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Abstract: Wildfire is a sudden and hazardous natural disaster. Currently, many schemes based on
optical spectrum analysis have been proposed to detect wildfire, but obstacles in forest areas can
decrease the efficiency of spectral monitoring, resulting in a wildfire detection system not being
able to monitor the occurrence of wildfire promptly. In this paper, we propose a novel wildfire
detection system using sound spectrum analysis based on the Internet of Things (IoT), which utilizes
a wireless acoustic detection system to probe wildfire and distinguish the difference in the sound
between the crown and the surface fire. We also designed a new power supply unit: tree-energy
device, which utilizes the biological energy of the living trees to generate electricity. We implemented
sound spectrum analysis on the data collected by sound sensors and then combined our classification
algorithms. The results describe that the sound frequency of the crown fire is about 0–400 Hz,
while the sound frequency of the surface fire ranges from 0 to 15,000 Hz. However, the accuracy of
the classification method is affected by some factors, such as the distribution of sensors, the loss of
energy in sound transmission, and the delay of data transmission. In the simulation experiments,
the recognition rate of the method can reach about 70%.

Keywords: wildfire; Internet of Things; sound spectrum analysis; tree-energy device; crown fire;
surface fire

1. Introduction

Wildfire destroys millions of hectares of forest, pollutes the environment, causes severe casualties,
and has a significant economic impact on government budgets every year [1,2]. Detecting a wildfire
promptly, before it is out of control, is still a difficult challenge. According to the combustion
materials, a wildfire is generally classified into three types: underground fire, surface fire, or crown
fire. An underground fire is caused by spontaneous combustion or combustion in other channels after
coal strata meet combustion conditions under the surface; and a surface fire, when not acted upon
by external forces, usually spreads along the surface of forest areas. The surface fire is easily affected
by wind, causing the flames to disperse everywhere, eventually falling on the crown and branches,
causing a crown fire to occur. Crown fires have exceptionally high temperatures and ferocious behavior,
which makes them challenging to be extinguished, making them extremely dangerous [3]. In addition,
a crown fire always spreads more than 100 times faster than a surface fire and is more destructive.
Thus, because of this phenomenon, it is essential to determine the type of wildfire as early as possible
in early wildfire detection, for the sake of adopting efficient strategies to fight the wildfire and reduce
the casualties and economic losses.

Nowadays, due to the rapid development of imaging techniques and the full use of the spectral
camera, contemporaneously, optical spectrum analysis technology [4] is widely used for perceiving
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the ignition of wild land, such as wildfire video monitoring [5], remote sensing [6], etc. The working
principle of these technologies is photogrammetry at visible and infrared bands on the forest surface,
and automatic detection of fire evidence by fixed field cameras mounted on control towers or by
radar, or by mobile cameras mounted on any aircraft (aircraft, unmanned aerial vehicles (UAVs), air
balloons, or satellites). However, there are many obstacles in forested areas, and the optical spectrum
analysis technology is vulnerable to external interference. Thus, wildfires cannot always be detected
promptly. Additionally, the speed of wildfire spreading is high, especially in the face of a strong wind,
which leads the wildfire being out of controlled and causes casualties [7,8]. In addition, wild regions
are generally far away from infrastructure, so it is impractical to render a video device due to the
energy requirement. Therefore, we still face challenges in early wildfire detection.

It is common that during the progress of wildfire burning, it generates noise. Based on this
phenomenon, we propose a new research direction; that is, using sound spectrum analysis for the
early wildfire detection. It was found that one of the most efficient approaches to finding out the
information of a signal at varying frequencies is spectrum analysis. Spectrum analysis technology
can decompose complex noise signals into relatively simple signals [9]. Therefore, drawing support
from this technology, many physical signals can be represented by the sum of many simple signals of
various frequencies [10,11]. Spectrum analysis can process the whole signal, but it sometimes divides
the signal into several segments [12,13]. Moreover, a sound source can also be made up of many
varying frequencies [14]; according to related work, different frequencies stimulate the corresponding
parts in the ear [15]. Compared to optical spectrum analysis, the use of sound spectrum analysis is
more effective and timely to detect wildfires, because the sound transmission in forest areas is less
susceptible to external interference than the light transmission. Hence, the propose of this work was to
detect wildfires in time and find a simple criterion for instantaneous differentiation between crown
and surface fires to be utilized in the Internet of Things (IoT) for wildfire early detection.

When there is no wildfire in the forestry area, most of the sounds produced in the forests come
from animals’ activities, which is an irresistible external influence. But unlike the noise of wildfire,
the sound of animals is not continuous [16]. Therefore, when we analyze the sound spectrum of the
data collected by the sound sensor, we can easily distinguish the sound of wildfire from the sound of
animals. However, forests generally occupy a large area and a rugged terrain, requiring quantitative
sensors to be carefully deployed. Besides, we also need to consider the energy loss of sound during
propagation and the possibility of data distortion and delay in the use of wireless sensor networks for
data transmission, all of which will reduce the accuracy of our method. After measuring, the accuracy
of our classification method can reach about 70%.

In our work, we attempted to implement a wildfire detection system using the sound spectrum
analysis based on the Internet of things which is powered by the tree-energy device we designed.
This device utilizes the bio-energy of the living trees to generate electrical energy. To further
communication distance and decrease the energy consumption of the sensors, we choose an
LoRa device that can consume less energy and transmit over long distances for data transmission.
The method we propose not only solves the problem of the limited power of the sensors’ batteries
but also deals with the short communication distance of the sensor, which makes our early wildfire
detection model better suited for continuous wildfire monitoring.

The main work can be summarized as follows:

• We designed a tree-energy harvesting device relying on a constant potential (voltage) difference
between the xylem of the plant and the surrounding soil, which can provide stable power for our
monitoring devices and make our network operate normally and perpetually.

• We designed a sound collection system based on Internet of Things technology to collect wildfire
sound and used spectrum analysis technology to analyze the ignition of wild land.

• Based on the spectrum analysis technology, crown fires and surface fires can be recognized in our
model. From the experiment, results illustrate that our design is effective for detecting wildfire.
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The rest of this paper is organized as follows. In Section 2, we give a review on the existing
wildfire monitoring technologies. Section 3 explains our system model. In Section 4, we discuss the
practical experiment results. Section 5 concludes the paper with a brief summary.

2. Related Work

Heretofore, various wildfire monitoring technologies have been proposed and employed to aim at
detecting initial wildfire. These early detection technologies are divided into several categories: ground
patrol, remote video monitoring [17], artificial tower observation [18], forest aviation patrol [19],
satellite remote sensing [20], wireless sensor networks [21], IoT [22], etc. The following are the
advantages and disadvantages of these technologies.

The artificial observation of the tower is built by making use of the characteristics of the open view
and the high terrain of the mountain to observe and locate the fire field through simple devices for
fire monitoring and fire warning. It has an excellent and visualized monitoring effect, but the setting
and monitoring effect is restricted by the objective conditions, such as geography and weather. As a
result, it is hard to observe large-scale forests comprehensively and discover the occurrence of fires
timely. Additionally, some objective factors such as large patrol area, narrow field of view, and low
efficiency, which are often affected by the complexity of the topography, make it difficult to determine
the location of a fire’s source.

Forest aviation patrol is a means of real-time forest fire detection and cruise protection for forests
by using helicopters or drones [23,24]. It has a wide field of vision, high speed, and high mobility,
and can comprehensively watch and monitor the surrounding environment and the spread of a fire.
However, this monitoring technology is greatly affected by climate and local weather, and has a high
construction and operation cost [25].

Satellite remote sensing via in-orbit satellite real-time monitoring, with the aid of space remote
sensing technology, can probe the hot spot location of wildfire and analyze the information of
fire spread [26,27]. It has high continuity and is one of the most advanced monitoring means for
fire protection technology. Nevertheless, it is usually affected by some elements, such as cloud
thickness and water content over the fire scene; consequently, this technology is regularly used as
an early warning method [28]. Besides, satellite data have a low spatial resolution, and the wildfire
monitoring using thermal infrared channel data is easily interfered with by a sturdy reflection surface,
high-temperature saturation, and other factors, which is not conducive to full tracking of a wildfire’s
intensity spatial pattern [29].

Compared with the above monitoring technologies, wireless sensor networks (WSNs) are some
of the most reliable tools for the early detection of wildfires. WSNs are made up of tiny, cheap,
and low-power sensor devices that can measure environmental traits [30]. This method generally
has the ability to measure and monitor environmental parameters (temperature, relative humidity,
carbon monoxide, carbon dioxide, rainfall, etc.) using sensors located in the controlled forest territory,
together with data transfer to the tracking center through a network in real time. If some of these
measured parameters are above the configured thresholds, the system analyzes the information
and reacts, sending an alarm to the fire fighters or the operators devoted to forest fire monitoring.
The fire sites can be located instantly with accuracy because each sensor can integrate a GPS receiver.
WSNs can quickly transmit the data collected in the wildfire site to the base station through wireless
communication [31]. Unfortunately, the traditional wireless sensor networks cannot have an unlimited
life without battery charging or replacement. All sensor nodes need battery power, and the power
supply capacity directly affects the energy and data processing capacity of nodes [32].
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According to the architecture of the Internet of things and the characteristics of wildfire monitoring
systems, wildfire monitoring based on the architecture of the Internet of things consists of three parts:
a wireless sensor network responsible for data collection, a wireless sensor network and existing
network for remote data transmission, and a wildfire monitoring center [33]. The wireless sensor
network collects data for the wildfire monitoring system, which can detect the parameters of each
monitoring node in the target area. Then, it will transmit the collected data to the aggregation node
through the intermediate routing node [34]. After that, the aggregation node sends data to the wildfire
monitoring center through the existing wired or wireless communication network [35]. The wildfire
monitoring center analyzes and processes the critical factors of wildfire through the transmitted
monitoring data, providing auxiliary decision-making for wildfire monitoring.

The Internet of Things can be applied to monitor in many essential prevention areas. According
to the needs of wildfire factor monitoring in wild land, it can establish an information collection,
analysis, and early warning system based on wireless sensor networks through the wireless sensor
network’s ability to accurately detect complex environments and emergencies. Besides, it can monitor
the dynamics of forests more timely and effectively, and reduce the destruction of terrestrial ecosystems
and air pollution caused by fires.

The function of the sound spectrum analysis technique is to obtain more accurate spectral
characteristics by some operations, such as Fourier transform [36]. As a modern signal analysis
method, spectrum analysis has been widely adopted in various disciplines as an essential basis for the
research, production, and inspection of different electronic products. Because of its implementation
of high-resolution, wide-band digital spectrum analysis, it has been the focus of research in this
field, such as speech recognition in industrial control, telecommunications systems, etc. Nowadays,
in the field of forest noise monitoring, sound spectrum analysis technology is utilized to prevent
illegal logging and monitor animal activity [37]. According to the comparison of animal sound
spectrum database, animal activity in the forest can be identified [38]. In the literature [39], the authors
analyze and classify the sounds produced by some amphibian species. Before the spectrum analysis,
the sound source signal needs to be weighed by frequency. The frequency weighting filter is mainly
implemented through an analog circuit, and the amplified sound pressure signal passes through a
frequency weighting filter circuit to obtain the time domain signal after weighing, which is composed
of capacitance, resistance, inductance, etc. With the increasingly mature application of Fourier
transform technology and the rapid development of computer software technology, this technology is
increasingly sophisticated.

Different from traditional wildfire monitoring systems based on optical spectrum analysis,
we introduce a new wildfire detection system utilizing sound spectrum analysis based on IoT.
Compared with optical spectrum analysis, the advantage of using sound spectrum analysis to detect
wildfires is that the influence of obstacles in the forest on the sound data collected by sensor nodes can
be ignored, which helps fire departments to monitor wildfires promptly. Besides, this design takes
advantages of the technology: converting tree energy into electrical energy to provide power for the
sensor nodes, which successfully replaces the traditional, disposable chemical battery and effectively
solves the problem of insufficient energy supply.

3. System Design

In this section, we present a deep description regarding our wildfire detection system which
employs the sound spectrum analysis method based on the Internet of Things. An overall flowchart
of the proposed design is shown in Figure 1. This section is divided into four parts (the principle of
energy harvesting from living trees, tree-energy device design, sound collection and transmission,
and sound spectrum analysis) to describe our wildfire detection system specifically.
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Figure 1. An overall flowchart of system.

3.1. The Principle of Energy Harvesting from Living Trees

In the previous section, we discussed the energy supply issue of existing wildfire detection
technologies, while the traditional solution is to use disposable chemical batteries with limited energy
to provide power for conventional wireless sensor networks [40]. The reason why batteries are chosen
to power nodes is that forested areas are generally in remote areas, and the terrain is rugged, which is
unfavorable for supplying power to the sensors and to the data transmission of the sensors. It is
universally acknowledged that it is inconvenient to replace disposable chemical batteries with limited
energy in forested areas, and these batteries will cause severe pollution to the environment. To solve
this issue, we did some related studies and found that we could harvest energy from living trees.

3.1.1. The Voltage Caused by Differences in the pH of the Xylem and Soil of Trees

In the process of measuring the voltage of eucalyptus, the Nernst equation generated from the
potential voltage of the pH concentration is expressed as: V = V

′ − RT
nF [4pH] ∼ 56mV[4pH], where R

is a general gas constant of 8.314 JK−1 mol−1, T is the Kelvin temperature, and F is the electric charge
times Avogadro’s constant, which is 9.648 ×104 C mol−1, and [4pH] is the difference between the
two pH values [41]. This formula can be used to calculate the theoretical power that Eucalyptus can
produce. From Figure 2, we can observe that under the effect of the tree’s metabolism, it can produce a
weak current.

Figure 2. Schematic diagram of tree-energy acquisition.
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3.1.2. The Voltage Generated by Fluid Flow in the Xylem of a Tree

We inserted two identical platinum electrodes into the wooden part of the tree (removing the
phloem) and connected the electrodes to a high-impedance voltmeter. The mechanism of continuous
potential voltage generation depends on the electric potential voltage difference (ξ). Due to the action
of the cell wall, the liquid in the central capillary has flow characteristics and a pressure difference
Vsapstream = ε0εr

ση 4Pξ is formed at both ends, where ε0 represents the permeability of the vacuum

medium, ε0 = 8.85 ×10−12 F/m (C2/Jm), εr indicates the dielectric constant of the xylem, εr = ∼80,
σ is the conductivity, σ = ∼0.01 S/m, η is the viscosity, and η = ∼10−3Pas. 4p represents the
pressure difference, ξ represents the electric potential, due to the difference in fluidity between the
liquid and the pore wall atoms, 4p = ∼1 MPa, ξ = 0.1 V, according to the previous experimental
measurement, Vsapstream = ∼(1–10 mV), the voltage value obtained from the tree is between 1 and
10 mV [41]. According to the above formula, the faster the flow rate of the liquid-liquid flow in the tree,
the higher the voltage generated, and different tree types will produce different voltage differentials.

3.2. Tree-Energy Device Design

Nowadays, a wireless sensor network is the most time-effective tool applied in the field of
wildfire detection, but the power required for its working comes from the batteries with limited energy,
which shorten its service life and brings enormous operational pressure to wildfire departments.
With these issues, it will cause some adverse consequences; for instance, the wildfire department
cannot discover the fire in time if the communication is interrupted. At present, the batteries of wireless
sensors are rechargeable, and most of them can get recharged using solar energy. Collecting energy
from the sun is a promising technology that can continuously drive wireless sensor networks, but tall
trees and other barriers will obscure the solar panels, and cells’ charging will be affected easily by
rainy weather. As a result, the batteries sometimes fail to recharge in time, resulting in insufficient
power for the nodes.

In the works [41,42], the authors notice that the voltage difference between the wooden parts
of the trees and the soil, in which they grow. This discovery offered another opportunity to provide
power for wireless sensor networks and helped to solve the problem of energy supply. On account of
this finding, we designed the tree-energy device that can extract energy from living trees. We employed
this device as a battery in a wireless sensor to monitor the environment and data transmission based
on the IoT.

In accordance with the characteristics of plants, there is a constant potential (voltage) difference
between the wooden parts of the plants and the surrounding soil. In the experiments, we measured the
pH values between soil and the wooden parts of living trees. The results show that there is 50–200 mV
of continuous voltage difference between the xylem and the soil. Through repeated experimental
measurements, we know that there is no correlation between voltage and external factors such as
time, light, juice flow, electrode height, or the ionic composition of soil, indicating that a metal redox
reaction cannot cause voltage difference. Meanwhile, the pH value between the xylem and the soil
can affect the polarity and amplitude of the voltage. These sustained voltages are originated from the
concentrated bio cells established by the steady-state mechanism of the trees. To measure the voltage
between the wooden parts and the soils with different pH values, we took some action, including
using RF noise pickup, current, and different metal redox reactions on the electrode to control the
voltage source.

In terms of the functional structure of the circuit, the wireless sensor powered by tree-energy
device is subdivided into two parts: the energy and communication module. Among them, the energy
module undertakes the tasks to convert the tree-energy into electrical energy and store the electrical
energy in its storage, while the components of communication module mainly contain low-power
nodes, microcontrollers, and wireless transmission, as shown in Figure 3.
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Figure 3. Wireless sensor powered by tree.

Relying on the related work [42] that the voltage difference between the wooden parts of the trees
and the soil in the planted area, we designed the tree-energy generated device. In the design, we use
a multi-stage capacitor and multi-switch control power transmission to harvest tree-energy. At the
same time, this paper also introduces the design and implementation of transformers and DC/DC
boost converters. It not only improves the weak voltage borne by tree-energy but also guarantees the
stability of voltage in the process of power supply. The purpose of obtaining a more stable and efficient
power output for the power supply is to achieve a variety of electrical applications.

Living trees can be thought of as a power source and linked to capacitor C1. In the initial state,
a certain amount of low-voltage current exists in the capacitor C1, which is grounded to protect
electrical components. Besides, the capacitor C1 needs to be connected to S1 that can be used to prevent
the transformer and DC/DC booster converters from drawing the current out of capacitor C1 while
charging. Once the voltage of capacitor C1 reaches the voltage required by the hardware, S1 is closed
and C1 serves as the power source to drive the rest of the energy transfer circuit, as well as the nodes.

The transformer is connected to the S1 and DC/DC converter, which is used to amplify the voltage
of the capacitor C1. The DC/DC converter converts the energy at the input of the transformer and
then effectively outputs a fixed voltage. When the transformer is discharged, the capacitor C2 begins
to be charged. Once the voltage of C1 drops below the charging voltage, S1 will open and C1 will start
being charged again. This process is iterated several times until the voltage at C2 reaches the desired
node voltage. When S2 is closed, power for nodes is supplied by C2. The function of switch 2 is to
connect the node when C2 is fully charged, and prevents the load and current from flowing backward
during C2 charging.

The capacitor of C1 is set to 0.22 F, and the charging voltage is 350 mV, while the discharging
voltage is 100 mV. The capacitor of C2 is set at 2.5 F. When C1 is charged to 350 mV, S1 closes and
starts charging C2. After C2 being completed charged, S2 closes and begins to drive the wireless
sensor node. When the voltage of C2 drops to 2.4 V, S2 is turned on and C2 starts to be recharged.
The working/sleeping mode switch of the wireless sensor node can be adjusted by S2. Since the
power consumption in the sleeping mode is close to zero, C2 can be charged continuously, as shown in
Figure 4.

Figure 4. Schematic diagram of the tree-energy generation device.
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Table 1 is the abbreviation of the name of the experimentally related components.

Table 1. Component symbols.

Component Symbol Component Name

C1 , C2 the first/second capacitor
S1 , S2 the first/second switch

DC/DC Direct current-Direct current converter
M1 , M2 the first/second Micro controller Unit

3.3. Sound Collection and Transmission

To adjust the energy expenditure, the sensor node adjusts its duty cycle based on available energy
or application requirements. In the case of bursts and high traffic loads, the duty cycle of the nodes can
be increased to meet requirements, such as low latency and high reliability. That is, nodes will wake
up more frequently to reduce end-to-end latency. However, high duty cycles can result in significant
energy consumption. Therefore, we set the duty cycle to be about 10%, which means that 10 min is a
working cycle. In 10 min, the nodes only work for one minute, and the rest of the time is in a dormant
state for energy that can be saved to the utmost. In the design, we employed the sound sensor to collect
sound signals. The Figure 5 plots the architecture of sound spectrum analysis.

Figure 5. The architecture of sound spectrum analysis.

The electret microphone is installed inside the sound sensor, and it mainly consists of two
parts—the acoustic-electric conversion part and impedance part. Sound waves vibrate the electret
membrane inside the microphone, causing capacitance to change and producing a small voltage
corresponding to the change. Then, the voltage is converted to 0–5 V and the sound signal to the
electrical signal. Instantly, the ADC (analog-to-digital converter) receives the electrical signal and
converts the analog signal of the sound source into a digital signal. After the M1 reads the measured
value of the sensor, the conversion is carried out, and the data is transferred to the register at the
transmitter of LoRa. When data processing is completed, M1 sends a single-step command to the sensor,
and the single-step command causes the sensor to initiate a sound detection and then automatically
enters a standby mode. Subsequently, the digital signal is sent to the receiver through the LoRa
transmitter. The next step is that M2 reads the value measured received by the receiver, converts the
binary code to BCD (binary-coded decimal) code, and transfers the data to the register. Then, the DAC
(digital-to-analog converter) converts the digital signal into an analog signal for transmission to the
PC. Finally, MATLAB is utilized to analyze the sound frequency of the collected sound.

In this paper, LoRa technology is adopted to achieve long-distance communication. As a gateway
mode, LoRa can connect a certain number of wireless sensor nodes and replace the traditional GPRS
(general packet radio service) module, effectively reducing the cost. If LoRa is used as the relay node,
the data can reach hundreds of kilometers in the multi-hop mode.

The architecture of remote monitoring system based on LoRa is shown in Figure 6. In the data
acquisition subsystem for various applications, there are a large number of sensors embedded with
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RF module. The information collected by them is sent to the sub-database of the corresponding
application through one or more gateways and displayed in the monitoring and management platform.
Then users can log in the monitoring management platform as customers or administrators for data
query, node management, etc.

Figure 6. The architecture of remote monitoring system.

LoRa devices can communicate in point-to-point mode with low power consumption and low
data transmission rate. Under barrier-free conditions, communication distance between LoRa devices
can reach 15 km. The reason why the LoRa module can be quickly applied to various industries is
that it has certain features, such as cabling-free and anti-interference capability. However, in practical
applications, we are unable to achieve barrier-free transmission, because obstacles such as trees,
hillsides, and rivers in the forests will affect the transmission distance of the LoRa module. In a
forested area, we measured that the range of LoRa module data transmission can only reach about
3 km. Therefore, for avoiding affecting project data uploading, users should depend on specific field
conditions to choose to employ the LoRa module.

3.4. Sound Spectrum Analysis for Wildfire

Different combustion materials produce different noise frequencies during the progress of burning.
As reported in the scientific literature, the frequency range of crown fire is relatively narrow, and we
expect the sound spectrum of crown fires to range from 200 to 450 Hz. The existing method to define
the wildfire type by noise is to compare the measured wildfire noise with the known wildfire noise
spectrum in the database. However, this method lacks timeliness and accuracy and is not suitable to be
applied for sensor microprocessors. The purpose of this study was to find a simple division standard
for the crown and surface fire for early wildfire detection using sound spectrum analysis based on the
Internet of things.

We utilized Fourier transform to analyze the noise spectrum characteristics of different wildfire,
and propose a wildfire detection method based on sound spectrum analysis. The purpose of this
method is to identify different features of the noise frequency response of wildfire types. The records
of wildfire noise were taken from the data collected by sensors deployed in forests.

The sampling theorem is vital in digital signal processing. It describes the relationship between
the signal frequency and the sampling frequency to be satisfied when the analog signal is converted
into a digital signal. Therefore, we obtain the discrete data by the sampling theorem. The analog signal
xa(t) is ideally sampled at equal intervals in time domain with interval T, and the spectrum of the
sampled signal formed X̂(jΩ) is the original analog signal spectrum Xa(jΩ). The cycle is extended
with a sampling angle frequency Ωs(Ωs =

2π
T ). The formula is:

X̂a(jΩ) = FT[x̂a(t)] =
1
T

+∞

∑
n=−∞

xa(jΩ− jnΩs), (1)
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where the sampling frequency Ωs must be greater than or equal to more than twice the highest
frequency of the analog signal xa(t) for the spectrum of the sampled signal to not be spectrally aliased.

First, we assume that the relationship between the ideal sampled signal x̂a(t) and the analog
signal xa(t) is:

x̂a(t) = xa(t)
+∞

∑
n=−∞

δ(t− nT). (2)

Performing Fourier transform on Equation (2), we get:

X̂a(jΩ) =
∫ +∞

−∞
[xa(t)

+∞

∑
n=−∞

δ(t− nT)]e−jΩtdt =
+∞

∑
n=−∞

∫ +∞

−∞
[xa(t)δ(t− nT)]e−jΩtdt (3)

In Equation (3), there is a non-zero value only when t = nT in the integral number, then we
rewrite Equation (3) as:

X̂a(jΩ) =
+∞

∑
n=−∞

xa(nT)e−jΩnT . (4)

Let xa(nT) = x(n), ω = ΩT and substitute it into Equation (4):

X̂a(jΩ) =
+∞

∑
n=−∞

x(n)e−jωn (5)

Obviously, the right side of Equation (5) is the Fourier transform of the sequence X(ejω), which is:

X̂a(jΩ) = X(ejω) |ω=ΩT . (6)

Equation (6) shows that the Fourier transform of the ideal sampled signal can be obtained by
Fourier transform of the corresponding sample sequence.

We assume that X̂a(jΩ) = X(n), and n denotes the fire combustion noise obtained instantly,
corresponding to the serial number of the analog signal. To determine whether the noise of wildfire
corresponding to the analog signal xi is a crown fire, we define the spectrum of signal Cn, which is
obtained by adopting cross-spectrum. For the two stationary random signals Xn and Sn, according
to the stochastic process theory, the statistical correlation between them should be expressed by their
cross-correlation function. The Fourier transform is performed on the cross-correlation function of
Xn and Sn to obtain the power density spectrum in the frequency domain, which is called the mutual
power density spectrum. More specifically,

Cn =
n

∑
α=1

SαXn, (7)

where we suppose that the range of α is from 1 to n, and S1, S2, · · · , Sα, · · · , Sn represent the
frequency values of the analog signal, corresponding to the noise wildfire obtained by the sound
sensors. Depending on Equation (7), we can attain the signal spectrum Cn corresponding to the analog
signal xi.

Cross-spectrum is an abbreviation for cross-power density spectrum, a method of describing
the degree of statistical correlation between two different signals in the frequency domain.
Then, we perform a polynomial fit on the trend line corresponding to the signal spectrum Cn to
obtain the trend line slope coefficient ka. The power spectrum of the fire combustion noise, Pf , can be
written as:

Pf =
β

∑
a=0

ka( fa)
a. (8)
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In Equation (8), we assume that 0 ≤ a ≤ β, while β represents the maximum polynomial number
in the polynomial corresponding to each segment of the trend line. ka represents the slope coefficient
of the segment of the a degree polynomial on the trend line, and fa denotes the frequency value of the
section of the a degree polynomial on the trend line and the simulated signal of fire combustion noise.

According to the trend line corresponding to the signal spectrum Cn, the sum of squares of the
low frequency spectrum amplitude and the high frequency spectrum amplitude of each analog signal
xn is calculated for the analog signal xn corresponding to the fire combustion noise obtained in real
time; that is, ∑n

i=1 |Ci|2.
Depending on the trend line corresponding to the signal spectrum Cn, for the analog signal xn

corresponding to the fire combustion noise obtained in real-time, the sum of the squares of the low
frequency spectrum amplitude and the high frequency spectrum amplitude of each analog signal xn is
calculated as ∑n

i=1 |Ci|2. Finally, we write the evaluation value Y corresponding to the real-time fire
combustion noise as follows:

Y =
∑n

i=1 |Ci|2

Pf
, (9)

where Ci represents the spectral amplitude value of the analog signal of number i corresponding to
the fire combustion noise obtained in real-time. We judge whether Y in Equation (9) is higher than
the preset evaluation threshold. If Y is higher than the evaluation threshold, we determine that the
fire combustion noise received in real-time represents the crown fire. Otherwise, it is judged that the
real-time combustion noise represents the surface fire.

4. Analysis

4.1. Experimental Device

To evaluate the performance of wildfire monitoring systems using sound spectrum analysis based
on the Internet of Things, we randomly deployed a large number of sensor nodes and monitoring
systems in the forest area. The data collected by sensors were forwarded to at least one sink node
and ultimately to the remote terminal. Forest fire fighters monitor the area by analyzing these data by
using sound spectrum analysis, as shown in Figure 7.

Figure 7. LoRa equipments deployed in forests.

In our design, sensor nodes are equipped with rechargeable power devices that convert tree-energy
into electricity energy. Each sensor is equipped with a tree-energy harvesting module, which means
that the energy of the living trees can be converted into electricity; therefore, the energy equipment of all
nodes can be recharged, and the transmission power of each sensor can be adjusted. Energy charging
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devices and energy storage devices, as energy replenishing elements, replace batteries used in
traditional LoRa devices. The maximum communication distance per node is set to 3 km. Each node
can communicate directly within its transmission range.

4.2. Tree-Energy Device Analysis

Photosynthesis and respiration are two essential life activities in the biological world for the carbon
cycle. Plants perform photosynthesis during the day and release energy to the outside. At night, plants
respire and store energy. Compared to the nighttime, the plant has less power inside the daytime; thus,
the tree-energy device generates less electricity during the day than at night. Besides, photosynthesis
and respiration of plants are susceptible to external influences, exceptionally water, light intensity and
duration, and temperature.

To measure the power generation performance of the tree-energy device, we utilized living trees
such as metasequoia and eucalyptus as energy sources and analyzed the energy generated by them.
We conducted a 3-day tree-energy voltage examination in summer and winter, respectively, as shown in
Figures 8 and 9. As expected, member nodes equipped with tree-energy devices can harvest bio-energy
systematically throughout the day and quickly consume its energy supply. These records are consistent
with circadian rhythms. The results show that light and water can easily influence the biological energy
of living trees, and the change of energy is roughly sinusoidal in 24 h.
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Figure 8. Tree-energy voltage variation in summer.
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Figure 9. Tree-energy voltage variation in winter.
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4.3. Results of Sound Spectrum Analysis

In the experiment, wildfire noise records collected by sound sensors were used for data analysis
and the results of the analysis show that the sound spectral forms of surface fires and crown fires are
different: the trend line amplitude of the ground fire noise spectrum gradually increases, and the trend
line of the crown fire noise spectrum is a bell-shaped (Gaussian) trend line test. The research method
in this paper is based on the Fourier transform of different analysis methods of the wildfire noise
spectrum. Fast Fourier transform (FFT) means that the necessary noise power spectrum can be obtained
from the recorded sound waveform. The purpose of this method is to identify the frequency response
characteristics of noise under different wildfire types. The results are shown in the following figures.

Firstly, we took a screenshot of the initial crown fire captured by the surveillance video, as shown
in Figure 10. The video shows the occurrence of a tree crown fire at night. In the video, we can see the
flames floating around with the support of the wind, making the crown fire more serious and difficult
to extinguish. We performed sound spectrum analysis of the 80 s, the audio of wildfire collected
by sound sensors, and the results are shown in Figures 11 and 12, where Figure 11 is the result of
time-domain sound signal in the left channel, while Figure 12 represents frequency-domain sound
signal of left channel.

Figure 10. Initial crown fire.
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Figure 11. Time-domain sound signal.

Figure 11 illustrates that the sound signal in time domain is relatively stable and has no obvious
changes. The audio signal is generally divided into two channels, the left channel and the right
channel, to more accurately determine the exact location of different sound sources in the recording.
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However, when analyzing the sound spectrum with software, the monophonic channel is converted
directly into stereo, and the waveform data of the left and right channels are consistent; hence, we do not
need to analyze the time-domain sound signal and frequency-domain sound signal in the right channel.
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Figure 12. Frequency-domain sound signal.

Figure 12 shows that when the frequency of the crown fire sound reaches about 25 Hz,
the waveform amplitude of sound spectrum analysis is the highest, which also indicates that the
loudness of wildfire noise is the highest. In this figure, we also can estimate the frequency range
of wildfire noise: 0–250 Hz. According to Equation (9), value Y corresponding to noise of wildfire
combustion for Figure 10 is about 13.6, which is higher than the threshold value. Hence, it confirms
the correctness of our proposed wildfire classification method.

Then, we analyzed a strong tree crown fire, the situation of the strong crown fire shown in
Figure 13. Figures 14 and 15 show the sound spectrum analysis results of 30s, the audio of wildfire’s
sound spectrum analysis, which was attained by sound sensors, where Figure 14 is the result of
time-domain sound signal in the left channel, while Figure 15 represents frequency-domain sound
signal of left channel.

Figure 13. Strong crown fire.

From Figure 14, we found that the sound signal in time domain was relatively stable and had no
obvious changes. Figure 15 is sound frequency-amplitude waveform obtained by sound spectrum
analysis. From this picture, we can see that when the sound frequency value of the strong crown fire is
approximately 60 Hz, the amplitude is also at its maximum, which also manifests that wildfire noise is
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the loudest. In the figure, we also can see the frequency range of crown fire is relatively narrow and
estimate its frequency range: 0–400 Hz.
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Figure 14. Time-domain sound signal.
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Figure 15. Frequency-domain sound signal.

Compared with Figure 12, Figure 15 describes that there is a little change in the frequency range
of domain sound signals, ranging about from 0 to 350 Hz. In a word, we can define that the frequency
range of crown fire is relatively narrow. By utilizing Equation (9), we calculated that the corresponding
Y value of fire combustion noise for Figure 13 was about 18.3, which was higher than the threshold
value. Therefore, it could more fully prove the effectiveness of the method we proposed in this paper.

To summarize, the trend line of noise spectrum acquired in the experiment gradually increases
toward low frequency. The power spectrum trend line of the canopy fire noise has a distinct Gaussian
type. The crown fire has a relatively narrow frequency range from 0 to 350 Hz.

Then, we performed sound spectrum analysis on the surface fire. The surface fire is similar to the
picture depicted in Figure 16. The results of sound spectrum analysis on the surface fire are shown in
the following figures. Figures 17 and 18 show the results of sound spectrum analysis of wildfire for
60 s, which obtained by sound sensors, where Figure 17 is the result of time-domain sound signal in
the left channel, while Figure 18 represents the frequency-domain sound signal of left channel.
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Figure 16. Surface fire.
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Figure 17. Time-domain sound signal.
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Figure 18. Frequency-domain sound signal.

As shown in Figure 17, it can be obviously observed that the time-domain sound signal fluctuates
up and down and changes periodically. By compared with the time-domain sound signals of the
crown fire, we can find that the time domain sound signal of surface fire is different from that of the
crown fire. Therefore, we are sure that the waveform of the time-domain sound signals of different
types of wildfire can be easily distinguished. Figure 18 plots that when the frequency of the surface
fire sound reaches about 220 Hz, the waveform amplitude of sound spectrum analysis is the highest,
which also manifests that wildfire noise is the loudest. In the figure, we also can estimate that the
frequency range is from 0 to 15,000 Hz. Depending on Equation (9), we calculated the value Y of
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Figure 16 was about 5.1, which is lower than the threshold value. This also confirms the accuracy of
our experimental method.

Finally, in the absence of wildfire, we collected the sound of the forest and analyzed the sound
spectrum. The results are shown in Figure 19, where the left figure is the result of the time-domain
sound signal, while the right one represents the frequency-domain sound signal of the left channel.
It is universally acknowledged that when there is no occurrence of wildfire, the sound of the forests
we collect mostly comes from the birds and animals that inhabit the forest. While these sounds made
by animals are relatively short, which is why the time-domain signal in figure (a) basically tends to
zero, with few fluctuations. In figure b, we discover that both the frequency and amplitude value of
sound made by animals is small relative to that of crown fire and surface fire.
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(a) Time-domain sound signal.
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Figure 19. Sound spectrum of forest in the absence of wildfire.

4.4. Intuitive Comparison

In the previous subsection, to accurately determine the sound frequency range of crown fire and
surface fire, we used different frequency intervals to describe the variation between the frequency
and amplitude of wildfire noise and display it in the corresponding diagram (spectrum plots).
Therefore, we cannot make an intuitive comparison between them. To verify our statement, we used a
consistent and wider frequency interval in all the corresponding spectrum plots: 0 Hz to 20 kHz in
a logarithmic frequency scale. Besides, we put the spectrum of the crown fire and surface fire in the
same picture as shown in Figures 20–22.
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Figure 20. Comparison of initial crown fire and surface fire.

The Figure 20 is the result of frequency-sound amplitude, which is obtained by comparing the
acoustic spectrum analysis of the initial crown fire and the surface fire. To compare sound amplitude
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of the initial crown fire and the surface fire at the same frequency, the frequency range of the Abscissa
of the image was set to 0–20,000 Hz. The figure plots that the sound frequency of the crown fire is
very narrow, but its the value of sound amplitude is higher than that of surface fire, while surface fire
is opposite to crown fire. The noise of surface fire has a frequency of up to 15,000 Hz, but its sound
amplitude is relatively low and is almost invisible in the axis.
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Figure 21. Comparison of strong crown fire and surface fire.

The Figure 21 is the result of frequency-sound amplitude from a comparison of the sound spectrum
analysis of the strong crown fire and the surface fire. In Figure 21, we notice that on this axis, the sound
frequency of the strong crown fire is narrower than that of the surface fire, while its sound amplitude
value is higher than the surface fire’s sound amplitude, which is alike to Figure 20.
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Figure 22. Comparison of strong crown fire and initial crown fire.

Distinguishing itself from Figures 20 and 21, Figure 22 depicts the results of the acoustic spectrum
analysis of the initial crown fire and the strong crown fire, and compares the results. In this image,
in addition to the different sound amplitude, the waveforms of the other parts are coincident,
which confirms that the sound spectrum analysis of crown fire has similar characteristics.

5. Conclusions

In this paper, a novel wildfire monitoring technology using sound spectrum analysis based on
the Internet of Things is proposed. Some relevant research was conducted. First, according to the
principle that different combustion materials produce different noises when burning, we analyzed
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the noise spectrum of wildfire and classified them for early fire detection. Second, it was found that
because of the specific characteristics of plants, there is a constant potential voltage difference between
the wooden parts of the plants and the surrounding soil, thereby providing a chance to improve
the technology for collecting energy from the environment. Owing to that promising discovery,
we designed an independent energy harvesting device, which can assemble the power from the living
trees for maintaining the regular operation of sensor nodes. Third, for further the distance of traditional
wireless communication, we employed the LoRa communication device, which transmits data collected
by the sensor to the receiving end to implement remote connection. Finally, the collected sound data
was analyzed by sound spectrum analysis and the results show that the frequency range of the crown
fire is relatively small, ranging from 0 to 400 Hz, while the frequency range of the surface fire is about
0–15,000 Hz. To improve the accuracy of wildfire classification, we also designed a formal wildfire type
determination and classification algorithm to judge wildfire types by calculating the value of evaluation
value unY corresponding to fire noise depending on Equation (9). If Y, the evaluation value, is higher
than the threshold, we can determine that the type of wildfire is crown fire. Otherwise, the kind of
wildfire is surface fire.
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