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Abstract: This paper addresses the difficult problem of measuring the attitude of a high-spinning 
projectile and presents a novel method for estimating the pitch and yaw angles of the projectile in 
flight. The method is based on analysis of the external moment of the rotating projectile during flight 
and theoretical derivations obtained from the dynamics’ equations. First, the principle of zero-
crossing method is introduced, which explains the process of geomagnetic azimuth and roll 
measurements by the non-orthogonal geomagnetic sensor combination. Then, the dynamics 
constraint equations between the Euler angles and flight-path angle, trajectory deflection angle of 
the projectile are derived using the dynamics equations of the projectile rotating around the 
centroid, and analysis of the flight characteristics of the projectile in stable flight. Next, the spatial 
orientation relationship between pitch, yaw angles and magnetic azimuth is established based on 
the physical principle of geomagnetic azimuth. Finally, the pitch and yaw angles are estimated using 
the unscented Kalman filter (UKF), with the dynamics constraint equations serving as the driving 
equations. In the UKF prediction stage, the Runge-Kutta method is used to discretize the state 
equation that improves the prediction accuracy. Simulation results show that the proposed method 
can be used to accurately calculate the pitch and yaw angles, and results of experimental data 
processing also verify the feasibility of the proposed method for real-world applications. 

Keywords: rotating projectile; dynamics constraint; zero-crossing method; attitude measurement; 
geomagnetic azimuth 

 

1. Introduction 

Due to ever-increasing accuracy requirements for precision-guided weapons, acquisition of 
accurate flight attitude information of projectiles has become crucially important for analyzing their 
flight dynamics, as well as providing support for the navigation & guidance system. At present, the 
most commonly used attitude measurement methods rely on solar sensors [1,2], angular rate gyros 
[3–5], inertial measurement units (IMU) [6–8] and magnetometers [9–11]. Among these methods, the 
solar sensors work effectively only under good weather conditions, the angular velocity gyros have 
an upper limit on the rotational speed of the projectile, and the IMU suffer from error accumulation. 
Therefore, for measuring attitude of high-speed rotating projectiles, special working conditions, i.e., 
high temperature, high pressure, high overload, and high speed, as well as the requirements of low 
cost and small size preclude the use of many sensors. The magnetometer can be widely used in 
attitude estimation of rotating objects [12–18] after undergoing a calibration and compensation 
process [19–21], thanks to its features of reliable performance, low cost, and no error accumulation. 

Many domestic and international scholars have carried out research on measuring the attitude 
of rotating projectiles using magnetometers. Wilson M. described several attitude measurement 
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solutions based on combinations of multiple low-cost sensors [22] and conducted an in-depth 
research on the application of magnetometers in smart bomb [23]. Changey S. et al. conducted lab 
and flight experiments to verify the effectiveness of an algorithm that estimates roll of the projectile 
based on data acquired by two magnetometers [24,25]. Maley J. proposed a full attitude estimation 
method for spin-stabilized projectiles based on steady-state Kalman filtering [26]. Rogers J. et al. 
developed a low-cost orientation estimator for smart bombs equipped with magnetometers and 
thermopiles. This orientation estimator, with the advantage of not relying on GPS and other state 
feedbacks, estimates Euler angles and rotation rates using extended Kalman filtering (EKF) [27]. Most 
of these conventional methods calculate the Euler angles using the transfer matrix between the 
relevant coordinate systems [28,29]. Since the solution of the three Euler angles is non-independent, 
data fusion with devices such as built-in sensors and thermopiles is required in the calculation 
process [30–32]. However, the methods dependent on other built-in devices require sufficient internal 
space and specific working conditions. Apart from increasing production cost, adding extra 
electronic devices in a fixed space also increases the errors and noise of the output signal. Researchers 
in the United States first proposed a method for measuring the magnetic azimuth and rotational 
speed of a rotating projectile using two uniaxial magnetometers with a specific angle to the projectile 
axis [33,34]. This low cost and high precision method is called the ‘zero-crossing method’. Based on 
this method, experts at the Nanjing University of Science and Technology proposed an extreme value 
ratio method that combined non-orthogonal magnetic sensors, and conducted research in related 
areas [35,36]. Researchers at the Beijing Information Science and Technology University proposed a 
novel phase shift ratio method based on the extreme value ratio method [37]. In this study, a novel 
technique was developed based on the zero-crossing method. The moment applied to the rotating 
projectile flying in the air was analyzed and then the angular relationship contained in the external 
moment was extracted based on the ballistic characteristics of the projectile in stable flight. 
Subsequently, the constraint relationship between pitch, yaw angles and flight-path angle, trajectory 
deflection angle were deduced. 

The EKF has been used in several studies for attitude estimation [38–40]. As it requires 
linearization of a nonlinear system before performing Kalman filtering, it is suitable for linear or 
weakly nonlinear systems. The EKF also has stringent requirements on the accuracy of the filter 
parameters, and involves calculation of the Jacobian matrix that is cumbersome. Compared with the 
EKF, the unscented Kalman filter (UKF) exhibits good robustness in the presence of nonlinearity and 
uncertainty [41], therefore, it is better at dealing with complex models with high nonlinearity [42–46] 
and has been used widely in recent years. It is necessary to discretize a continuous system when the 
filtering algorithm is applied in computers, and the discretization method and discrete step-size 
directly affect the filtering accuracy. When the step-size is large, the discrete models processed by the 
conventional methods such as the Euler method significantly differ from the continuous models. On 
the other hand, reducing the discrete step-size increases the computational complexity. When the 
fourth-order classical Runge-Kutta method [47–49] is used as the discretization method, the reliance 
on discrete step-size is reduced greatly. Consequently, the discrete models become closer to the 
theoretical continuous models, and the filtering accuracy is improved. 

The method proposed in this paper works as follows: First, the dynamic constraint equations 
between pitch, yaw angles and flight-path angle, trajectory deflection angle are derived and used as 
the state model. Then, the geomagnetic vector and the projectile axis vector are simultaneously 
projected onto the reference coordinate system to obtain the spatial orientation relationship between 
the pitch, yaw angles and magnetic azimuth, and a measurement model based on geomagnetic 
azimuth is constructed. Finally, the pitch and yaw angles of the rotating projectile are estimated using 
the UKF algorithm, which utilizes the fourth-order classical Runge-Kutta method as the 
discretization method. The effectiveness of the proposed method is verified through simulations and 
processing of experimental data. 
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2. Definition of Coordinate System and Principle of Zero-Crossing Method 

2.1. Coordinate Systems 

To establish the differential equations of projectile dynamics, we use the approach described in 
[50] to introduce several basic coordinate systems: the reference coordinate system 𝑶 − 𝑋𝑌𝑍, the 
ballistic coordinate system 𝑶 − 𝑋ଶ𝑌ଶ𝑍ଶ, the projectile axis coordinate system 𝑶− 𝜉𝜂𝜁 and the second 
projectile axis coordinate system 𝑶 − 𝜉𝜂ଶ𝜁ଶ. Figure 1 shows the angular relationships between these 
coordinate systems. In the figure, the angles 𝜃 and 𝜓 are the Euler angles of the pitch and yaw, 
respectively, the angle 𝜃௔ is the angle between the velocity vector and the horizontal plane, the angle 𝜓ଶ is the angle between the velocity vector and the vertical plane, respectively, i.e., flight-path angle 
and trajectory deflection angle, and 𝛿  is the total attack angle of the projectile. Figure 2 further 
illustrates the pitch component 𝛿ଵ and the yaw component 𝛿ଶ of the total attack angle. 

Both 𝑶 − 𝜉𝜂𝜁  and 𝑶 − 𝜉𝜂ଶ𝜁ଶ  are non-rolling coordinate systems that do not roll with the 
projectile. The axis 𝑂𝜉 of each coordinate system is the vertical axis of the projectile and the only 
difference between the coordinate planes 𝑶𝜂𝜁 and 𝑶𝜂ଶ𝜁ଶ is a turning angle 𝛽 [50]. 

 
Figure 1. The angular relationships between these coordinate systems. 

 

Figure 2. Coordinate system 𝑶 − 𝑋ଶ𝑌ଶ𝑍ଶturns to Coordinate system 𝑶 − 𝜉𝜂ଶ𝜁ଶ. 

2.2. Principle of Zero-Crossing Method 

When a projectile and a uniaxial magnetometer with an angle of 𝜆 to the projectile axis rotate 
together in the earth's magnetic field, the instantaneous field strength along the sensitive axis of the 
magnetometer is as follows [34]: 𝑴𝑺 ൌ 𝑐𝑜𝑠ሺ 𝝀ሻห𝑀ሬሬ⃗ ห 𝑐𝑜𝑠ሺ 𝝈𝑴ሻ ൅ 𝑠𝑖𝑛ሺ 𝝀ሻห𝑀ሬሬ⃗ ห 𝑠𝑖𝑛ሺ 𝝈𝑴ሻ 𝑠𝑖𝑛ሺ 𝜙ሻ (1) 

where 𝑀ሬሬ⃗  is the geomagnetic field vector, 𝝈𝑴  is the magnetic azimuth, i.e., the angle between the 
projectile axis and the direction of geomagnetic field, 𝜙 is the roll of the projectile and 𝝀 is the angle 
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between the sensitive axis of the uniaxial magnetometer and the projectile axis. The rotating projectile 
is considered to be flying steadily in the air, and the output signal of the magnetometer changes 
periodically. When the sensitive axis is orthogonal to the direction of the earth's magnetic field, the 
output signal of the magnetometer is zero, and the roll phase of the projectile represents the zero-
crossing. There are two zero-crossings in a single cycle. 

The zero-crossing method uses two uniaxial magnetometers (𝑆ଵ and 𝑆ଶ) with different mounting 
angles, as shown in Figure 3. With the mounting angles of 90° and 60°, the two magnetometers are in a 
coplanar relation with the projectile axis, i.e., they have equal initial roll phases. Four zero crossings can 
be extracted using the output signals of the two magnetometers, which results in two pairs of rolls given 
as (𝜑ௌభಲ,𝜑ௌభಳ) and (𝜑ௌమಲ,𝜑ௌమಳ). The ratio 𝛷 can be calculated as 𝛷 ൌ ቤ𝜑ௌమಳ − 𝜑ௌమಲ𝜑ௌభಳ − 𝜑ௌభಲቤ (2) 

The magnetic azimuth of the projectile relative to the geomagnetic field during the flight can be 
determined based on the magnetic azimuth-ratio diagram plotted beforehand, and the roll angular 
rate and the roll phase angle of the projectile can be obtained using the recorded zero-crossing time. 

 
Figure 3. Installation diagram of two uniaxial magnetometers. 

The three-element attitude information, i.e., roll, pitch, and yaw angles, is converted into two-
element attitude information, i.e., roll angle and geomagnetic azimuth. Subsequently, the roll angle 
information is separated to provide the possibility for secondary processing of the pitch and yaw 
angles, which is a strength of the zero-crossing method. 

3. Method for Estimating Pitch and Yaw 

The movement of the projectile in air consists of two parts: the centroid motion and the around- 
centroid motion. The former is mainly characterized by the position and velocity of the projectile, 
and is governed by the law of centroid movement. The latter is characterized by the attitude of the 
projectile, and is governed by the theorem of angular momentum [50]. 

3.1. Dynamics Constraint Equations 

It is necessary to analyze the moment of external forces relative to the center of mass during the 
flight of the projectile. When there is no wind and the projectile shape does not cause any 
aerodynamic eccentricity, only the static and equatorial damping moments need to be considered. 
References [50,51] provide the dynamics equations of the projectile undergoing around-centroid 
motion. A new set of dynamic equations based on the specific problem are obtained as follows: 
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⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧𝜔ఎሶ = 1𝑨𝑴𝜼 − 𝑪𝑨𝝎క𝝎𝜻𝜔఍ሶ = 𝟏𝑨𝑴𝜻 + 𝑪𝑨𝝎క𝝎𝜼𝜃ሶ = 𝝎𝜻𝑐𝑜𝑠(𝜓)               𝜓ሶ = −𝝎𝜼                  𝑚௭′ሶ = 0                      𝑚௭௭′ሶ = 0                     

 (3) 

where 𝐌𝛈 and 𝐌𝛇 are components of the external moments in the projectile axis coordinate system 𝐎− 𝜉𝜂𝜁 , 𝐀  and 𝐂  are coefficients of the moment of inertia, 𝛚క , 𝛚𝛈 and 𝛚𝛇  are projection 
components of the angular velocity on coordinate system 𝐎 − 𝜉𝜂𝜁 and 𝑚௭ᇱ  and 𝑚௭௭′  are derivatives 
of the static and equatorial damping moment coefficients. 

The external moments include static and equatorial damping moments, and their vector forms 
are 𝑀ሬሬ⃗ ௭ = 𝜌𝑺𝒍2 𝒗𝒓𝒎𝒛 𝟏𝑠𝑖𝑛 𝛿𝒓 (𝑣⃗௥ × 𝜉) (4) 𝑀ሬሬ⃗ ௭௭ = −𝜌𝒗𝒓𝑺𝒍𝒅𝒎௭௭′ 𝜔ሬሬ⃗ /2 (5) 

where 𝑀ሬሬ⃗ ୸ and 𝑀ሬሬ⃗ ୸୸ are the static moment vector and equatorial damping moment vector, 𝜌 is the 
air density, 𝐒 is the cross-sectional area of the projectile, 𝐥 is the projectile length, 𝐝 is the projectile 
diameter, 𝑣⃗௥  is the velocity vector of the projectile relative to the wind, 𝐦𝐳 is the static moment 
coefficient, 𝛿𝐫 is the relative attack angle, ξ⃗ is the unit vector of the axis 𝑂𝜉 of the coordinate system 𝐎− 𝜉𝜂𝜁 and ωሬሬ⃗  is the projectile oscillation angular velocity. When there is no wind, 𝑣⃗௥ is equal to 𝑣⃗, 
and 𝛿𝐫 is the attack angle 𝛿. 

For a small attack angle, 𝐦𝐳 = 𝐦𝐳′ 𝛅𝐫, and the form of the static moment vector in equation (4) 
can be rewritten as follows: 𝑀ሬሬ⃗ ௭ = 𝝆𝑺𝒍2 𝒗𝒓𝒎𝒛′ (𝑣⃗௥ × 𝝃ሬ⃗ ) (6) 

The component form of the static moment in the projectile axis coordinate system 𝐎− 𝜉𝜂𝜁 is 
given as 𝑴௭క = 0 𝑴௭𝜼 = 𝝆𝑺𝒍2 𝒗𝒓𝒎𝒛′𝒗𝒓𝜻 𝑴௭𝜻 = −𝝆𝑺𝒍2 𝒗𝒓𝒎𝒛′𝒗𝒓𝜼 

(7) 

where 𝐯𝐫𝛈 and 𝐯𝐫𝛇 are components of the relative velocity 𝑣⃗௥ in the coordinate system 𝐎 − 𝜉𝜂𝜁. Let 
the components of the relative velocity 𝑣⃗௥ in the coordinate system 𝐎 − 𝜉𝜂ଶ𝜁ଶ be denoted as 𝐯𝐫𝛈మ 
and 𝐯𝐫𝛇మ, the relationship between two components is as follows: 𝒗𝒓𝜼 = 𝒗𝒓𝜼𝟐 𝑐𝑜𝑠 𝜷 + 𝒗𝒓𝜻𝟐 𝑠𝑖𝑛 𝜷 𝒗𝒓𝜻 = −𝒗𝒓𝜼𝟐 𝑠𝑖𝑛 𝜷 + 𝒗𝒓𝜻𝟐 𝑐𝑜𝑠 𝜷 (8) 

For a normally flying projectile, as the attack angle and the ballistic deflection are small, 𝛿ଵ, 𝛿ଶ, 𝜓, 𝜓ଶand 𝜃 − 𝜃௔ have small values. Thus, the following relationship holds [50]: 𝜷 ≈ 0 ;   𝛅ଵ ≈ 𝜃 − 𝜽𝒂 ;  𝛅ଶ ≈ 𝜓 −𝝍ଶ (9) 

As shown in Figure 2, the rotation relationship between the ballistic coordinate system 𝐎 −𝑋ଶ𝑌ଶ𝑍ଶ and the second projectile axis coordinate system 𝐎 − 𝜉𝜂ଶ𝜁ଶ leads to 𝐯𝐫𝛈మ = −𝑣𝛿ଵ and 𝐯𝐫𝛇మ =−𝑣𝛿ଶ. Consequently, Equation (8) can be further written as 

𝑣 = 𝒗 = −𝑣𝛿 (10) 
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𝑣௥఍ = 𝒗𝒓఍మ = −𝑣𝛿ଶ 

If the influence of wind is ignored, the static moment components of the 𝐎𝜂 and 𝐎𝜁 axes in 
Equation (7) can be written as 𝑴௭𝜼 = 𝝆𝑺𝒍2 𝒗𝒎𝒛′ (−𝑣𝛿ଶ) 𝑴௭𝜻 = −𝝆𝑺𝒍2 𝒗𝒎𝒛′ (−𝑣𝛿ଵ) 

(11) 

Substituting Equation (9) into the above equation, we obtain 𝑴௭𝜼 = −𝝆𝑺𝒍2 𝒗ଶ𝒎𝒛′ (𝜓 − 𝜓ଶ) 𝑴௭𝜻 = 𝝆𝑺𝒍2 𝑣ଶ𝒎𝒛′ (𝜃 − 𝜃௔) 
(12) 

Defining 𝐴௠ = 𝛒𝐒𝐥ଶ஺ 𝐦𝐳ᇱ , the static moment components 𝐌௭𝛈 and 𝐌௭𝛇 can be rewritten as 𝑴௭𝜼 = −𝐴𝐴௠𝒗ଶ(𝜓 − 𝜓ଶ) 𝑴௭𝜻 = 𝐴𝐴௠𝑣ଶ(𝜃 − 𝜃௔) (13) 

In the same way, the equatorial damping moment in Equation (5) can be written in component 
form in the coordinate system 𝐎 − 𝜉𝜂𝜁 as follows: 𝑴௭௭క = −𝝆𝒗𝒓2 𝑺𝒍𝒅𝒎௭௭′ 𝝎𝝃 ≈ 0 𝑴௭௭𝜼 = −𝝆𝒗𝒓2 𝑺𝒍𝒅𝒎௭௭′ 𝝎𝜼 𝑴௭௭𝜻 = −𝝆𝒗𝒓2 𝑺𝒍𝒅𝒎௭௭′ 𝝎𝜻 

(14) 

Similarly, under the condition of no wind, defining 𝐶௠ = −𝛒𝐒𝐥ௗଶ஺ 𝐦𝐳௭ᇱ , the components 𝐌௭௭𝛈and 𝐌௭௭𝛇 of the equator damping moment can be rewritten as 𝑴௭௭𝜼 = 𝐴𝐶௠𝑣𝝎𝜼 𝑴௭௭𝜻 = 𝐴𝐶௠𝑣𝝎𝜻 (15) 

Considering both Equations (13) and (15), the components 𝐌𝛈  and 𝐌𝛇  of the total external 
moment can be rewritten as 𝑀ఎ =  𝑀𝓏ఎ +  𝑀𝓏𝓏ఎ =  −𝐴𝐴௠𝜐ଶ(𝜓 − 𝜓ଶ) + 𝐴𝐶௠𝜐𝜔ఎ 𝑀఍ = 𝑀𝓏఍ +  𝑀𝓏𝓏఍ =  −𝐴𝐴௠𝜐ଶ(𝜗 − 𝜃௔) + 𝐴𝐶௠𝜐𝜔఍ (16) 

Substituting Equation (16) into (3), the dynamics constraint equations including flight-path 
angle, trajectory deflection angle and two Euler angles are obtained as follows: 

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧𝜔ఎሶ = −𝑨𝒎𝒗ଶ(𝜓 −𝝍ଶ) + 𝐶௠𝑣𝝎𝜼 − 𝑪𝑨𝝎𝝃𝝎𝜻𝜔఍ሶ = 𝑨𝒎𝒗ଶ(𝜗 − 𝜽𝒂) + 𝐶௠𝑣𝝎𝜻 + 𝑪𝑨𝝎𝝃𝝎𝜼  𝜗ሶ = 𝝎𝜻𝑐𝑜𝑠(𝜓)                                         𝜓ሶ = −𝝎𝜼                                             𝐴௠ሶ = 0                                                𝐶௠ሶ = 0                                                

 (17) 

where the projectile's flight speed 𝑣, flight-path angle 𝜃௔ and trajectory deflection angle 𝜓ଶ can be 
calculated using the ballistic radar data. The axial angular velocity of the projectile is denoted by 𝛚𝛏. 
3.2. Relationship Between Pitch, Yaw Angles and Magnetic Azimuth 

When the projectile is flying in the air, its instantaneous attitude relative to the earth's magnetic 
field can be represented by the pitch, yaw, magnetic dip and magnetic declination. Since the 
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projectile’s position information can be detected by the radar, the geomagnetic field information, 
including magnetic dip and magnetic declination of the projectile’s position can be calculated based 
on the geomagnetic field model. Therefore, the magnetic azimuth 𝛔𝐌 only contains two pieces of 
unknown information, i.e., the pitch and yaw. 

The shooting direction is denoted as 𝛼ே, and the influence of the meridional convergence angle 
is ignored. The unit vectors on the three axes of the reference coordinate system 𝐎 − 𝑋𝑌𝑍 are denoted 
as 𝚤, 𝚥 and 𝑘ሬ⃗ . The geomagnetic field vector is projected onto the reference coordinate system.  

 
Figure 4. Orientation map of the reference coordinate system and geomagnetic vector. 

As shown in Figure 4, the geomagnetic vector is described by the north-east-down (NED) 
coordinate system. Taking the northern hemisphere as an example, the geomagnetic unit vector and 
its horizontal projection are 𝑀ሬሬ⃗  and 𝑀ሬሬ⃗ ୒, respectively, the magnetic declination is D, north to the east 
is positive, the magnetic dip is I and the downward direction is positive. 

Thus, the geomagnetic unit vector can be expressed as 𝑀ሬሬ⃗ = 𝑐𝑜𝑠( 𝑰) 𝑐𝑜𝑠(𝒂𝑵 − 𝑫)𝚤 − 𝑠𝑖𝑛( 𝑰)𝚥 − 𝑐𝑜𝑠( 𝑰) 𝑠𝑖𝑛(𝒂𝑵 − 𝑫)𝑘ሬ⃗  (18) 

where both the magnetic declination D and the magnetic dip I can be calculated based on the 
spherical harmonics model of the geomagnetic field, and the shooting direction 𝛼ே is known before 
the experiment. 

The projectile axis unit vector 𝜉 can be obtained by projecting the projectile axis vector onto the 
reference coordinate system 𝑶− 𝑋𝑌𝑍 as shown in Figure 1. 𝜉 = 𝑐𝑜𝑠( 𝜃) 𝑐𝑜𝑠(𝜓)𝚤 + 𝑠𝑖𝑛(𝜃)𝚥 + 𝑐𝑜𝑠( 𝜃) 𝑠𝑖𝑛(𝜓)𝑘ሬ⃗  (19) 

The magnetic azimuth 𝝈𝑴  is the angle between the geomagnetic unit vector and the first 
projectile axis unit vector. It can be calculated as follows using the vector included angle cosine 
formula: 

𝑐𝑜𝑠(𝜎ெ) = 𝑀ሬሬ⃗ ⋅ 𝜉ห𝑀ሬሬ⃗ หห𝜉ห = 𝑐𝑜𝑠( 𝐼) 𝑐𝑜𝑠(𝛼ே − 𝐷) 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜓) −𝑠𝑖𝑛( 𝐼) 𝑠𝑖𝑛(𝜃) − 𝑐𝑜𝑠( 𝐼) 𝑠𝑖𝑛(𝛼ே − 𝐷) 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜓) 
(20) 

3.3. Estimation of Dip and Yaw 

When the derived dynamics constraint equations are used as the driving equations, the pitch 
and yaw angles of the rotating projectile can be estimated based on the spatial relationship between 
the magnetic azimuth and the Euler angles. A block diagram of the attitude estimation method is 
shown in Figure 5. The built-in magnetometer provides accurate geomagnetic signals. The magnetic 
azimuth and rotational speed serve as the inputs to the estimation algorithm and can be calculated 
using the zero-crossing method. The rotational speed can be used to obtain the roll. The radar collects 
the velocity and position information, and calculates the geomagnetic field information of the entire 
trajectory based on the geomagnetic field model to provide support to filtering. The initial firing 
elements are used to simulate the magnetic azimuth of the initial section of the trajectory and perform 
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initial filtering calibration using the calculated magnetic azimuth as a reference. Finally, the pitch and 
yaw angles are estimated using the improved UKF algorithm. 

 

Geomagnetic 
signal

Magnetic azimuth and
rotational speed

Radar signal

Initial 
alignment Filtering

Pitch angle

Yaw angle

Roll angle

Calculate geomagnetic 
information

Launch 
condition

Magnetic azimuth 
simulation

Attitude estimation

 
Figure 5. diagram of attitude estimation. 

4. Design of UKF 

The UKF mainly consists of two phases: the prediction phase and the correction phase. In the 
prediction phase, a set of state prediction points based on the sigma points should be generated. Since 
the state equation is a continuous model, discretization needs to be carried out that can directly affect 
the accuracy of the filtering results. The Runge-Kutta method is often used in ballistic calculations as 
it outperforms other methods in terms of discretization accuracy under the same step-size. In this 
paper, the fourth-order classical Runge-Kutta method is used for state estimation in the prediction 
stage. Therefore, the filtering algorithm used in this paper is called the RK4-UKF algorithm. 

Assume that the state equation of a continuous nonlinear system is 𝑋ሶ௞ = 𝑓[𝑋௞ିଵ,𝑘 − 1] + 𝑊௞ିଵ (21) 

The measurement equation is 𝑌௞ = ℎ[𝑋௞, 𝑘] + 𝑉௞ (22) 

The workflow of the RK4-UKF algorithm is as follows: 

• Calculation of the sigma point set 𝑋௞ିଵ଴ = 𝑥ො௞ିଵ;  𝑋௞ିଵ௜ = ቊ 𝑥ො௞ିଵ + ඥ(𝑛 + 𝜆)𝑃௫            𝑖 = 1,2, . . . ,𝑛𝑥ො௞ିଵ − ඥ(𝑛 + 𝜆)𝑃௫        𝑖 = 𝑛 + 1, . . . ,2𝑛      (23) 

• Prediction phase 𝑘ଵ = 𝑓(𝑋௞ିଵ௜ );  𝑘ଶ = 𝑓(𝑋௞ିଵ௜ + ℎ2 𝑘ଵ); 𝑘ଷ = 𝑓(𝑋௞ିଵ௜ + ℎ2 𝑘ଶ);  𝑘ସ = 𝑓(𝑋௞ିଵ௜ + ℎ𝑘ଷ) 𝑋௞/௞ିଵ௜ = 𝑋௞ିଵ௜ + ℎ6 (𝑘ଵ + 2𝑘ଶ + 2𝑘ଷ + 𝑘ସ) 𝑥ො௞/௞ିଵ = ෍𝑊௜௠ଶ௡
௜ୀ଴ 𝑋௞/௞ିଵ௜ ;  𝑃௞/௞ିଵ = ෍𝑊௜௖ଶ௡

௜ୀ଴ [𝑋௞/௞ିଵ௜ − 𝑥ො௞/௞ିଵ][𝑋௞/௞ିଵ௜ − 𝑥ො௞/௞ିଵ]் + 𝑄௞ 

(24) 

• Correction phase 

𝑌 ௞/௞ିଵ௜ = ℎ(𝑋௞/௞ିଵ௜ ); 𝑦ො௞/௞ିଵ = ෍𝑊௜௠ଶ௡
௜ୀ଴ 𝑌 ௞/௞ିଵ௜  (25) 

𝑃(௒௒)௞/௞ିଵ = ෍𝑊௜௖ଶ௡
௜ୀ଴ [𝑌 ௞/௞ିଵ௜ − 𝑦ො௞/௞ିଵ][𝑌 ௞/௞ିଵ௜ − 𝑦ො௞/௞ିଵ]் + 𝑅௞  (26) 

𝑃(௑௒)௞/௞ିଵ = ෍𝑊௜௖ଶ௡
௜ୀ଴ [𝑋௞/௞ିଵ௜ − 𝑥ො௞/௞ିଵ][𝑌௞/௞ିଵ௜ − 𝑦ො௞/௞ିଵ]் (27) 

𝐾௞ = 𝑃(௑௒)௞/௞ିଵ𝑃(௒௒)௞/௞ିଵିଵ  (28) 
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𝑋෠௞ = 𝑋෠௞/௞ିଵ + 𝐾௞(𝑌௞ − 𝑦ො௞/௞ିଵ) (29) 𝑃௞ = 𝑃௞/௞ିଵ − 𝐾௞𝑃(௒௒)௞/௞ିଵ𝐾௞்  (30) 

4.1. State equation 

Given the continuous nonlinear state equations in Equation (17), the state variables are written 
as 𝑥 = [𝑥ଵ  𝑥ଶ  𝑥ଷ  𝑥ସ  𝑥ହ  𝑥଺] = [𝜔ఎ  𝜔఍   𝜃  𝜓  𝐴௠  𝐶௠] (31) 

Then, Equation (17) can be written as 

𝑋ሶ = 𝒇(𝒙) =
⎝⎜
⎜⎜⎜
⎜⎛−𝒙ହ𝒗ଶ(𝒙ସ − 𝝍ଶ) + 𝒙ଵ𝒙଺ − 𝑪𝑨𝝎𝝃𝒙ଶ𝒙ହ𝒗ଶ(𝒙ଷ − 𝜽𝒂) + 𝒙ଶ𝒙଺ + 𝑪𝑨𝝎𝝃𝒙ଵ𝒙ଶ𝑐𝑜𝑠 𝒙ସ−𝒙ଵ00 ⎠⎟

⎟⎟⎟
⎟⎞ + 𝑊 

As the nonlinear equations given in Equation (31) only approximately describe the around-
centroid motion of the projectile, there will be certain errors. Therefore, Gaussian white noise 𝑊 ∼𝑁(0,𝑄) is introduced to model these errors. 

4.2. Measurement Equation 

The magnetic azimuth is represented by a measured variable 𝑦 = (𝜎ெ) . The measurement 
equation can be constructed as follows, based on Equation (20): 𝒚 = 𝒉(𝒙) + 𝑉   = 𝑎𝑟𝑐𝑐𝑜𝑠( 𝑐𝑜𝑠( 𝑰) 𝑐𝑜𝑠(𝛼ே − 𝑫) 𝑐𝑜𝑠(𝒙𝟑) 𝑐𝑜𝑠(𝒙𝟒) − 𝑠𝑖𝑛( 𝑰) 𝑠𝑖𝑛(𝒙𝟑) − 𝑐𝑜𝑠( 𝑰) 𝑠𝑖𝑛(𝛼ே− 𝑫) 𝑐𝑜𝑠(𝒙𝟑) 𝑠𝑖𝑛(𝒙𝟒)) + 𝑉 

(32) 

where measurement noise 𝑉 is the Gaussian white noise, given as 𝑉 ∼ 𝑁(0,𝑅), and 𝑅 = (𝜎ఙಾଶ ). 

5. Simulation and Experimental Results 

5.1. Simulation and Analysis 

5.1.1. Simulation 

The calculation steps for the magnetic azimuth and roll are described in detail in [35]. Therefore, 
these steps will not be repeated here and instead, only the simulation results will be given. The focus 
of simulations in this study is the estimation of pitch and yaw angles. Assume that the projectile is 
launched from a location of (E100°, N39°) with an initial velocity of 800 m/s, a shooting angle of 60° 
and a shooting direction of 100°. The pitch and yaw components of the angular velocity equal to 2 
rad/s are added to simulate the initial disturbance at the time of launch, and the ballistic data are 
simulated using the 6D ballistic equations. Then, the geomagnetic signal output information of the 
trajectory is simulated through conversion between the relevant coordinate systems. Finally, the 
magnetic azimuth is calculated using the zero-crossing method and serves as the true value.  

A Gaussian white noise d ~ N(0,0.5°) is added to the true value of the magnetic azimuth to serve 
as measurement value. Figure 6a shows the simulated and true values of the initial 1 s of the ballistics, 
and Figure 6b shows the discrepancy between the true and simulated measured values. It can be 
observed that the maximum error of the simulated measured value is about ±1.6°, which is much 
larger than the measurement error described in [34]. 
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(a) (b) 

Figure 6. Simulation of magnetic azimuth measurement. (a) Magnetic azimuth measurement, (b) 
Measuring noise. 

The pitch angle and yaw angle are estimated using the RK4-UKF algorithm and compared with 
the corresponding true values, as shown in Figure 7. Figure 7a shows the estimation of the pitch and 
yaw angles of the entire ballistic. It can be seen from the figure that the projectile flied for more than 
100 s. The estimated value is close to the true value in the entire ballistic, and the estimated effect is 
satisfactory. From the law of yaw angle movement, it can be seen that the existence of dynamic 
equilibrium angle causes the yaw angle to deviate to the right from the trajectory deflection angle 
(the yaw angle was defined as positive to the right, so the yaw angle is positive) in the midcourse 
because of the right-hand twist of projectile. Figure 7b shows the estimation error of the pitch and 
yaw angles, both of which are mostly in the range of (−0.2° ~ 0.2°). The errors are slightly larger in the 
beginning of the trajectory phase, and fluctuate in the midcourse. Figure 7c,d show the estimated and 
true values of the pitch and yaw angles within 1 s of the initial phase of ballistic. The dual-circular 
motion law of the projectile can be seen clearly from the figures. The pitch and yaw angles oscillate 
periodically around flight-path angle and trajectory deflection angle, respectively. This oscillation is 
a slow-circular motion, with a low frequency and continuously diminishing amplitude. At the same 
time, the projectile axis oscillates periodically around the dynamic balance axis in a fast-circular 
fashion, with a continuously diminishing nutation amplitude.  
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(c) (d) 

Figure 7. Estimated and true values of pitch and yaws. (a) Estimation of the pitch and yaw angles in 
the entire ballistic, (b) Estimation error of the pitch and yaw angles, (c) Estimation of the pitch angle 
within 1 s of the initial phase of ballistic, (d) Estimation of the yaw angle within 1 s of the initial phase 
of ballistic. 

To show movement of the body axis, the oscillation trajectory of the projectile is constructed 
based on the pitch and yaw angles, as shown in Figure 8. The projectile starts from a position of 
(60°,0°) and undergoes a counterclockwise dual-circular motion. The estimated oscillation trajectory 
of the projectile obtained using the RK4-UKF algorithm is consistent with the true trajectory. For the 
sake of clarity, only five cycles of the fast-circular motion in the initial phase and a slow circular 
motion cycle consisting of their centers are shown in the figure. Each red dot in the figure shows the 
approximate center of the fast-circular motion and the dotted line passing through the center 
represents the slow-circular motion, i.e., the motion trajectory of the dynamic balance axis of the 
projectile. The slow-circular motion is also in the counterclockwise direction. The dual-circular 
motion of the projectile is prominent. 

 

Figure 8. Oscillation trajectory of the projectile. 

5.1.2. Monte Carlo Simulation 

In order to avoid the contingency of the RK4-UKF simulation results, a Monte Carlo simulation 
was performed. The RK4-UKF was run 1000 times, and the initial value of the state variable and the 
noise of the measurement value were randomly changed within a reasonable range before each run. 
After 1000 runs, the error of pitch and yaw angles estimated by RK4-UKF are tested in terms of the 
mean, mean square error and maximum of the absolute value, respectively. At the same time, the 
normal curve fitting was performed on the Monte Carlo test results. The test results are shown in 
Figure 9. 
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(a) (b) 

(c) 

Figure 9. Results of Monte Carlo simulation. (a) Mean of estimation errors,(b) Mean square error of 
estimation errors,(c) Maximum of the absolute value of estimation errors. 

For the estimation error of the pitch angle, the expectation of mean is about 9.587 × 10−5 degree, 
the expectation of mean square error is about 0.065°, and the expectation of maximum of the absolute 
value is about 0.2644°. For the estimation error of the yaw angle, the expectation of mean is about 
−1.675 × 10−4 degree, the expectation of mean square error is about 0.05984°, and the expectation of 
maximum of the absolute value is about 0.1985°. Figure 9c is the maximum of the absolute value of 
the estimation error, i.e., the maximum estimation error. According to the principle of normal 
distribution, the maximum estimation error of the pitch angle does not exceed 0.457°, and the 
maximum estimation error of the yaw angle does not exceed 0.297°. 

5.1.3. Analysis of simulation results 

The simulation results show that the filtering result of the RK4-UKF algorithm is consistent with 
the true value, with a small error on the order of 10−1 degrees. The Monte Carlo simulation also shows 
that the pitch angle error estimated by this method does not exceed 0.457°, and the yaw angle error 
does not exceed 0.297°. The following conclusions were obtained based on the simulation results: 

1. When analyzing the moment applied to the projectile during flight, it is assumed that the 
projectile shape has no eccentricity and there is no wind. Among external moments, only the 
static and equatorial damping moments are considered, while the smaller Magnus moment is 
ignored. Moreover, since the attack angle is small, the resulting small ballistic deviation from 
the firing surface allows approximations of 𝛅ଵ ≈ 𝜃 − 𝛉𝐚 ;  𝛅ଶ ≈ 𝜓 −𝛙ଶ  during the state 
equation derivation process. Thus, there is uncertainty in the adjustment of the state noise 
parameters. 
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2. Under the same sampling step-size, the fourth-order classical Runge-Kutta discretization 
method results in smaller discretization errors compared to other method such as the Euler 
method, and its discrete equations are close to the continuous model. 

5.2. Experiment and Analysis 

5.2.1. Experiment 

It is impossible to observe directly and record the attitude of a flying projectile using current 
technology when the range reaches tens of kilometers or hundreds of kilometers. However, based on 
the pattern of projectile motion and the Lyapunov stability principle [50,51], the stability of the flying 
projectile can be maintained only when the following two conditions are met: a) The directions of the 
slow circular motions of the lateral attitude parameters including pitch and yaw are consistent with 
the velocity direction during the flight of projectile; b) The projectile axis undergoes periodic nutation 
around the velocity direction and the amplitude diminishes continuously. Therefore, it is feasible to 
verify the effectiveness of the attitude estimation method using the flight-path angle and trajectory 
deflection angle measured by a radar or a GPS device. 

The experimental verification was conducted at a shooting range. During the experiment, the 
weather was good and windless, with the presence of a few clouds. The field layout of the verification 
experiment is shown in Figure 10. The reference coordinate system is the North-Up-East coordinate. 
The elevation angle 𝜃଴ was 15.3° and the direction of fire 𝛼ே was 103.3555°. A velocity radar was set 
up near the artillery location to measure the projectile velocity and an air balloon was launched to 
collect the meteorological data. 

 
Figure 10. The launch angle and direction of the experiment. 

The measurement system used in the experiment consisted of a CPU, a magnetometer unit 
consisting of two single-axis magnetometers, a data acquisition unit, a signal processing unit, a 
communication unit, a power supply and other auxiliary unit. Figure 11 shows the block diagram of 
the measurement system. The geomagnetic unit collected the original voltage signal, the signal 
processing unit carried out signal conversion and processing, the CPU was responsible for signal 
processing, and the communication unit was used for transmitting and receiving instructions. Figure 
12 shows the photos of the measurement system. The system was mounted inside the standard 
projectile to form the assembly, as shown in Figure 13a. 

Power unit

Magnetometer unit

Data collection unit

Signal processing unit

CPU

Transmission unit

Other auxiliary unit

 

Figure 11. The block diagram of the measurement system. 
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(a) (b) (c) 

Figure 12. The photos of the measurement system. (a) Top view, (b) 45° view, (c) Side view 

The assembly was mounted at the front section of a standard warhead. Its interior was fixed 
using solid glue and protected with a non-magnetic cover. This arrangement enabled it to withstand 
the strong impact and large overload during the launch stage, ensuring normal operation of the 
measurement components. The assembly was recycled after launching, as shown in Figure 13b. 

  
(a) (b) 

Figure 13. The photos of assembly. (a) Assembly before experiment, (b) Recycled assembly. 

The initial velocity of the projectile measured by the radar was 744.4 m/s. During the flight, the 
magnetometer recorded the variation of geomagnetic intensity in each axial direction, and the 
magnetic azimuth and rotational speed of the projectile were calculated using the zero-crossing 
method. The calculation results are shown in Figure 14.  

Figure 14a shows the variation of magnetic azimuth along the entire trajectory. In the initial 
section of the trajectory, the projectile’s oscillation amplitude is relatively large due to the influence 
of initial disturbances. Then, the oscillation amplitude decreases gradually. Towards the end section 
of the trajectory, the projectile begins to oscillate again, and the oscillation amplitude increases 
continuously. There are two reasons behind this phenomenon: First, as the rotational speed of the 
projectile decreases, the gyroscopic effect of the projectile's rotation diminishes gradually. 
Consequently, the dynamic stability of the projectile reduces gradually, eventually causing 
oscillations. Second, the change in the projectile's velocity from supersonic to subsonic also causes 
oscillations. Radar data show that the projectile's velocity was equal to 338.69 m/s (about Mach 1) 
around 24 s, which is in the transonic region. 

Figure 14b shows the variation of magnetic azimuth during the initial 2 s section of the trajectory. 
The initial value of the magnetic azimuth is 117.6°, the minimum and maximum values are 112.4° 
and 127° in the first cycle of the slow circular motion, respectively, and the oscillation amplitude is 
about 7.3°. The pattern of dual-circular motion of the projectile can also be clearly seen from the 
figure. The oscillation amplitude diminishes continuously irrespective of fast or slow circular motion. 
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(a) (b) 

Figure 14. The magnetic azimuth calculated using the zero-crossing method. (a) Magnetic azimuth, 
(b) Magnetic azimuth in 1s. 

 
Figure 15. Rotational speed calculated using the zero-crossing method. 

Figure 15 shows the variation of rotational speed of the projectile along the entire trajectory. The 
initial rotational speed of the projectile is 1486 rad/s, which finally drops to about 900 rad/s. This 
speed drop is fast at first and then gradually slows down. 

5.2.2. Initial Alignment 

Initial alignment needs to be performed at first to determine the initial value of the filter. To 
carry out this alignment, the theoretical trajectory is simulated using the 6D rigid body ballistic 
equations based on the initial firing elements. Then, the geomagnetic information of the entire 
trajectory is obtained through conversion between the relevant coordinate systems. With this 
information, the theoretical magnetic azimuth angle is calculated using the zero-crossing method and 
compared with the measured value. The initial firing conditions and moment coefficients should be 
adjusted continuously until the theoretical magnetic azimuth becomes roughly consistent with the 
measured value. 

Among the initial launch conditions, the position and velocity of the projectile are provided by 
the radar, and the elevation angle and direction of fire are known in advance. The initial rotational 
speed 𝑤క଴ can be calculated either using the zero-crossing method, or based on the initial velocity as 
follows [50,51]: 𝜔క଴ = 2𝜋𝑣଴𝜂𝑑  (33) 
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where 𝜂 the twist pitch of is rifling, 𝑑 is the diameter of the projectile and 𝑣଴ is the initial velocity 
of the projectile after leaving the gun muzzle. Therefore, it is necessary to only adjust the initial 
angular velocity and moment coefficient of the pitch and yaw directions to obtain simulated magnetic 
azimuth curve that matches the measured magnetic azimuth curve, as shown in Figure 16. 

 

Figure 16. Initial alignment. 

5.2.3. Estimation of Pitch and Yaw Using RK4-UKF 

The pitch and yaw angles of the projectile were estimated using the designed RK4-UKF 
algorithm, and the estimated values were compared with the flight-path angle and trajectory 
deflection angle obtained from the radar data, as shown in Figure 17a. The flight time of the projectile 
is about 32.4 s. The estimated value of the pitch angle is consistent with the flight-path angle and 
decreases with the decrease of the ballistic trajectory. The estimated value of the yaw angle is 
consistent with the trajectory deflection angle. Under the external action, the deflection direction is 
right. The amplitude of the projectile axis is large at the initial phase of ballistic because of initial 
disturbance, then decreases continuously, and increases again and at the terminal phase. Figure 17b,c 
show the motion of the projectile attitude clearly. The slow circular motion components of the 
projectile’s lateral attitude parameters, i.e., the pitch and yaw angles, oscillate around flight-path 
angle and trajectory deflection angle, respectively with continuously diminishing amplitudes, which 
fits with the pattern of flight stability of the projectile. 

 
(a) 
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(b) (c) 

Figure 17. Pitch and yaw angles estimated by RK4-UKF. (a) Estimation of pitch and yaw of the entire 
ballistic, (b) Estimation of pitch angle in 2 s, (c) Calculation of yaw angle in 2 s. 

For a rotating projectile flying steadily in the air, the following approximations can be made: The 
discrepancy between the calculated pitch 𝜃 and flight-path angle 𝜃௔ is taken as the pitch component 𝛿ଵ of the attack angle, and the discrepancy between the yaw 𝜓 and trajectory deflection angle 𝜓ଶ is 
taken as the yaw component 𝛿ଶ of the attack angle, as shown in Figure 18. These approximations are 
also helpful for measuring the attack angle of the projectile. 

  
(a) (b) 

Figure 18. Pitch and yaw components of the attack angle. (a) Pitch component of the attack angle, (b) 
Yaw component of the attack angle. 

5.2.4. Discussion on Experimental Results 

Based on the analysis of experimental data and filtering results, the following issues and relevant 
conclusions were obtained: 

1. In a real-world scenario, the actual static and equatorial damping moment coefficients of the 
flying projectile often deviated from the theoretical values that were determined based on the 
projectile design. Therefore, it is necessary to adjust the theoretical moment coefficient when 
performing the initial alignment based on trajectory simulation. 

2. Oscillation is bound to happen during the descending section of the actual trajectory. The larger 
the shooting angle, the larger the oscillation amplitude, which is the well-known Mayevsky 
problem. By contrast, the end section of the theoretical trajectory is free of oscillation. This is 
because the motion of projectile axis is obtained based on the pure kinematics theory, which 
assumes that the moment of momentum vector coincides with the projectile axis. Therefore, 
there is no projectile axis swing problem during the end section of the theoretical trajectory. The 
oscillation phenomenon that occurs during the descending section of the actual trajectory can be 
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attributed to two factors: 1) A reduction of the gyro stability factor due to decreased rotational 
speed; 2) The dramatic change of the aerodynamic load that causes the projectile to oscillate 
when the projectile flight speed is in the transonic region. 

3. The method for estimating pitch and yaw angels proposed in this paper is based on the 
constraints of dynamics equations of projectile. Through proper approximations, the 
relationship between the attitude and velocity angles can be determined, i.e., the slow-motion 
terms of the lateral attitude of the projectile are consistent with the velocity direction. This is also 
the basis for determining the rationality of the filtering results. 

4. Limited by the current attitude measurement technology and experimental conditions, the true 
value of the projectile attitude cannot be obtained in the field experiment, and the accuracy of 
the estimation cannot be quantified. The experiment is mainly to verify the feasibility of the 
method in practical engineering applications. The method is proven to be feasible and effective 
through the analysis of the flight stability of the projectile. The quantification of estimation error 
by designing the verification experiment is the focus of the next step in the future. 

6. Conclusions 

In this paper, a novel method for estimating the pitch and yaw angles of a flying projectile was 
developed. Based on the analysis of the flight characteristics and external moment of the rotating 
projectile in steady flight, the dynamics constraint equations of the lateral attitude Euler angles and 
the velocity angles were derived using the projectile dynamics equation without relying on 
conversions between the relevant coordinate systems. The relationships between the pitch, yaw, and 
magnetic azimuth were established based on the spatial vector relationship. Finally, the pitch and 
yaw angles were estimated using the RK4-UKF algorithm. The feasibility and effectiveness of the 
proposed method were verified using simulation and experimental results, and different issues 
arising in the simulations and experiments were analyzed and discussed. The following points are 
worth noting: 

1. Although the geomagnetic azimuth used in the proposed method was calculated using the zero-
crossing method, any other method can also be used. 

2. As the proposed method deals with high-spinning projectiles in steady flight, the magnetic 
declination and dip during the projectile flight can be obtained in two ways: 1) Calculation based 
on the geomagnetic model; 2) Calculation using the measured launch location based on the 
assumption that the magnetic declination and dip are constant at each location. 

3. The object studied in this paper is the idealized projectile, which only considers the static 
moment and the equatorial damping moment, and assumes that there is no wind. The influence 
of the wind field model, Magnus moment and the moment caused by the shape asymmetry on 
the attitude of projectile will be considered in the future works, which makes the simulation 
model more accurate and improves the accuracy of the estimation. 

The proposed method seeks to break through the dynamic characteristics of projectile and opens 
up new directions for developing attitude estimation methods. Catering to the need of developing 
intelligent bombs, it is expected to play an important role in the navigation and guidance of artillery 
shells and high-spinning rockets, and precision control of flying objects. 
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