CTDIVOL (R2 = 0.00583), which
is greatly enhanced when the outliers are eliminated (R2 = 0.283). In the case of women, the linear
correlation between BMI and CTDIVOL is low (R2 = 0.000355), which substantially increases when the
outliers are eliminated from the computation (R2 = 0.304).

Gaussian processes obtains the best result (when 100% of the samples are computed), deriving the
lowest value of RMSE in the test data, as shown in Tables 6 and 7. Bagged regression trees achieves the
least error in the training data (as occurred in previous cases). Removing outliers, Gaussian processes and
Neural Networks are the techniques that accomplish the least error in the test data for men and women,
respectively, and it can be said that both are the best predictive models for the “Thorax, Abdomen, &
Pelvis” protocol.

Table 6. BMI-CTDIVOL results for men’s Thorax, Abdomen, & Pelvis protocol.

ML
Technique

RMSE 100% of the
Sample

RMSE without Outliers
(96.4% of the Sample) RMSE of

Outliers
Execution Time

(seconds)
Train Test Train Test

L. Regression 7.9476 7.3695 2.5205 2.5191 2.3180e+ 03 12.030910
Reg. Trees 6.8448 7.0617 2.2935 2.5824 109.6120 5.921255
B.R. Trees 6.6967 6.8954 2.2436 2.5236 109.4708 10.666126

GPR 6.8744 6.7515 2.4770 2.5012 103.3175 662.439870
SVR 7.5910 6.8664 2.6011 2.6087 127.5686 8.584487

N. Networks 7.4479 6.7736 2.4934 2.5101 111.8788 37.235825

Table 7. BMI-CTDIVOL results for women’s Thorax, Abdomen & Pelvis protocol.

ML
Technique

RMSE 100% of the
Sample

RMSE without Outliers
(96.4% of the Sample) RMSE of

Outliers
Execution Time

(seconds)
Train Test Train Test

L. Regression 5.9616 5.6679 2.7319 2.7267 2.0834e+ 04 11.728024
Reg. Trees 4.9465 5.1369 2.4740 2.8359 102.8771 5.660822
B.R. Trees 4.8739 5.0179 2.4240 2.7422 100.4587 9.794929

GPR 5.2814 4.8710 2.6728 2.7110 96.1594 405.771978
SVR 5.6819 5.1555 2.8080 2.8172 106.1870 706.658904

N. Networks 5.4569 4.9517 2.7116 2.7100 131.6909 56.300129

However, as in the aforementioned protocol, there are no clear differences in terms of RMSE
values if we compare all of the ML techniques. It should be noted that GPR is the technique with the
highest computation demand.

Figure 6a,b, concerning men, show the Gaussian processes results always below most of the
European DRLs, with the exception of only the most restrictive DRL (Switzerland), which has been
exceeded by BMI values of about 35. In the case of women (Figure 6c,d), Neural Networks outcomes
illustrate the surpassed DRLs are Switzerland and Finland when the BMI exceeds the value of 35.
The following most restrictive DRL (UK) is exceeded with a BMI value close to 40.

5.1.3. Abdomen and Pelvis Protocol

In the men’s case, there is a low linear correlation between BMI and CTDIVOL (R2 = 0.00741),
which sharply increases when the outliers are eliminated (R2 = 0.313). As shown in Table 8, bagged
regression trees provides the best result (when all of the samples are computed), achieving the lowest
RMSE in the test data. In contrast to the previous cases, Gaussian Process Regression (GPR) obtains the
least error in the training data. However, the GPR technique implies a high computational cost. Bagged



Sensors 2019, 19, 5116 14 of 27

regression trees achieves the least error for the set of training and test data (with suppression of outliers)
and therefore, it is the best predictive model for this protocol.
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Table 8. BMI-CTDIVOL results for men’s Abdomen & Pelvis protocol.

ML
Technique

RMSE 100% of the
Sample

RMSE without Outliers
(96.4% of the Sample) RMSE of

Outliers
Execution Time

(seconds)
Train Test Train Test

L. Regression 5.1519 5.1360 3.5519 3.5503 6.7896e + 03 12.091683
Reg. Trees 3.4529 4.0113 2.9921 3.4408 155.5703 5.835483
B.R. Trees 3.3633 3.8846 2.9314 3.3445 155.1968 10.629959

GPR 3.2541 3.9459 3.2776 3.4362 135.4733 604.821809
SVR 4.0721 4.0942 3.5810 3.5962 167.3552 7.908900

N. Networks 3.9910 4.0642 3.4884 3.4976 206.1475 46.168296

Figure 7a,b illustrate how the bagged regression trees technique exceeds the most restrictive DRL
(Switzerland) when the BMI reaches a value of around 32. A value greater than 35 is required to exceed
the DRLs established by the rest of the European Union (EU) countries.

Regarding women, there is a low linear correlation between BMI and CTDIVOL (R2 = 0.00329),
which improves when outlier data are eliminated (R2 = 0.338). As observed in Table 9, Neural Networks
and bagged regression trees achieve the best results for the test data and training data, respectively.
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When the outliers are removed, Neural Networks reach the best data adjustment, obtaining the least
error in the test data. Regarding the DRL metric, Figure 7c,d indicate results that are similar to the
men’s case.
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5.1.4. Thorax Protocol 

Figure 7. CTDIVOL prediction according to BMI including European DRLs for men’s/women’s abdomen
& pelvis protocol (left), together with error histograms (right), employing the ‘bagged’ regression trees
(a,b) for men and the Neural Networks (c,d) for women.

Table 9. BMI-CTDIVOL results for women’s Abdomen & Pelvis protocol.

ML
Technique

RMSE 100% of the
Sample

RMSE without Outliers
(96.4% of the Sample) RMSE of

Outliers
Execution Time

(seconds)
Train Test Train Test

L. Regression 5.9153 5.8852 3.8414 3.8354 1.4838e + 04 11.816178
Reg. Trees 4.0523 4.6282 3.4111 3.9066 230.8406 6.023535
B.R. Trees 3.9650 4.5395 3.3391 3.8323 232.3786 10.536164

GPR 4.1726 4.4879 3.7311 3.8129 225.2929 367.542711
SVR 4.5277 4.5195 3.8213 3.8595 270.7293 7.318787

N. Networks 4.4462 4.4748 3.8099 3.8017 211.2679 40.271456

5.1.4. Thorax Protocol

Regarding men, the linear correlation between BMI and CTDIVOL (R2 = 0.00729) is low. The R2

value increases to eliminate outliers (R2 = 0.283). As pointed out in Table 10, Gaussian Process Regression
(GPR) provides the best results in the test data, since the lowest RMSE values are reached with this
solution. In the case of the training data, the bagged regression trees technique is the most notable.
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When we eliminate outliers, Neural Networks satisfies the least error in the test data, so it attains a
better prediction for the umbrella of these requirements (BMI-CTDIVOL, protocol, and gender). In this
regard, GPR and linear regression also offer good results, although we choose Neural Networks as the
best technique.

Table 10. BMI-CTDIVOL results for men’s Thorax protocol.

ML
Technique

RMSE 100% of the
Sample

RMSE without Outliers
(96.4% of the Sample) RMSE of

Outliers
Execution Time

(seconds)
Train Test Train Test

L. Regression 6.0020 5.8699 3.8035 3.8021 2.6905e + 03 11.930498
Reg. Trees 4.7992 5.5382 3.4223 4.0329 302.0919 5.887889
B.R. Trees 4.7070 5.2697 3.3366 3.9207 293.1283 9.019784

GPR 5.1254 5.0927 3.7388 3.8073 288.1348 72.430923
SVR 5.5247 5.3443 4.0014 4.0149 333.5253 4.923137

N. Networks 5.2823 5.4493 3.7865 3.7872 288.1060 24.706027

As shown in Figure 8a,b, some European DRLs are surpassed by Neural Networks plots for
BMI values of about 25 (as occurs with the DRLs of countries, such as Switzerland or Luxembourg).
However, our samples are mainly lower than the rest of standardized DRLs, such as those of Greece,
Norway, or France.
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Figure 8. CTDIVOL prediction according to BMI including European DRLs for men’s/women’s thorax
protocol (left), together with error histograms (right), employing the Neural Networks (a,b) for men and
the GPR (c,d) for women.
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In the women’s case, the R2 value obtained points to a low linear correlation between BMI and
CTDIVOL (R2 = 0.0261); this value is enhanced when outlier data are removed (R2 = 0.412). Neural
Networks offers the best result for test data when the outliers are not eliminated. Under these conditions
and as shown in Table 11, Gaussian Process Regression (GPR) reaches the least error in the training
data. In the case of removing outliers, GPR is the best prediction technique, providing the least error
during test data. However, while observing the RMSE values, note that most techniques provide good
performance, although GPR and Neural Networks imply high computational cost. As illustrated in
Figure 8c,d, the exceeding of several European DRLs starts from slightly higher BMI values in the case
of women for this protocol than for men.

Table 11. BMI-CTDIVOL results for women’s Thorax protocol.

ML
Technique

RMSE 100% of the
Sample

RMSE without Outliers
(96.4% of the Sample) RMSE of

Outliers
Execution Time

(seconds)
Train Test Train Test

L. Regression 5.2020 4.9851 2.5661 2.5648 2.8919e + 03 11.832442
Reg. Trees 3.8554 4.2185 2.2976 2.6749 259.4087 5.809703
B.R. Trees 3.7946 4.0839 2.2430 2.5762 262.3007 8.058130

GPR 3.4868 4.0486 2.4429 2.5375 282.2755 64.182540
SVR 4.1363 3.8822 2.5565 2.5769 325.4391 4.436024

N. Networks 3.9221 3.6765 2.5403 2.5425 270.0588 37.296176

5.1.5. Abdomen Protocol

Regarding the men’s case, a medium/high linear correlation is observed between BMI and
CTDIVOL (R2 = 0.555), which slightly increases as few outlier points are removed from all of the samples
(R2 = 0.586). As shown in Table 12, bagged regression trees is that which obtains the least error in the
training data process and computing 100% of the data. Gaussian processes and Neural Networks achieve
the lowest RMSE in the test data when all of the samples are analyzed. Neural Networks and Gaussian
processes are the most efficient models in removing outliers, and thus, both ML techniques behave
better in terms of prediction functionality. However, the latter requires the highest computational cost.

Table 12. BMI-CTDIVOL results for men’s Abdomen protocol.

ML
Technique

RMSE 100% of the
Sample

RMSE without Outliers
(96.4% of the Sample) RMSE of

Outliers
Execution Time

(seconds)
Train Test Train Test

L. Regression 4.8270 4.8062 4.6266 4.6293 96.9090 11.731780
Reg. Trees 4.1740 4.8179 4.1062 4.7107 42.7575 5.474494
B.R. Trees 4.0679 4.6702 4.0042 4.6016 43.8989 7.996369

GPR 4.5152 4.6488 4.4453 4.5822 43.1798 51.105172
SVR 4.6965 4.7658 4.6238 4.6620 46.5827 4.095963

N. Networks 4.6376 4.6413 4.5727 4.5790 47.0929 23.880534

In the case of women, there is a certain linear correlation between BMI and CTDIVOL (R2 = 0.197),
which substantially increases when outlier points are eliminated (R2 = 0.618). As can be observed in
Table 13, and while considering outliers, Gaussian processes obtains the lowest RMSE for the test data.
Under these same conditions, bagged regression trees reaches the least error for the training data. Neural
Networks and Gaussian processes both offer the best adjustments in removing outliers, and therefore,
they are the best solutions for predicting future doses in patients according to their weight and height
(BMI). Although GPR is that which requires more computational means for the simulations, it is the
technique selected.
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Table 13. BMI-CTDIVOL results for women’s Abdomen protocol.

ML
Technique

RMSE 100% of the
Sample

RMSE without Outliers
(96.4% of the Sample) RMSE of

Outliers
Execution Time

(seconds)
Train Test Train Test

L. Regression 6.3722 7.8462 4.2790 4.2982 2.5861e + 03 11.457573
Reg. Trees 4.1392 4.7517 3.7614 4.4513 118.2078 5.583748
B.R. Trees 4.0710 4.6160 3.6936 4.3245 116.2066 7.835361

GPR 4.3666 4.5081 3.9618 4.2000 114.3182 49.429170
SVR 4.5828 4.5606 4.1785 4.2685 163.9891 4.174639

N. Networks 4.5738 4.5695 4.1623 4.2013 108.6456 34.185516

For any gender, Figure 9 illustrates the surpassing of the DRL values that were established by
diverse European countries when the BMI metric is around the value of 20. Neural Networks and GPR
models exceed all DRLs (excepting the DRL of Poland) for BMI values higher than 30.
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Figure 9. CTDIVOL prediction according to BMI including European DRLs for men’s/women’s abdomen
protocol (left), together with error histograms (right), employing the Neural Networks (a,b) for men and
the GPR (c,d) for women.

5.2. Comparison between SSDE and CTDIVOL

CTDIVOL is a metric that is provided by the output of the CT and standardized on a reference
volume. However, it is not the real dose received by the patient, since it does not consider his/her
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morphology. That is, a patient can receive a different amount of radiation than the one indicated by the
CTDIVOL value, because his/her morphology usually differs from the standard volume. To address
this problem, SSDE is a parameter that computes the morphology of the patient from a scanogram.
Therefore, SSDE is a more reliable measurement of the dose that is received by patients. However, not
all current CTs have the ability to collect this information (see Table 1).

Figures analyzing CTDIVOL–SSDE metrics give us the required knowledge of the actual dose
delivered to the patient from any CT with minimum error. To predict future CTDIVOL–SSDE values
beforehand implies knowing the dose to radiate for the set patient and protocol. To achieve this, a
CTDIVOL–SSDE regression study is carried out, employing the ML techniques described in this work.
Specifically, we have also eliminated univariant/multivariant outliers from the data that were collected
during the years 2015 and 2016 for the five protocols under study, as indicated in Table 2.

As in the previous section, two figures are drawn for each of the cases. The first illustrates the
regression curve, while the second shows an error histogram with 20 bars, plotting both training and
test errors and observing their differences. The x-axis represents the introduced error; that is, the
distance between the real data and the predicted value, while the y-axis indicates the data number
that has an error of specific magnitude. As in the CTDIVOL-BMI study, we only highlight the most
representative ML technique. The remaining results for each ML technique can be found in the “Results
involving ML, Protocols, and dose metrics” section in the Supporting Information for description.

In this study, note that there is no separation between men and women, because the SSDE
parameter is focused on the morphology/shape of the patient and, therefore, obviates the need to
identify the patient as a man or woman.

5.2.1. Skull Protocol

As shown in Figure 10, this protocol is characterized by its high data dispersion. However, a
certain linear correlation between CTDIVOL and SSDE is observed (R2 = 0.193).
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Figure 10. Size-Specific Dose Estimate (SSDE) prediction according to CTDIVOL for skull protocol (left),
together with error histograms (right), employing the ‘bagged’ regression trees technique (a,b).

In the Skull protocol, while considering the whole population, the bagged regression trees and GPR
techniques obtain the least error in test data and training data, respectively (as illustrated in Table 14).
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Table 14. SSDE-CTDIVOL results for Skull protocol.

ML
Technique

RMSE 100% of the
Sample

RMSE without Outliers
(96.4% of the Sample) RMSE of

Outliers
Execution Time

(seconds)
Train Test Train Test

L. Regression 7.6581 7.6569 5.7078 5.7080 553.9211 11.195573
Reg. Trees 5.5046 5.7751 2.9325 3.1008 667.3612 6.007195
B.R. Trees 5.4675 5.7535 2.9057 3.0545 657.6257 26.495838

GPR 5.3103 5.7914 2.8654 3.0610 720.6968 4046.977135
SVR 6.5697 6.5967 4.0111 4.0164 681.0965 325.671414

N. Networks 5.7063 5.9609 3.0665 3.1766 2.4302e + 04 1953.304959

The outliers were eliminated using the following criterion in order to reduce error. Firstly, applying
the univariate technique, values that were greater than Q3 + 1.5 *RIC and values less than Q1 − 1.5 *RIC
were left out of this evaluation. In this regard, the high dispersion of the data is a factor to consider.
Secondly, additional samples belonging to areas with low data density, and those showing a significant
influence on the error were also removed. Under these considerations, the linear correlation (R2 = 0.283)
and effectiveness of the prediction improve in comparison with the processing of raw data.

When the outliers are suppressed, the RMSE is reduced by up to 47%, reaching the best results with
the aforementioned techniques. Under these conditions, the bagged regression trees technique predicts
better than the rest of the models. Neural Networks and GPR also offer an acceptable performance, while
SVR and linear regression do not achieve good data adjustment. These facts are also corroborated in their
corresponding error histograms. Finally, the GPR and Neural Networks models result in more processing
and computation cost than the rest of the techniques, as in the case of the BMI-CTDIVOL study.

5.2.2. Thorax, Abdomen, and Pelvis Protocol

There is a high linear correlation between CTDIVOL and SSDE (R2 = 0.914), which indicates a
notable data adjustment with a very low error, independent of the analyzed technique.

GPR and Neural Networks attain the least error (when we compute all of the data) for test data and
training data, respectively (see Table 15).

Table 15. SSDE-CTDIVOL results for Thorax, Abdomen, & Pelvis protocol.

ML
Technique

RMSE 100% of the Sample RMSE without Outliers
(96.4% of the Sample) RMSE of

Outliers
Execution Time

(seconds)
Train Test Train Test

L. Regression 2.1103 2.0521 1.2632 1.2622 153.4590 11.847310
Reg. Trees 2.1502 2.2710 1.0942 1.2590 475.5703 6.646121
B.R. Trees 2.1210 2.1960 1.0766 1.2375 476.6240 16.922205

GPR 1.6332 2.0351 1.1517 1.2033 490.9936 1286.947536
SVR 2.1161 2.0527 1.2652 1.2642 153.9839 18.901946

N. Networks 1.8830 1.9180 1.1924 1.1959 746.5661 56.397724

Some outliers were removed from the raw data following the same procedure described in the
’Skull’ protocol, but with one exception: to eliminate data employing the univariate method, the
Q3 + 3 *RIC and Q1 − 3 *RIC were selected as threshold values in order to achieve a better result in
the adjustment. Following this rule, the error was significantly reduced, further improving the linear
correlation (R2 = 0.958), and therefore, the effectiveness of the prediction. It should be considered that
this procedure would be carried out in the rest of the protocols for the CTDIVOL-SSDE prediction.

By removing outliers (Figure 11) we can reduce the RMSE value by up to 38% in Neural Networks,
making it the best predictive technique for this protocol. Gaussian processes also obtains remarkable
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performance, but at the expense of computation concerns. On the contrary, SVR and linear regression
are penalized in this protocol, having the highest errors.
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Figure 11. SSDE prediction according to CTDIVOL for Thorax, Abdomen, & Pelvis protocol (left),
together with error histograms (right), employing the Neural Networks technique (a,b).

5.2.3. Abdomen and Pelvis Protocol

As in the previous protocol, there is a high linear correlation between CTDIVOL and SSDE
(R2 = 0.704). When 100% of the data are trained, bagged regression trees provides the best result, as
shown in Table 16. However, this is not the case for the test data, which are adjusted by Gaussian
processes and linear regression.

Table 16. SSDE-CTDIVOL results for Abdomen & Pelvis protocol.

ML
Technique

RMSE 100% of the Sample RMSE without Outliers
(96.4% of the Sample) RMSE of

Outliers
Execution Time

(seconds)
Train Test Train Test

L. Regression 3.2286 3.2123 1.5718 1.5722 6.6130 15.878153
Reg. Trees 2.9808 3.3122 1.3419 1.4863 16.8985 6.566288
B.R. Trees 2.9265 3.2423 1.3093 1.4440 16.3447 13.912800

GPR 3.0796 3.2103 1.3169 1.4236 44.0821 1135.093285
SVR 3.2483 3.2317 1.5757 1.5764 19.7135 17.352789

N. Networks 3.1718 3.2235 1.5453 1.5476 11.7811 98.081114

When outliers are removed using univariant and multivariant methods, the correlation coefficient
grows to a value of 0.894, which improves the linear correlation between CTDIVOL and SSDE.

With this scenario, two techniques stand out for prediction tasks. Bagged Regression trees obtains
the least error in training data, while Gaussian processes reduces the test error up to 55% in comparison
with the remaining techniques. As in previous studies, the computation time of this technique is much
longer than that of the rest of the models.

Finally, note that linear regression, SVR, and Neural Networks do not achieve good performance in
data adjustment. GPR regression figures are grouped in Figure 12.

5.2.4. Thorax Protocol

An appreciable linear correlation between CTDIVOL and SSDE is observed in the thorax protocol
and according to Table 17 (R2 = 0.572). The best result for the training data is reached with the model
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bagged regression trees (all of the data are computed). In contrast, the techniques Gaussian processes and
Neural Networks are those that offer a better adjustment of the test data.Sensors 2019, 19, x FOR PEER REVIEW 22 of 28 
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Table 17. SSDE-CTDIVOL results for Thorax protocol.

ML
Technique

RMSE 100% of the Sample RMSE without Outliers
(96.4% of the Sample) RMSE of

Outliers
Execution Time

(seconds)
Train Test Train Test

L. Regression 3.4305 2.8991 1.0152 1.0035 2.0958 11.788787
Reg. Trees 3.2398 3.2159 0.9064 1.0396 19.5033 5.443749
B.R. Trees 3.1717 3.1201 0.8890 1.0152 17.4512 9.093581

GPR 3.2415 2.7189 0.9284 0.9954 10.9758 181.903988
SVR 3.5216 3.0683 1.0120 1.0075 36.2798 4.656816

N. Networks 3.3230 2.6779 0.9984 0.9945 11.5088 35.041588

By eliminating atypical or unrepresentative data, the correlation coefficient increases up to a
value of 0.907, which implies a substantial enhancement in the linear correlation between CTDIVOL

and SSDE.
When training the samples without outliers, all of the techniques perform well, appropriately

adjusting data in addition to significantly reducing the RMSE value. We want to emphasize, as in other
occasions, the efficiency of Gaussian processes and Neural Networks, since they reduce the error to less
than one unit, being, therefore, the most remarkable predictive techniques for this protocol. Similar to
the previous scenarios, the GPR model stands out in terms of computation requirements; this is the
reason why Neural Networks is the technique selected for this protocol. The graphs for this analytical
technique and protocol are found in Figure 13.

5.2.5. Abdomen Protocol

Regarding the Abdomen protocol, there is also an excellent linear correlation between CTDIVOL

and SSDE (R2 = 0.858). Gaussian Process Regression is the technique that best minimizes the RMSE in
both training data and test data when 100% of the samples are analyzed. On the contrary, the worst
performance is reached with the SVR and linear regression models.

This protocol presents very few atypical data, although of great magnitude, as can be observed in
Table 18. Once they are removed, the RMSE value is significantly reduced (around 16.5%) and the
bagged regression trees technique obtains the best predictions for the CTDIVOL-SSDE pair, followed by
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the GPR technique (however, as in the previous scenarios, its computational cost is the highest). On the
other hand, linear regression and SVR exhibit the worst performance. Figure 14 shows the prediction
and error graphs for this technique and protocol.Sensors 2019, 19, x FOR PEER REVIEW 23 of 28 
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Figure 13. SSDE prediction according to CTDIVOL for Thorax protocol (left), together with error
histograms (right), employing the Neural Networks technique (a,b).

Table 18. SSDE-CTDIVOL results for Abdomen protocol.

ML Technique
RMSE 100% of the

Sample
RMSE without Outliers
(96,4% of the Sample) RMSE of

Outliers
Execution Time

(seconds)
Train Test Train Test

L. Regression 2.6192 2.6188 2.5715 2.5715 109.3953 12.025513
Reg. Trees 2.2892 2.4613 1.8449 2.0374 967.4462 6.067233
B.R. Trees 2.2542 2.4065 1.8219 2.0099 939.3754 9.511561

GPR 1.9424 2.1055 1.9001 2.0340 1.2453e + 03 499.697872
SVR 2.7301 2.8274 2.3670 2.3716 1.5475e + 03 7.047249

N. Networks 2.2923 2.3278 2.1810 2.2010 846.7025 22.795797Sensors 2019, 19, x FOR PEER REVIEW 24 of 28 
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6. Discussion

The body mass index (BMI) is a metric that depends on weight and height, and it is therefore
intrinsically related to the size of the patient. If the body is smaller than the volume of the standardized
phantom (16/32 cm), the dose absorbed by the patient will be greater. In the same way, a larger body
will receive less radiation.

Consequently, it is necessary to adapt the dose radiated by the CT to the size of the patient to
comply with the recommended dose in a determined protocol and obtain a comprehensible image for
the radiologist. Under these circumstances, we demonstrate an increase in the CTDIVOL metric as BMI
grows, which is consistent with: (i) the previous explanation, and (ii) the results extracted from the
work [6]. In addition, there is a linear correlation between both figures of merit, which is emphasized if
the outliers are removed.

The relationship between BMI and DRL for the different protocols should be highlighted. Firstly,
figures for the ’Skull’ protocol illustrate that BMI-CTDIVOL does not exceed the dose of any of the
European reference levels included in this study. This is due to the fact that the size of the head does
not affect the variance in the body mass index in the same way as the rest of the body. Secondly, in the
protocols that are related to ‘Thorax, Abdomen, Pelvis’ and ‘Abdomen, Pelvis’, the regression curve
usually remains below most of the DRLs. They only exceed specific DRLs when the body mass index
rises above the value of 30, as is the case with obese patients. Thirdly, in the ‘Thorax’ protocol, the
results show that a few DRL values are exceeded in the case of a BMI metric higher than 25. However, in
usual operation conditions, the regression curve remains below most DRLs for most of the BMI values.

Concerning the regression curves for each protocol, they provide very valuable information to the
radiologist to establish the appropriate dose value for radiating the patient. Thanks to this set of ML
tools, the radiologist knows the radiation thresholds that must not be exceeded beforehand. However,
as observed in Figures 8 and 9, these thresholds can be surpassed in specific cases (for instance, when
the calculation of the BMI value for a patient is high), and only with the most restrictive DRLs.

In contrast, in the ‘Abdomen’ protocol, we observe that the regression curves surpass some DRLs
of European countries for BMI values that were included in normal weight ranges. In this case, the
reduction of the radiated dose to the patient below the value indicated by the ML tool is a decision that
depends on the clinical judgment of the radiologist, since he/she must be able to analyze and discern
possible lesions in the CT images.

Regarding the CTDIVOL-SSDE predictions, we notice a high linear correlation between both of the
variables. This means that a good SSDE prediction is achieved with extremely low error in most of
the protocols. This prediction is clearly important, as it is possible to know with appropriate enough
accuracy the dose that a patient will receive, without compromising the diagnosis, and while taking
into account (i) his/her morphology and (ii) the output radiation value of the CT. Using this study, the
radiologist can avoid situations in which a patient receives a higher dose than that required, simply by
carrying out an appropriate adjustment to the CT parameters.

In relation to the RMSE metric, it is calculated from the study that was carried out for the different
ML techniques. Under this study, an evident decrease of the RMSE is obtained when eliminating
outliers, only reducing the error by more than 50% in some cases by discarding less than 5% of atypical
data. This result also has a twofold meaning. On the one hand, a high RMSE value is attained for the
atypical data, in comparison with these same samples when they are trained without these atypical
data. On the other hand, greater error is observed (independently of having outliers or not) in the
predictions of the Skull protocol when particularizing the protocols studied here. This is due to the
fact that the data are more dispersed than in the rest of the protocols and cannot be adjusted in the
same range.

The following factors have been considered and analyzed to select the appropriate ML regression
technique: RMSE, overfitting, and computational complexity. Table 19 summarizes this study,
highlighting the techniques that provide a better adjustment to the data; that is, focusing on Neural
Networks, regression trees, and Gaussian processes. These will be discussed below.
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Table 19. Comparison among ML Techniques.

ML Technique Less RMSE Less Overfitting Less Complexity

Linear regression X V V
Regression trees X X V

Bagged Regression trees V X V
Gaussian Process Regression V V X

SVM Regression (SVR) X V V
Neural Networks V V X

The bagged regression trees technique provides a quick interpretation of the results due to its
simplicity. In addition to its low computational cost, it also performs the best adjustment of the training
data in most cases, obtaining the lowest RMSE values. However, bagged regression trees shows a high
discrepancy when comparing the training results with their corresponding test data, which indicates
the existence of a certain overfitting or lack of generality. Additionally, the figures of error histograms
corroborates the overfitting phenomenon; big test bars (which include a greater number of data) point
to higher error than their respective training data. On the other hand, this technique does not draw a
curve with smooth transition, but it undergoes quick variations due to the overfitting. This means that
two values near to the predictor variable result in different responses. For example, two patients with
similar BMI values are radiated with different doses. Furthermore, this variability can cause peaks in
the graph that exceed the DRL values in specific points.

Neural Networks is a powerful tool that, with appropriate data selection for the training tasks,
allows for us to achieve good test data adjustment. Furthermore, this technique is able to enhance the
results that were obtained by other techniques, although not for all the protocols. Its main drawbacks
lie in: (i) the optimal selection of parameters, such as the number of layers and neurons, (ii) the high
variability in the training results, and (iii) the unpredictability in the values of initialization of the
weights, entailing different results in each execution of the network. This means that the model has to
be repeatedly trained for each configuration = to select the iteration that offers the best performance.
Once selected, it is necessary to store the value of the network weights to replicate the attained results.
The execution time of this technique depends, to a great extent, on the number of layers and neurons
used in the multilayer architecture.

In many of the protocols under study, the ML technique that presents the best performance is
Gaussian Process Regression (GPR), due to the low RMSE obtained and the slight differences between
the predictions of training data and test data. Moreover, since this is a probabilistic model, it is easy
to calculate confidence intervals, which are of interest when establishing the thresholds of radiated
doses to patients. The disadvantage is its algorithmic complexity, which implies longer processing and
execution time, but this is fully acceptable for current computers.

Finally, once the ML curves are obtained for each protocol/gender, the medical staff must proceed,
as follows:

(i) Regarding the patient’s disease, the staff selects a protocol/gender.
(ii) Tables 4–18 provide the best RMSE result in Test for the selected protocol/gender, and, therefore,

the most appropriate ML technique.
(iii) The medical staff will go to the corresponding Figure defined for the dupla protocol and ML

technique, and according to the patient’s morphology/size, they will take a BMI (or SSDE) value
as input to obtain the new value of CTDIVOL.

(iv) In the future, the goal is for this new value of CTDIVOL to be configured into the CT. To achieve
this, X-ray technicians (or automated software) should tune input magnitudes, such as pitch, scan
length, amperage, and kilovoltage.
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7. Conclusions

In this paper, we contribute a novel methodology based on Machine Learning Techniques to
estimate and predict the dose that is received by a patient in a CT test. To achieve this goal, the figures
BMI and CTDIVOL, in a first stage, and CTDIVOL and SSDE, in a second one, are studied and analyzed
for five standardized protocols.

We obtain regression curves employing ML techniques regarding CTDIVOL-BMI, and once the
outliers are removed from a dataset composed of the data from over fifty thousand doses belonging
to real patients. They draw the future dose to radiate and remain below most of the European DRLs
for all of the protocols analyzed, except in Abdomen, where our predictions exceed the DRLs of
restricted countries for normal BMI values. According to CTDIVOL–SSDE prediction, similar results
were attained, with techniques, such as Gaussian processes, Neural Networks, and Regression trees showing
an appreciable adjustment with the source of data computed, implying a high correlation coefficient
and a very small RMSE; even less than one unit in some protocols.

As a result, our proposed predictive method provides a reliable and powerful tool for planning the
dose to deliver to the appropriate patient. Those in the medical field will have useful information when
deciding to adjust the dose or not, which minimizes the impact of the radiation in treated patients.

Author Contributions: A.-J.G.-S. conceived the idea. E.G.A. and J.L.L. looked into the related literature. A.J.G.-S.
proposed the scientific methodology. A.-J.G.-S. and J.L.L. contributed to the derivation of the Machine Learning
techniques. E.G.A., A.S.B. and D.R. improved technical issues. All authors participated in the elaboration of the
manuscript and its revision.

Funding: This research received no external funding.

Acknowledgments: This research has been supported by the projects AIM, ref. TEC2016-76465-C2-1-R
(AEI/FEDER, UE), e-DIVITA, ref.20509/PDC/18 (Proof of Concept, 2018) and ATENTO, ref. 20889/PI/18 (Fundación
Seneca, Región de Murcia).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Calzado, A.; Geleijns, J. Computed Tomography. Evolution, technical principles and applications.
Rev. Fis. Med. 2010, 11, 163–180.

2. Deak, P.D.; Langner, O. Effects of Adaptive Section Collimation on Patient Radiation Dose in Multisection
Spiral CT. Radiology 2009. [CrossRef] [PubMed]

3. Wagner, L.; Eifel, P.; Geise, A. Potential Biological Effects Following High X-ray Dose Interventional
Procedures. J. Vasc. Interv. Radiol. 1994, 5, 71–84. [CrossRef]

4. Bharat Shah, N.; Platt Shari, L. ALARA: Is there a cause for alarm? Reducing radiation risks from computed
tomography scanning in children. Curr. Opin. Pediatr. 2008. [CrossRef]

5. Diagnostic Reference Levels. Available online: https://www.iaea.org/resources/rpop/health-professionals/
radiology/diagnostic-reference-levels (accessed on 28 April 2019).

6. Webb, W.; Brant, W.; Nancy, M. Fundamentals of Body CT, 4rd ed.; Elsevier—Health Sciences Division:
Philadelphia, PA, USA, 2015; ISBN 0323221467.

7. Hatziioannou, K. A contribution to the establishment of diagnostic reference levels in CT. Br. J. Radiol.
2003, 76, 541–545. [CrossRef]

8. Size-Specific Dose Estimates (SSDE) in Pediatric and Adult Body CT Examinations; AAPM Report No 204;
American Association of Physicists in Medicine: Alexandria, VA, USA, 2011; ISBN 978-1-936366-08-8.

9. Boos, J.; Lanzman, R.S.; Heusch, P. Does body mass index outperform body weight as a surrogate parameter
in the calculation of size-specific dose estimates in adult body CT? Br. J. Radiol. 2015. [CrossRef]

10. Christner, J.A. Size-specific Dose Estimates for Adult Patients at CT of the Torso. Radiology 2012. [CrossRef]
11. Chawla, N.V.; Davis, D.A. Bringing Big Data to Personalized Healthcare: A Patient-Centered Framework.

J. Gen. Intern. Med. 2013. [CrossRef]
12. Zheng, X.; Chun, I.Y.; Li, Z.; Long, Y.; Fessler, J.A. Sparse-View X-Ray CT Reconstruction Using l1 Prior with

Learned Transform. arXiv 2017, arXiv:1711.00905. [CrossRef]

http://dx.doi.org/10.1148/radiol.2522081845
http://www.ncbi.nlm.nih.gov/pubmed/19561253
http://dx.doi.org/10.1016/S1051-0443(94)71456-1
http://dx.doi.org/10.1097/MOP.0b013e3282ffafd2
https://www.iaea.org/resources/rpop/health-professionals/radiology/diagnostic-reference-levels
https://www.iaea.org/resources/rpop/health-professionals/radiology/diagnostic-reference-levels
http://dx.doi.org/10.1259/bjr/60897046
http://dx.doi.org/10.1259/bjr.20150734
http://dx.doi.org/10.1148/radiol.12112365
http://dx.doi.org/10.1007/s11606-013-2455-8
http://dx.doi.org/10.12059/Fully3D.2017-11-310900


Sensors 2019, 19, 5116 27 of 27

13. Li, Y.; Hara, S.; Shimura, K. A Machine Learning Approach for Locating Boundaries of Liver Tumors
in CT Images. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06),
Hong Kong, China, 20–24 August 2006; pp. 400–403. [CrossRef]

14. Daniel, F.; Samuel, L.; Robert, A.K. Tissue segmentation of Computed Tomography images using a Random
Forest algorithm: A feasibility study. Phys. Med. Biol. 2016. [CrossRef]

15. Kang, J.; Schwartz, R. Machine Learning Approaches for Predicting Radiation Therapy Outcomes:
A Clinician’s Perspective. Int. J. Radiat. Oncol. Biol. Phys. 2015. [CrossRef] [PubMed]

16. Babier, A.; Boutilier, J.J.; McNiven, A.L. Knowledge-Based Automated Planning for Oropharyngeal Cancer.
Med. Phys. 2018. [CrossRef] [PubMed]

17. Haaga, J.R.; Boll, D. Computed Tomography & Magnetic Resonance Imaging of the Whole Body, 6th ed.; Elsevier
Health Sciences: Alpharetta, GA, USA, 2017.

18. Chen, M.; Shi, X.; Zhang, Y.; Wu, D.; Guizani, M. Deep Features Learning for Medical Image Analysis with
Convolutional Autoencoder Neural Network. IEEE Trans. Big Data 2017. [CrossRef]

19. Chen, M.; Hao, Y. Label-less Learning for Emotion Cognition. IEEE Trans. Neural Netw. Learn. Syst. 2019.
[CrossRef]

20. European Commission. Diagnostic Reference Levels in Thirty-Six European Countries (Part 2). 2014.
Available online: https://ec.europa.eu/energy/sites/ener/files/documents/RP180%20part2.pdf (accessed on
5 November 2019.).

21. Zarb, F.; McEntee, M.; Rainford, L. Maltese CT doses for commonly performed examinations demonstrate
alignment with published DRLs across Europe. Radiat. Prot. Dosim. 2012, 150, 2. [CrossRef]

22. Foley, S.J.; McEntee, M.F.; Rainford, L.A. Establishment of CT diagnostic reference levels in Ireland. Br. J. Radiol.
2012, 85, 1390–1397. [CrossRef]

23. Treier, R.; Aroua, A.; Verdun, F.R.; Samara, E.; Stuessi, A.; Trueb, P.R. Patient doses in CT examinations in
Switzerland: Implementation of national diagnostic reference levels. Radiat. Prot. Dosim. 2010, 142, 244–254.
[CrossRef]

24. Castellanos, J G. Método de detección temprana de outliers; Pontificia Universidad Javeriana, Facultad de
Ciencias: Bogotá, Colombia, 2012.

25. Tukey, J.W. Exploratory Data Analysis; Addison-Wesley Series in Behavioral Science: Quantitative Methods;
Springer: Cham, Switzerland, 1977. [CrossRef]

26. Martin, E.; Hans-Peter, K.; Jiirg, S.; Xu, X.W. A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, KDD’96, Menlo Park, CA, USA, 31 December 1996; pp. 226–231.

27. Kohavi, R.; Provost, F. Glossary of Terms. Mach. Learn. 1998, 271–274. [CrossRef]
28. Fan, H.A. Theory of Errors and Least Squares Adjustment; Royal Institute of Technology (KTH):

Stockholm, Sweden, 2010.
29. Sebastian, R.; Vahid, M. Python Machine Learning; Packt Publishing: Birmingham, UK, 2017;

ISBN-13 9781787125933.
30. Burden, F.; Winkler, D. Bayesian regularization of neural networks. Methods Mol. Biol. 2008, 23–42. [CrossRef]
31. Levenberg-Marquardt Algorithm. Available online: https://en.wikipedia.org/wiki/Levenberg%E2%80%

93Marquardt_algorithm (accessed on 5 November 2019).
32. Caywood Matthew, S.; Roberts Daniel, M.; Colombe Jeffrey, B.; Greenwald Hal, S.; Weiland Monica, Z.

Gaussian Process Regression for Predictive But Interpretable Machine Learning Models: An Example of
Predicting Mental Workload across Tasks. Front. Hum. Neurosci. 2017, 10, 647.

33. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press:
Cambridge, MA, USA, 2005.

34. Cortes, C.; Vapnik, V. Support vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
35. Smola, A.J.; Schölkopf, B. Statistics and Computing; John Wiley & Sons Ltd.: Chichester, UK, 2004.
36. Serna, A.; Ramos, D.; Garcia-Angosto, E.; Garcia-Sanchez, A.J. Optimization of CT protocols using

cause-and-effect analysis of outliers. Phys. Med. 2018. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ICPR.2006.93
http://dx.doi.org/10.1088/0031-9155/61/17/655
http://dx.doi.org/10.1016/j.ijrobp.2015.07.2286
http://www.ncbi.nlm.nih.gov/pubmed/26581149
http://dx.doi.org/10.1002/mp.12930
http://www.ncbi.nlm.nih.gov/pubmed/29679492
http://dx.doi.org/10.1109/TBDATA.2017.2717439
http://dx.doi.org/10.1109/TNNLS.2019.2929071
https://ec.europa.eu/energy/sites/ener/files/documents/RP180%20part2.pdf
http://dx.doi.org/10.1093/rpd/ncr393
http://dx.doi.org/10.1259/bjr/15839549
http://dx.doi.org/10.1093/rpd/ncq279
http://dx.doi.org/10.1007/978-3-319-17885-1_100394
http://dx.doi.org/10.1023/A:1017181826899
http://dx.doi.org/10.1007/978-1-60327-101-1_3
https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1016/j.ejmp.2018.10.010
http://www.ncbi.nlm.nih.gov/pubmed/30471813
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Terminology 
	Related Work 
	Materials and Methods 
	Data Collection 
	Methodology 
	Removing Outliers 
	ML Techniques 
	RMSE Metric 


	Results 
	Comparison between CTDIvol and BMI 
	Skull Protocol 
	Thorax, Abdomen, and Pelvis Protocol 
	Abdomen and Pelvis Protocol 
	Thorax Protocol 
	Abdomen Protocol 

	Comparison between SSDE and CTDIVOL 
	Skull Protocol 
	Thorax, Abdomen, and Pelvis Protocol 
	Abdomen and Pelvis Protocol 
	Thorax Protocol 
	Abdomen Protocol 


	Discussion 
	Conclusions 
	References

