Target Analytes/		Concentration Range/		
Integral Characteristics	Sensor Type	Groups of Samples	Reference	
Heavy metal cations and inorganic anions	Ion-selective electrodes	From 1 to 10 ⁻⁵ mmol/L depending on the analyte	[2,3,14]	
Inorganic anions (cyanide)	Potentiometric sensors	10–100 ppm	[4]	
Purification rate	Voltammetric sensors	Water samples after different filters	[5,19]	
Mineral water brand	Impedimetric sensors	Several water brands and tap water	[6]	
	Potentiometric sensors	Develat water blands and tap water	[17,18]	
Biochemical oxygen demand and PAH *-degrading ability	Amperometric biosensors	erometric biosensors 1–50 mg/L		
Quality of water treatment	Enzymatically-modified amperometric sensors	Four water treatment levels	[8]	
Quality of water treatment	Potentiometric sensors	Samples from two wastewater treatments plants	[25]	
Pesticides	Enzymatically-modified amperometric sensors	0–16 nmol/L	[9,10]	
Soil nutrients	Ion-selective electrodes	From 0.1 to 700 mg/L depending on the analyte	[11,12]	
Nitrogen-containing inorganic compounds	Ion-selective electrodes	0.01–20 mmol/L	[13]	
Hazardous substances	Optical sensors	10 ⁻⁴ -10 ⁻⁷ mol/L	[15]	
Toxicity assessment	Potentiometric sensors	Various figures of merit in terms of bioassay	[21–24]	
Contamination by biological toxins	Impedimetric sensors	25–1000 ng/L	[26]	

Table S1. Summary of the studies concerned with multisensor systems (MSS) application for water analysis.

Potentiometric sensors	0–300 mg/L	[27]
Potentiometric sensors	0.2–7.2 μmol/L	[28]

* PAH: polycyclic aromatic hydrocarbons.

Target Analytes/		Concentration Range/	Reference
Integral Characteristics	Sensor Type	Groups of Samples	Kererence
Inorganic ions	Ion-selective electrodes	From 0.7 to 20 mmol/L depending on the analyte	[31]
inorganice iono	Microchip capillary electrophoresis device	5–500 µmol/L	[36]
Soil type and fertility assessment	Ion-selective electrodes	Six types of soil	[32]
Son type and lettinty assessment	Microfluidic interdigitated electrodes	Several types of enriched soils	[34,35,37,38]
	Enzyme biosensors	10 ⁻⁷ –10 ⁻¹⁰ mol/L	[39–43]
	Interdigitated electrodes	1–10 ppb	[44,45]
	Fluorescent sensors	10–50 ppb	[46,50]
Pesticides	Nanoparticle-based colorimetric sensors	100–4000 ng/mL	[47,51]
	Colorino trio como mo	10 ⁻⁵ –10 ⁻⁶ g/L	[15]
	Colorimetric sensors	10 ⁻⁴ –10 ⁻⁶ mol/L	[49]
	Impedimetric sensors	0.1–5 nmol/L	[48]

 Table S2. Summary of the studies concerned with MSS application for agricultural analysis.

		•			•		
Analyte	Samples	Sensing units	Principle of detection	Limit of detection	Concentration range	Computational analysis	Ref.
Ca2+, Mg2+, Na+, HCO32-, Cl-, H+, HPO42- ions	45 solutions modelling human blood plasma	19 soli state and polymeric chemical sensors	potentiometry	-	0.03-150 mmol/L, typical for each component in blood plasma	PLS, ANN	[56]
ascorbic acid, uric acid and acetaminophen (paracetamol)	50 standard solutions prepared by SIA	platinum, gold and epoxy-graphite discs	linear sweep voltammetry	-	0.1 – 1.1 mM	ANN	[57]
urea, ammonium, potassium and sodium	diluted and spiked urine samples	urease immobilized onto PVC-COOH layer of ammonium and hydrogen ISEs; ammonium, potassium, sodium, hydrogen and generic ISEs	potentiometry	-	10-4 – 10-2 M (urea); 5x10-6 – 5x10-4 M (ammonium); 5x10- 5 – 5x10-3 M (potassium and sodium)	ANN; PLS	[58]
urea, creatinine, ammonium, potassium and sodium	raw and spiked urine samples	urease and creatinine deiminase immobilized onto ammonium ISEs; ammonium,	potentiometry	1.0x10-4 M (creatinine)	0.1 - 10 mM (urea and creatinine); 0.005 - 0.5 mM (ammonium); 0.005 - 0.5 mM	ANN	[59]

Table S3. Summary of the studies devoted to the application of MSS for medical analysis.

		potassium, sodium and generic ISEs			(potassium and sodium)		
creatinine	59 urine samples without dilution	7 working electrodes: glassy carbon, Au, Pt, Ag, Ni, Pd, Cu.	cyclic voltammetry	-	2 – 30 mmolL-1	PCA; SVMs; PLS	[66]
sodium, potassium, ammonium, calcium, magnesium, chloride, sulfate, phosphate, urate and creatinine	136 urine samples	19 chemical sensors: Na+, K+, NH4+, Ca2+, Mg2+, Ca2+ + Mg2+, NO3-, Cl-, CO32-, SO42- ; 5 PVC- plasticized anion- sensitive based on various anion- exchangers; 3 PVC- plasticized cation- sensitive based on different tetraphenyl borate derivatives; pH electrode	potentiometry	-	mM	PCA; LR; PLS	[61]
Ca2+ (kidney stones)	urine samples	12 ISFETs; 5 EGFETs based on thin film of SnO2/ITO/Glass and the immobilized Ca2+ ionophore on PVC	potentiometry	-	0.1 mmolL-1 – 1 molL-1	LR; HSPICE	[63]
Na+, K+, Ca2+	synthetic and real human sweat samples	ISEs based on PVC layers; ISEs with solid reference electrode based on PVA	potentiometry	-	mM	-	[62]
urea and creatinine	dialysate fluids with creatinine and urea additives	ISEs based on PVC and different amounts of lipophilic additives; ISEs based on PVC- COOH modified by	potentiometry	-	3 – 12 mmolL-1 (urea); 0.10 – 0.32 mmolL-1	PLS	[58]

urease and creatinine				
deiminase; pH				
electrode				

Concanavalin A (Con- A), Cytochrome C (Cyt- C), Egg white albumin (EA), Hemoglobin (Hem), Horseradish peroxidase (HRP), Human serum albumin (HSA), Immunglobulin G (IgG), Lysozyme (Lys), Myoglobin (Myo), Pepsin (Pep), Transferrin (TRF), Trypsin (Try), mixture of proteins: Lys/Try, Lys/Pep and Lys/HAS	target proteins in aqueous solutions; diluted urine samples spiked with target proteins	AuNPs decorated by two single-stranded oligonucleotides (TBA and T15) with different molar ratios	colorimetry	200 nM	50 – 1000 nM	LDA	[65]
creatinine (bladder tumor)	51 urine samples	miniaturized metallic sensors (metal of high purity and alloys) and ISEs with PVC solvent polymeric membranes	potentiometry	-	10-5 - 10-1 M	PCA; PLS-DA; FFBP NN	[59]
prostate cancer	114 urine samples (71 pre-surgery, 26 post- surgery and 17 with benign prostatic hyperplasia)	7 working electrodes: Ir, Rh, Pt, Au, Ag, Co, Cu	large amplitude pulse voltammetry	_	-	PLS-DA	[64]

prostate cancer	89 diluted urine samples (43 cancer patients and 46 in control group)	28 sensor membranes based on PVC- plasticized, chalcogenide glass and polycrystalline materials	potentiometry	 PCA; SIMCA; PLS-DA; LR; RF	[67]
glaucoma	20 blood- serum samples (14 sick and 6 healthy humans)	screen printed carbon electrodes	inversion voltammetry	 LDA	[60]

Abbreviations/acronyms: artificial neural networks (ANN); carboxylated poly(vinyl chloride) (PVC-COOH); cyclic voltammetry (CV); extended gate field-effect transistor (EGFET); feed forward back-propagation neural network (FFBP NN); gold nanoparticle (AuNP); Hailey - simulation program with integrated circuit emphasis (HSPICE); ion-selective electrode (ISE); ion-sensitive field-effect transistor (ISFET); linear discriminant analysis (LDA); logistic regression (LR); partial least squares (PLS); partial least squares discriminant analysis (PLS-DA); polyvinyl acetate (PVA); poly(vinyl chloride) (PVC); principal component analysis (PCA); random forest (RF); sequential injection analysis (SIA); soft independent modelling of class analogy (SIMCA); support vector machines (SVMs).