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Abstract: To determine the geolocation of a pixel for spaceborne synthetic aperture radar (SAR) 
images, traditional indirect geolocation methods can cause great computational complexity. In this 
paper, a fast, three-dimensional, indirect geolocation method without ground control points (GCPs) 
is presented. First, the Range-Doppler (RD) geolocation model with all the equations in the Earth-
centered rotating (ECR) coordinate system is introduced. By using an iterative analytical geolocation 
method (IAGM), the corner point locations of a quadrangle SAR image on the Earth’s surface are 
obtained. Then, a three-dimensional (3D) grid can be built by utilizing the digital surface model (DSM) 
data in this quadrangle. Through the proportional relationship for every pixel in the 3D grid, the 
azimuth time can be estimated, which is the key to decreasing the calculation time of the Doppler 
centroid. The results show that the proposed method is about 12 times faster than the traditional 
method, and that it maintains geolocation accuracy. After acquiring the precise azimuth time, it is 
easy to obtain the range location. Therefore, the spaceborne SAR image can be geolocated to the 
Earth surface precisely based on the high-resolution DSM data. 

Keywords: spaceborne synthetic aperture radar (SAR); indirect geolocation; Earth centered rotating 
(ECR) coordinate system; iterative analytical geolocation method (IAGM); digital surface model 
(DSM) 

 

1. Introduction 

Spaceborne synthetic aperture radar (SAR) images are widely used in a variety of fields [1]. With 
the paramount need to target surveillance and state security, i.e., target geolocation, the accuracy of 
the absolute locations of sensitive targets on the ground in spaceborne SAR images is very critical. 
The absolute accuracy of SAR geolocation depends on multiple factors, such as the orbital precision 
of the satellite, sensor stability, radar accuracy, knowledge of the propagation medium, SAR 
processing accuracy, timing accuracy, target detection accuracy, coordinate transformation accuracy, 
etc. [2–7]. 

The traditional indirect geolocation method establishes the mapping association between image 
coordinates and geodetic coordinates by repetitively calculating the relation between the digital 
elevation model (DEM) grid and the satellite position, which requires several processing iterations 
[8–10]. A good deal of work has been done using the traditional indirect geolocation method to 
achieve good accuracy. Geolocation accuracy can be effectively improved by using the precise 
latitude, longitude, and elevation provided by ground control points (GCPs), such as Wettzell corner 
reflector experiment. As reported in [11,12], TerraSAR-X has the capability of submeter-level 
geolocation accuracy in range. An in-depth analysis of TSX-1 carried out as part of the Wettzell corner 
reflector experiment, the pixel geolocation accuracy was improved to approximately 1 cm in range 
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[11]. However, especially in overseas, mountainous areas, canyons, deserts, etc., it is difficult to obtain 
GCPs, while the geolocation of these areas is very important. Therefore, a method of geolocation 
without GCPs is necessary in such cases. The RD model is the most widely-used physical sensor 
model for spaceborne SAR, which can be used to geolocate without GCPs [13]. In [14], a fast 
geocoding method of spaceborne SAR images using graphics processing units was proposed. This 
method accelerated the algorithm processing by performing block processing and parallel processing 
using the graphic processing unit or the central processing unit. However, this method is only an 
engineering implementation, and does not improve the calculation model. In [15], a hybrid algorithm 
based on the RD location model was proposed, which could achieve a higher level of accuracy than 
the analytic geolocation method (AGM) and relative geolocation method. This method took 10.9 s to 
process the first, middle, and last rows of a SAR image [15]. 

In this paper, a method to improve the Doppler centroid calculation model is proposed by 
estimating the geometric relationship between a target point inside a SAR image and the four corner 
points of the quadrangle SAR image. (For a ×a rN N  pixels SAR image, the four corner points are 

located at ( )1,1 , ( )1, rN , ( ),1aN  and ( ),a rN N . The target point means any pixel except for the four 

corner points in the ×a rN N  SAR image.) This geolocation method for SAR images does not use 
GCPs, and since the iterative calculations of the Doppler centroid are omitted, it is more efficient to 
geolocate targets using this method while ensuring the geolocation accuracy. Furthermore, the 
proposed geolocation method is a general method that can be applied for all current spaceborne SAR 
systems. In this paper, we choose TanDEM-X images as the experimental data; the experimental 
results demonstrate the efficiency and reliability of the proposed method. 

The rest of the paper is structured as follows. In Section 2 geolocation theory is introduced and 
divided into four subsections: geometric analyses for SAR images, the RD model for SAR images, the 
details about the IAGM, and the atmospheric propagation delay for microwaves that contains 
ionospheric and tropospheric delays. A fast, three-dimensional, indirect geolocation method is then 
proposed in Section 3. The experimental results in Section 4 validate the performance of the proposed 
method. Section 5 discusses the results and future works. Finally, Section 6 concludes the findings 
and contributions of this paper. 

2. The Geolocation Theory 

2.1. The Coordinate System and Transformation Formula 

Figure 1 illustrates the local coordinate system 'S xyz−  based on the ECR coordinate system. 
The ECR coordinate system is widely used for RD model geolocation [16]. As shown in Figure 1, 

−O XYZ  is a geocentric coordinate system, N  represents the North Pole, and the arc NG  is the 
Greenwich meridian. O  is set as the origin, which coincides with the Earth’s center of mass. The Z 
axis and the mean rotational axis of the Earth coincide; the X axis is pointing to the mean Greenwich 
meridian, and the Y axis is directed to complete a right-handed Cartesian coordinate system. E  is 
the point where the Y axis passes through the surface of the Earth. 'S xyz−  is the local coordinate 
system based on the ECR coordinate system. S  represents the position of the satellite, and 'S  is 
the sub-satellite point. T  is the target on the Earth’s surface, 'T  is the projected point of T  on the 
ellipsoid surface, 'T T  is the elevation of the target T , and R  is the slant range between the 
satellite and the ground target. 'S N  is an arc passing 'S . 'S  is set as the origin of the local 
coordinate system. The OS  vector is regarded as the z axis; the direction of the OS  vector is set as 
the positive direction. The x axis is in the 'OS N  plane, which passes the subsatellite point 'S  and 
is perpendicular to line 'S S . The y axis is then defined according to the right-handed rule of the 
Cartesian coordinate system. In addition, α  is the angle for TOS∠ , and β  is the angle between 
the plane 'OS N  and the plane 'TOS . χ  is the geocentric longitude of T , and φ  is the 
geocentric latitude of T  [16–21]. 
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Figure 1. The local coordinate system '−S xyz  based on ECR coordinate system. 

In Figure 1, the target T ’s location is ( ), ,T T Tx y z . Its geocentric longitude and latitude in the 
spherical coordinate system are given by [22]: 

tan χ = T
T

T

y
x

 (1)

2 2
tanφ =

+
T

T

T T

z

x y
 (2)

in which χT  is the geocentric longitude of T , and φT  is the geocentric latitude of T . 
In the ellipsoidal coordinate system, the target T ’s geodetic longitude and latitude are γT  and 

ϕT , respectively. The target T ’s geodetic longitude and geodetic latitude are the same [19]: 

tan γ = T
T

T

y
x

 (3)

The relation between geocentric latitude and geodetic latitude could be given by [22]: 

2tan 1 tanϕ φ
 

= − + 
T c T

T

Ne
N h

 (4) 

where ce  is the first eccentricities of Earth, Th  is the ellipsoid height of T . N  is the radius of 
curvature in the prime vertical [19,22]: 

2 21 sin ϕ
=

− c T

aN
e

 (5)

( ), ,γ ϕT T Th  are the parameters in the geodetic coordinate system, and ( ), ,T T Tx y z  are the 
parameters in the space rectangular coordinate system. The transformations from the geodetic 
coordinate to the space rectangular coordinate are given by [19,22]: 
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( )
( )
( )2

cos cos
cos sin

(1 ) sin

ϕ γ
ϕ γ

ϕ

 +      = +      ⋅ − +  

T T TT

T T T T

T c T T

N hx
y N h
z N e h

 (6)

2.2. The RD Model for SAR Images 

2.2.1. The Earth Model Equation 

Since the Earth’s shape is technically an oblate ellipsoid, the difference between its semimajor 
and semiminor axes is small. But for precise measurements, we must consider the model of the Earth 
as an oblate ellipsoid. Therefore, the Earth model equation is given by [23,24]: 

2 2 2

2 2 1T T Tx y z
a b
+

+ =
 

(7)

where a  is the semimajor axis and b  is the semiminor axis. 
Considering the ellipsoid height, the Earth model equation can be rewritten as [25]: 

( ) ( )
2 2 2

2 2 1+
+ =

+ +
T T T

T T

x y z
a h b h  

(8)

2.2.2. The SAR Doppler Equation 

The Doppler frequency in the ECR coordinate system for a generic point target is given by [23]: 

( )( )2
λ

= − − −V V R R
   

D S T S Tf
R  

(9)

where Df  is the Doppler frequency, λ  is the radar wavelength, ( ), ,S S S Sx y z=R


 is the satellite 

position vector, ( ), ,=R

T T T Tx y z  is the ground target position vector, ( ), ,S S S Sx y z=V


    is the 

satellite velocity vector, and TV


 is the ground target velocity vector. The velocity vector TV


 in the 
ECR coordinate system is given by [23]: 

[0,0,0]T =V


(10)

2.2.3. The SAR Range Equation 

The slant range between the sensor and the ground target at given time it  is written as the 
following expression [23–25]: 

( , ) S TR i j = −R R
 

(11)

where ( ) ( ) ( )2 2 2( , ) = − + − + −S T S T S TR i j x x y y z z , i  represents the row number for the SAR image, 

and j  represents the column number for the SAR image. j  can be written as [25]: 

min( ) 1
2 s

cj R R
f

 
= − + 

 
(12)

where minR  is the nearest slant range for the SAR image, sf  is the sampling frequency, and c  is 
the speed of light. 

 

2.2.4. The RD Model 
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The RD model is established between a satellite and a ground target on the Earth’s surface [24], 
which includes Equations (8), (9), and (11). At every azimuth time, the position and velocity vectors 
of the satellite can be fitted though GPS ephemeris. Therefore, SR


, SV


, and TV


 are known, and 

the ground target TR


 is unknown, which can be calculated by solving the three equations using 
AGM. 

2.3. Iterative Analytical Geolocation Method (IAGM) 

As we know, the shape of the Earth is an ellipsoid. Point 'T  is a small area around the 
subsatellite point 'S , so ' ' LOS OT R= = . LR  is called the local radius, which is given by the 
following expression [16]: 

2 2

2 2 2 2sin cosφ φ
=

+L
S S

a bR
a b  (13)

where φS  is the geocentric latitude of 'S . 
According to the cosine theorem, the angle α  is given by [16]: 

2 2 2

cos
2

E F G
EF

α + −=  (14)

where 2 2 2
S S S S SE R x y z= = = + +R


, L TF R h= + , ( ),G R i j= . SR  is the magnitude of the sensor 

position vector. 
The detailed steps of the IAGM are as follows: 

(a) Calculate the geocentric latitude and longitude of the sub-satellite point 'S : 

1tanχ −  
=  

 
S

S
S

y
x  (15)

1

2 2
tanφ −

 
 =
 + 

S
S

S S

z

x y
 (16)

(b) In the local coordinate system, the vectors SR


 , SV


, and TR


 in the ECR coordinate system 

can be transformed to SlR


, SlV


, and TlR


 [16]: 

( )0, 0,Sl Slz=R


 (17)

( ), ,Sl Sl Sl Slx y z=V


    (18)

( ), ,Tl Tl Tl Tlx y z=R


 (19)

where Sl S Lz R R= − . 

sin cos sin sin cos
sin cos
cos cos cos sin sin

φ χ φ χ φ
χ χ
φ χ φ χ φ

− − +   
   = −   
   + +   

   
  

  

Sl S S S S S S S S

Sl S S S S

Sl S S S S S S S S

x x y z
y x y
z x y z

 (20)

( )sin cos
( )sin sin

( )(1 cos )

Tl L T

Tl L T

L TTl

x R h
y R h

R hz

α β
α β

α

+ ⋅   
   = + ⋅   
   − + −  

 (21)

Equations (17)–(19) are the parameters for the Doppler equation in the local coordinate system 
'S xyz− . 
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(c) Calculate the angle β  from the Doppler equation. 
In the local coordinate system 'S xyz− , the Doppler equation is determined by: 

( )2
d Sl Tl Slf

Rλ
= − − ⋅R R V

  
 (22)

Equations (17)–(19) can be directly substituted into Equation (22): 

2 ( ( ( )sin cos ) ( ( )sin sin ) ( ( )(1 cos )))d Sl L T Sl L T Sl Sl L Tf x R h y R h z z R h
R

α β α β α
λ

= − − + + − + + + + −    (23)

where Sl TlR = −R R
 

. 

Suppose [16]: 

2 ( )sin

2 ( )sin

2C= ( ( )cos )

Sl L T

Sl L T

Sl S T L T d

A x R h
R

B y R h
R

z R h R h f
R

α
λ

α
λ

α
λ

 = +

 = +

 − + − + −







 (24)

Therefore, Equation (23) can be rewritten by [16]: 

cos sin 0A B Cβ β+ + =  (25)

The above equation can be solved as [16]: 

2 2 2

2 2cos AC B A B C
A B

β − ± + −=
+  

(26)

The sign “ ± ” depends on the SAR observation mode. If the look direction is right, “ + ” is chosen. 
Otherwise, “ − ” is chosen. 
(d) Calculate the geocentric latitude and longitude for the ground point T  by using the angle α  

and the angle β  [16]. 

cos cos sin sin cos cos
2
π φ α φ α φ β − = ⋅ + ⋅ ⋅ 
 

T S S  (27)

cos sin sincos( )
cos cos
α φ φχ χ

φ φ
− ⋅

− =
⋅

S T
S T

S T
 (28)

Transform geocentric latitude and longitude to geodetic latitude and longitude [19,22]: 

1 2tan 1 tan

γ χ

ϕ φ−

=


   = −    +  

T T

T c T
T

Ne
N h

 (29)

Therefore, the vector of the ground target is ( ), ,γ ϕ=R

T T T Th . 

The iterative steps for this AGM are executed in order to obtain more precise result. The process 
steps are described as follows: 

1. Get LR , SR , and ( , )R i j  according to the above method. 
2. Use Equation (14) to calculate the angle α . 
3. According to the steps from (a) to (d), the position vector ( ), ,γ ϕ=R


T T T Th  can be obtained. 

4. Calculate the value '
L T TR h= −R


. If ' 0.01L LR R− < , then stop the iteration and get the final 

result ( ), ,γ ϕT T Th . Otherwise, let '
L LR R=  and re-execute step 2. 
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2.4. Atmospheric Propagation Delay for Microwaves 

The SAR signals travel through the atmosphere slower than they travel in a vacuum due to air 
refractivity. The distance LΔ  is related to the atmospheric refractive index ( )n s , and can be written 
as [26]: 

( )L MF ZθΔ = ⋅ Δ  (30)

where ZΔ  is the zenith delay, and ( )MF θ  is the projection function. Generally, the incidence angle 
of θ  for a SAR system is between 20o  and 55o . A simple projection function is given by [26]: 

1( )
cos

MF θ
θ

=  (31)

The zenith delay includes two delay parts: the tropospheric delay and the ionospheric delay 
[26,27]: 

tropo ionoZ Z ZΔ = Δ + Δ  (32)

2.4.1. The Ionospheric Delay 

The ionospheric refractive index is given by [28]: 
2

2 3 2 4
01

2 2 8
iono X X Y X
ph e e e

C C C Cn N f N B f N f− − −= − ± −  (33)

where eN  is the electron density, 0B  is the magnitude of the magnetic field vector 0B , f  is the 
radar frequency in Hz, and the two constants XC  and YC  are given by [28]: 

2

2
0

80.62
4X

e

eC
mπ ε

≡ =  (34)

0

2Y
e

e
C

m
μ
π

≡
 

(35)

where e  is the electron charge 19( 1.602 10 )e C= × , 0ε  is the permittivity of free space 

( )12
0 8.854 10 /F mε −= × , em  is the electron mass 31( 9.109 10 )em kg−= × , 0μ  is the permeability of free 

space ( )7
0 4 10 H / mμ π −= × . 

The first two terms in Equation (33) are regarded as the first order refractive index. Due to the 
much smaller magnitude of the third- and fourth-order terms, only the electron density within the 
ionosphere is considered [28]. So, Equation (33) can be rewritten as [28]: 

2
2

40.311 1
2

iono eX
ph

NCn f
f

−= − = −
 

(36)

Therefore, the group refractive index is expressed as [28]: 

2
2

40.311 1
2

iono eX
gr e

NCn N f
f

−= + = +
 

(37)

The ionospheric delay can be calculated by the total number of electrons on the propagation path 
[26]: 

2
40.31

ionoZ TEC
f

Δ =
 

(38)

where TEC  is the total electron content. 
Therefore: 
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2
40.31( )

cosiono ionoL MF Z TEC
f

θ
θ

Δ = ⋅ Δ =
 

(39)

The radar signal ionospheric delay ionoLΔ  converts the path delay from nadir to the path at a 
constant incidence angle θ . 

The real TEC value can be downloaded from the ftp server of the international Global 
Navigation Satellite Systems (GNSS) service (IGS) [29]. 

2.4.2. The Tropospheric Delay 

Since most SAR systems operate at frequencies below 40 GHz, and the refractivity using the 
millimeter-wave propagation model (MPM) is more or less constant, the refractivity can be 
considered frequency independent [5]. 

In the integral zenith model, the tropospheric delay is divided into hydrostatic, wet, and liquid 
components [30,31]: 

610tropo
s

Z Nds−Δ = 
 (40)

where s  is the actual propagation path. 

1 2 3 2 1.45= + + + ⋅d w w
cl

P e eN k k k W
T T T  

(41)

where 1
1 0.776k KPa−= , 1

2 0.716k KPa−= , and 3 2 1
3 3.75 10k K Pa−= ×  are the constants, dP  is the 

partial pressure of dry air in Pa, we  is the partial pressure of water vapor in Pa, T  is the absolute 
temperature in Kelvin, and clW  is the cloud water content in g/m3. The liquid delay is very small, so 
the last term of liquid water in the above equation can be neglected [7]. 

The tropospheric delay can be rewritten as [7]: 

0

6

1 2 3 2

10( ) ( )
cos

θ
θ

−

Δ = ⋅Δ = + +
tz

d w w
tropo tropo

z

P e eL MF Z k k k ds
T T T  

(42)

where 0z  is the height of the Earth surface, tz  is the height of the upper limit of the troposphere. 

2.4.3. Real Data for the Ionosphere and Troposphere 

The international GNSS service provides orbits, ionospheric delay, tropospheric delay, and other 
high-quality GNSS data products online in near real time for the whole world [32–35]. 

In order to define a global ionospheric model, the vertical total electron content is represented 
as a function of geocentric longitude, latitude, and time in the form of a raster grid. The global 
ionosphere maps are provided in the IONospheric EXchange (IONEX) format [29]. The time 
resolution of the maps is two hours, and the spatial resolution of each gird is 5 degrees in longitude 
and 2.5 degrees in latitude. Figure 2 shows the global TEC maps at 10:00:00 UTC on 20 December 
2018. 
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Figure 2. The global TEC maps for day 20 December 2018 at 10:00:00 UTC. 

Since 1997, IGS has provided zenith path delay (ZPD) products, which are archived and can be 
accessed through the FTP server [36]. As shown in Figure 3, the ZPD products for 20 December 2018 
are available at Beijing Fangshan (BJFS) station. Therefore, the BJFS data can be used to represent the 
ZPD of Beijing. 

 
Figure 3. The zenith path delay (ZPD) at the BJFS IGS station on 20 December 2018. 

3. A Fast, Three-Dimensional, Indirect Geolocation Method 

Geodetic coordinates, i.e., latitude, longitude, and height, are required by the traditional indirect 
geolocation method. Therefore, high precision DEM data or DSM data is the basic requirement for 
precise geolocation. In short, the Doppler centroid and slant range can be obtained by calculating the 
relationship between the target geodetic coordinates and the satellite position. Then, the pixel 
location in the azimuth and range can be obtained according to the Doppler centroid and slant range, 
respectively. The traditional indirect geolocation method requires iterative calculations to obtain the 
azimuth time, which is very time consuming. Therefore, in this paper, we introduce a fast indirect 
geolocation method to speed up the calculation of the azimuth time. 

In order to clearly express the proposed algorithm and the process steps, a flowchart is presented 
in Figure 4. As shown in Figure 5, the geometric illustration of the estimated azimuth time is given. 
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Figure 4. The algorithm process flowchart. 
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Figure 5. The geometric illustration of the estimated azimuth time. 

Suppose the elevations are zero for the four corner points, which are marked C1, C2, C3, and C4. 
The corner point C1 refers to the pixel (1,1)  in the SAR image, whose geolocation point on the Earth’s 
surface is ( )1 1, ,0γ ϕC C . The corner point C2 refers to the pixel (1, )rN  in the SAR image, whose 

geolocation point on the Earth’s surface is ( )2 2, ,0γ ϕC C . The corner point C3 refers to the pixel ( ,1)aN  

in the SAR image, whose geolocation point on the Earth’s surface is ( )3 3, ,0γ ϕC C . The corner point C4 
refers to the pixel ( , )a rN N  in the SAR image, whose geolocation point on the Earth’s surface is 

( )4 4, ,0γ ϕC C . The rectangular space coordinate for the four corner points according to Equations (5) 

and (6) are recorded as ( )1 1 1, ,C C Cx y z , ( )2 2 2, ,C C Cx y z , ( )3 3 3, ,C C Cx y z , ( )4 4 4, ,C C Cx y z . 
The detailed steps of the proposed fast, three-dimensional, indirect geolocation method are as 

follows: 

(a) Calculate the slopes of the latitude and the longitude between the first azimuth time and the last 
azimuth time at the nearest and furthest slant ranges, respectively. 

3 1
1 1

γ γ−
=

−
C C

L
a

K
N  

(43)

3 1
1 1

ϕ ϕ−
=

−
C C

B
a

K
N  (44)

4 2

1
γ γ−

=
−r

C C
LN

a

K
N  (45)
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4 2

1
ϕ ϕ−

=
−r

C C
BN

a

K
N  (46)

Then, the average values for the slopes of latitude and the longitude are given by: 

1

2
+

= rL LN
L

K K
K  (47)

1

2
+

= rB BN
B

K K
K  (48)

(b) Calculate the distance between C1 and C3: 

( ) ( ) ( )2 2 2
1 3 1 3 1 3 1 3C C C C C C C CR x x y y z z= − + − + −  (49)

(c) As point T ’s projection point is 'T , the positions of T  and 'T  are ( ), ,γ ϕT T Th  and 

( )' ', , 0γ ϕT T , respectively. The rectangular space coordinates of point T  and point 'T  are 

( ), ,T T Tx y z  and ( )' ' ', ,T T Tx y z , respectively. Then calculate the distance between C1 and 'T . 

( ) ( ) ( )2 2 2
1 ' 1 ' 1 ' 1 'C T C T C T C TR x x y y z z= − + − + −  (50)

(d) Estimate point gC  on the straight line C1C3, whose geodetic coordinate ( ), ,0γ ϕ
g gC C  is given 

by: 

( )1 '
1

1 3

1γ γ= + −
g

C T
C C L a

C C

RK N
R  (51)

( )1 '
1

1 3

1ϕ ϕ= + −
g

C T
C C B a

C C

RK N
R

 (52)

The rectangular space coordinate for point gC  is ( ), ,
g g gC C Cx y z . Therefore, ' gT CR  and 1 gC CR  

can be expressed as: 

( ) ( ) ( )2 2 2

' ' ' 'g g g gT C T C T C T CR x x y y z z= − + − + −  (53)

( ) ( ) ( )2 2 2

1 1 1 1g g g gC C C C C C C CR x x y y z z= − + − + −  (54)

According to the cosine theorem, the angle ζ  can be given: 

2 2 2
1 1 ' '1

1 1 '

cos
2

ζ − + −
= C Cg C T T Cg

C Cg C T

R R R
R R

 (55)

Estimate the projection point vC  for point 'T  on the straight line 1 gC C . 

1 1 ' cosζ= ⋅
vC C C TR R  (56)

(e) From the ratio relationship, the azimuth time _i estt  of point T  can be derived: 

1
_ 1

1 3

int( )vC C
i est a line

C C

R
t t N t

R
= + ⋅ ⋅

 
(57)

where 1t  is the SAR image generation starting time, linet  is the imaging time interval of the SAR 
image, and int( )⋅  returns the integer part of a decimal number. 
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According to the geometry estimation, the estimated azimuth time _i estt  of point T  can be 
obtained, though it has an error that needs to be corrected. 
(f) Obtain point T ’s precise azimuth time it . Calculate the Doppler frequency at the estimated 

azimuth time _i estt  by Equations (9)–(11). 

( )( )_ _ _
2( ) ( ) ( )

λ
= − −V R R

  
D i est s i est s i est Tf t t t

R
 (58)

where _ _ _ _( ) ( ( ), ( ), ( ))s i est s i est s i est s i estt x t y t z t=V


   , _ _ _ _( ) ( ( ), ( ), ( ))s i est s i est s i est s i estt x t y t z t=R


, 

( ), ,T T T Tx y z=R


, _( )s i est TR t= −R R
 

. 

Similarly, we could obtain the Doppler frequencies at the first and last azimuth times for the 
point at the scene center. The Doppler frequency slope can be written as: 

_ _ 1( ) ( )
( 1)

−
=

−
aD cent N D cent

f
a

f t f t
K

N
 (59)

Therefore, the precise azimuth time it  can be obtained by the second estimation. 

_
_

( )
int 0.5D i est

i i est line
f

f t
t t t

K
 

= − + ⋅  
   

(60)

(g) Calculate the slant range of point T . 

( ) ( ) ( )2 2 2

_ _ _i i iT S t T S t T S tR x x y y z z= − + − + −  (61)

minint 0.5
r

R Rj
ρ

 −
= + 

 
 (62)

where ( )_ _ _, ,
i i iS t S t S tx y z  is the satellite position at the azimuth time it , rρ  is the range spacing. 

The proposed fast, three-dimensional, indirect geolocation method contains seven steps (a~g). 
By calculating the spatial geometric relationship between the four corner points and point T , the 
estimated azimuth time _i estt  can be obtained. Then, the precise azimuth time it  can be easily 
derived by Equations (58)–(60), and the pixel location in azimuth i  is acquired. Finally, by 
calculating the slant range of point T , the pixel location in range j  can be obtained. 

4. Experiments and Analyses 

4.1. Geolocation Results 

The proposed algorithm is tested with the TanDEM-X’s spotlight mode SAR image. All the 
parameters are listed in Table 1. The semimajor and semiminor axes are 6378137 m and 6356752.315 
m, respectively. The speed of light is 2.99792458E + 5 km/s. 

Table 1. TanDEM-X’s Parameters. 

Parameter Name Value Units 
Image size 6235 10808×  − 

Azimuth spacing 0.8705 m 
Range spacing 0.4547 m 

Slant range to the first pixel 706,315.7084 m 
Pulse repetition frequency 3720.4126 Hz 

Radar frequency 9649.998153 MHz 
The number of orbit state vectors 12 − 
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Date of acquisition(UTC) 20 December 2018 − 
Acquisition mode Spotlight − 

Producttype SSC_HS_S − 
Descending/Ascending Ascending − 

Look direction Right − 

First, we find the relevant DSM data according to the TanDEM-X SAR image, and ensure the 
gridded DSM is suitable to the resolution of the image. Then, all the steps are executed according to 
the algorithm process flowchart in Figure 4. 

Figure 6 shows the TanDEM-X SAR image geolocation results using the proposed algorithm in 
this paper. This figure gives the geolocation results in geodetic coordinates. Figure 6a provides the 
0.69 m × 0.53 m gridded DSM, whose accuracy is the same as elevation 1 [37]. It should be noted that 
the height of DSM data is orthometric height [38]. The proposed algorithm is deduced based on an 
ellipsoidal Earth model, which means that the height is ellipsoid height. The geoid height is the 
difference between the ellipsoid and geoid [38]. Therefore, we assume the ellipsoid height, the 
orthometric height, and the geoid height are recorded as ‘h’, ‘H’, and ‘N’, respectively. Considering 
that this experimental area is small, a geoid height at the scene center can replace the other geoid 
heights in the scene. The geoid height can be easily obtained through the EGM2008 Geopotential 
Model [39]. The three- and the two-dimensional images are given in Figure 6b,c, respectively. In 
Figure 6b, the geodetic latitude, geodetic longitude, and ellipsoid height are included for every pixel. 

 
(a) 
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(b) 

 
(c) 

Figure 6. The TanDEM-X SAR image geolocation results (M2). (a) DSM. (b) The three-dimensional 
image. (c) The two-dimensional image. 

Since the Qianxun Spatial Intelligence Inc. (Qianxun SI, Shanghai, China) offers a positioning 
service with centimeter-level accuracy (FindCM) for its customers, in this paper, the QianXun (QX) 
FindCM positioning results are used as the true positions. Two methods are used to compare the 
algorithm accuracy. Method 1 (M1) has no atmospheric propagation delay correction. Method 2 (M2) 
has atmospheric propagation delay correction, which includes tropospheric delay and ionospheric 
delay corrections. From Figure 2, it can be observed that the TEC map in Beijing is about 7.8 TECU. 
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The value of 7.8 TECU is essentially extracted from the IONEX file [29]. Using TEC and other 
parameters in Equation (39), the ionospheric delay of the TanDEM-X SAR image can be obtained. 
Figure 3 shows that the ZPD of Beijing area is 2.368 m. Using Equation (42), the tropospheric delay 
can be acquired. The proposed method can be easily proved in M1 and M2, with M2 obviously being 
a better choice than M1. 

Figure 7 presents the geolocation results for the Banshan Pavilion at Western Hills in Beijing 
which is picked up from Figure 6. The image size of Figure 7 is 1024 × 1024 pixels. Figure 7a,b are the 
two-dimensional images for M1 and M2, respectively. In order to see the eight check points (P1~P8) 
at the Banshan Pavilion clearly, the red windows in Figure 7a,b are enlarged and shown in Figure 
7c,d, respectively. The red windows in Figure 7a,b have the same longitude and latitude ranges. 
Compared with Figure 7c, the eight check points (P1~P8) at Banshan Pavilion in Figure 7d obviously 
shift several pixels longitudinally. 

(a) 
 

(b) 

 
(c) 

 
(d) 

Figure 7. The geolocation results for Banshan Pavilion at Western Hills in Beijing. (a) The two-
dimensional image for M1. (b) The two-dimensional image for M2. (c) The enlarged image for the red 
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window (Area 1 in Figure 6) in Figure 7a. (d) The enlarged image for the red window (Area 1 in Figure 
6) in Figure 7b. 

Figure 8 illustrates the geolocation errors for the Banshan Pavilion with these two methods. 
Figure 8a,c illustrate the geolocation errors in the north, east, and vertical displacements for M1 and 
M2, respectively. The red line with circle markers represents the north displacement, the green line 
with rectangle markers represents the east displacement, and the blue line with asterisks represents 
the vertical displacement. In Figure 8b,d, the red lines with blue triangle markers represent the three-
dimensional errors for M1 and M2, respectively. 

 
(a) (b) 

 
(c) (d) 

Figure 8. The geolocation errors for the Banshan Pavilion at Western Hills in Beijing with two 
methods. (a,c) are the geolocation errors in the north, east and vertical displacements for M1 and M2, 
respectively. (b,d) are the three-dimensional errors for M1 and M2, respectively. 

Table 2 presents the geolocation accuracy for the eight corner points. The QX positioning results 
are taken as the true positions for the eight check points. By comparing the geolocation results of M1 
(or M2) with QX, we can get the geolocation accuracy of the check points. As shown in Table 2, there 
are large displacements in east for M1, which are mainly due to atmospheric propagation delay in 
range. The displacements of the eight corner points in northing ( ΔN ), easting ( ΔE ), orthometric 
height ( ΔH ), and spatial ( Δ Spatial) are summarized in Table 2. The M1 geolocation errors are very 
large; the three-dimensional errors range from 3.76 m to 5.85 m. The M2 geolocation errors are smaller 
than those of M1, with three-dimensional errors ranging from 0.72 m to 1.60 m. 
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Table 2. The geolocation accuracy for the eight corner points. 

Check Points Δ N (m) Δ E (m) Δ H (m) Δ Spatial (m) 
P1-M1 1.0942 3.9758 −1.1020 4.2684 
P1-M2 0.4080 −0.2308 −0.5400 0.7151 
P2-M1 0.2842 4.1319 −1.2079 4.3143 
P2-M2 −0.4020 −0.0747 −0.8236 0.9195 
P3-M1 −0.0664 3.5610 −1.4886 3.8602 
P3-M2 −0.0664 −0.6456 −0.4571 0.7938 
P4-M1 0.6374 5.2201 −0.6411 5.2978 
P4-M2 0.6374 −0.0382 −0.8710 1.0800 
P5-M1 −0.0816 5.3240 −0.2730 5.3316 
P5-M2 −0.7678 −0.4600 −1.3277 1.6012 
P6-M1 −0.1002 3.6949 −0.6922 3.7605 
P6-M2 −0.7864 −0.5117 −0.3195 0.9912 
P7-M1 0.0063 4.3063 −0.2809 4.3155 
P7-M2 −0.6799 0.0998 −0.2821 0.7429 
P8-M1 0.1632 5.7325 1.1457 5.8481 
P8-M2 −0.5230 1.0001 0.7717 1.3672 

Figure 9 shows the geolocation results for the street lights and barriers located on Xingshikou 
Road in Beijing, taken from Figure 6. The image size of Figure 9 is 2048 × 2048 pixels. Figure 9a,b are 
the two-dimensional images for M1 and M2, respectively. The red windows in Figure 9a,b are 
enlarged, as shown in Figure 9c,d, respectively. So, the eleven check points for the street lights (P1~P5 
and P8~P11) and the street barriers (P6, P7) located on Xingshikou Road in Beijing can be clearly seen. 
The red windows in Figure 9a,b have the same longitude and latitude ranges. Compared with Figure 
9c, the eleven check points for the street lights (P1~P5 and P8~P11) and the street barriers (P6, P7) 
located on Xingshikou Road in Figure 9d have obviously shifted longitudinally by several pixels. 

 
(a) 

(b) 
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(c) (d) 

Figure 9. The geolocation results for the street lights and the street barriers located on Xingshikou 
Road in Beijing. (a) The two-dimensional image for M1. (b) The two-dimensional image for M2. (c) 
The enlarged image for the red window (Area 2 in Figure 6) in Figure 9a. (d) The enlarged image for 
the red window (Area 2 in Figure 6) in Figure 9b. 

Similar to Figure 8, Figure 10 shows the geolocation errors for the street lights and the street 
barriers located on Xingshikou Road with the two methods mentioned above. Figure 10a,c illustrates 
the geolocation errors in the north, east, and vertical displacements for M1 and M2, respectively. The 
red line with circle markers represents the north displacement, the green line with rectangle markers 
represents the east displacement, and the blue line with asterisks represents the vertical displacement. 
In Figure 10b,d, the red lines with blue triangle markers represent three-dimensional errors for M1 
and M2, respectively. 

 
(a) (b) 
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(c) (d) 

Figure 10. The geolocation errors for the street lights and street barriers located on Xingshikou Road 
in Beijing with two methods. (a,c) are the geolocation errors in the north, east and vertical 
displacements for M1 and M2, respectively. (b,d) are the three-dimensional errors for M1 and M2, 
respectively. 

Table 3 presents the geolocation accuracy for the street lights and street barriers. The QX 
positioning results are taken as the true positions for the eleven check points. By comparing the 
geolocation results of M1 (or M2) with QX, we can get the geolocation accuracy of the check points. 
As shown in Table 3, there are large displacements in east for M1, which are mainly due to 
atmospheric propagation delay in range. The displacements of the eight corner points in northing 
( ΔN ), easting ( ΔE ), orthometric height ( ΔH ), and spatial ( Δ Spatial) are summarized in Table 3. 
The M1 geolocation errors are very large; the three-dimensional errors range from 3.43 m to 4.80 m. 
The M2 geolocation errors are smaller than those of M1, with three-dimensional errors ranging from 
0.47 m to 1.69 m. 

Table 3. The geolocation accuracy for the street lights and the street barriers. 

Check Points Δ N (m) Δ E (m) Δ H (m) Δ Spatial (m) 
P1-M1 0.1944 3.7567 −0.7724 3.8402 
P1-M2 −0.4918 −0.9774 −0.9034 1.4189 
P2-M1 −0.0275 4.2506 −1.0030 4.3674 
P2-M2 −0.7137 −0.4836 −1.1060 1.4023 
P3-M1 0.2397 4.7571 −0.5951 4.8002 
P3-M2 −0.4465 0.0229 −0.1541 0.4729 
P4-M1 0.2034 4.3313 −0.5728 4.3737 
P4-M2 −0.4828 −0.9289 −0.8107 1.3240 
P5-M1 0.3324 4.6884 −0.7787 4.7642 
P5-M2 −0.3538 −0.0458 −0.5379 0.6455 
P6-M1 0.2901 4.3786 −1.1601 4.5390 
P6-M2 −0.3961 −0.8816 −1.3881 1.6915 
P7-M1 −0.0604 3.4302 0.0244 3.4308 
P7-M2 −0.7466 −1.3040 0.1605 1.5111 
P8-M1 0.6558 4.3651 −0.8153 4.4888 
P8-M2 −0.0304 −0.3691 −0.9421 1.0123 
P9-M1 0.5451 4.2038 −0.5918 4.2801 
P9-M2 −0.1411 −0.5304 −0.7880 0.9603 

P10-M1 0.1747 4.2544 −1.0270 4.3801 
P10-M2 −0.5115 −0.4798 −0.8043 1.0671 
P11-M1 0.0195 4.6897 −0.2976 4.6992 
P11-M2 −0.6667 −0.0445 −0.1763 0.6911 
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4.2. Computational Efficiency and Accuracy 

The computing platform used was a Thinkpad E570 (Lenovo group co., Ltd., Beijing, China) 
with Core i5-7200U at 2.5GHz, 8GB memory, solid state drive and running the Windows 7 operating 
system. In addition, the processing software used was MATLAB R2016b (The MathWorks, Inc., 
Natick, MA, USA). There are two geolocation experiments: (i) The gridded DSM with 1024 × 1024 
pixels, (ii) The gridded DSM with 2048 × 2048 pixels. All the geolocation experiments are tested with 
the TanDEM-X’s spotlight mode SAR image. The main parameters of the SAR image are shown in 
Table 1. 

The scale and processing time are shown in Table 4 to compare the proposed method (M2) to 
the traditional three-dimensional, indirect geolocation method. The traditional method needs to 
iterate different times according to different thresholds. In this experiment, the threshold of time 
difference is set to 0.0001 s. The proposed method is not an iterative method, so it is not necessary to 
set a threshold. 

It is apparent that the proposed fast, three-dimensional, indirect geolocation method is about 12 
times faster than the traditional three-dimensional, indirect geolocation method. 

Table 4. Computational burden. 

SN Scale Traditional Proposed 
i 1024 × 1024 59.15 s 4.69 s 
ii 2048 × 2048 232.82 s 18.58 s 

The mean errors of the three-dimensional geolocation for check points are shown in Table 5. The 
geolocation accuracy of the traditional method is the same as that of the proposed method within the 
scale of 1024 × 1024 and 2048 × 2048. 

Table 5. The mean errors of the three-dimensional geolocation for check points. 

SN Scale Traditional Proposed 
i 1024 × 1024 1.026 m 1.026 m 
ii 2048 × 2048 1.108 m 1.108 m 

5. Discussion 

This paper proposes a fast, three-dimensional, indirect geolocation method using IAGM and 
DSM data for spaceborne SAR images. The traditional indirect geolocation method based on DSM or 
DEM data is computationally complex to obtain the accurate azimuth time and slant range, because 
several iterations must be executed [8–10]. The proposed fast method includes two steps to obtain 
the accurate azimuth time, while keeping the geolocation accuracy. By utilizing the geometric relation 
between the four corner points and the target, it is easier to estimate the azimuth time. It has to be 
mentioned that the proposed method can be widely used in any kind of terrain including flat ground, 
hills, mountains etc. DSM refers to the height of ground surface, buildings, bridges and trees. But 
DEM contains only elevation information of the terrain, and does not contain other surface 
information. If there is any need for geolocation regarding buildings, bridges, and other ground 
surface information, DSM data must be used. 

A TanDEM-X SAR image is used to prove this fast, three-dimensional, indirect geolocation 
method without GCPs. Generally, the geolocation results have no atmospheric propagation delay 
correction; however, for some special requirements, such as accurate positioning, atmospheric 
propagation delay correction must be considered. Therefore, a fast, indirect geolocation method is 
used in such situations. In addition, M1 and M2 have the same computational complexity, and M2 
only increases the correction for slant range. The three-dimensional errors in range for the eight 
corner points at the Banshan Pavilion are 3.76 m to 5.85 m and 0.72 m to 1.60 m for M1 and M2, 
respectively. For the street lights and barriers located on Xingshikou Road, their three-dimensional 
errors in range are 3.43 m to 4.80 m and 0.47 m to 1.69 m for M1 and M2, respectively. M1 is a general 
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geolocation method that does not require additional data support. M2 includes atmospheric 
propagation delay correction, which needs the support of atmospheric data. It has been shown that 
this fast method can be generally used in spaceborne SAR images for indirect geolocation. It is about 
12 times faster than the traditional three-dimensional, indirect geolocation method. 

In the pursuit of accurate positioning, future research will consider the solid Earth tides, 
continental drift, and so on. 

6. Conclusions 

In this paper, a fast, three-dimensional, indirect geolocation method for spaceborne SAR images 
is proposed. It decreases the calculation time by avoiding several iterations, as used in the traditional 
indirect geolocating method. For precise geolocation of a SAR image, atmospheric propagation 
delays have been compensated, and the orthometric height of the DSM data has also been 
transformed to ellipsoidal height. Therefore, the geolocation could achieve accurate results within 2 
m from the true positions for the check points. It has been shown that the proposed method is reliable 
and efficient for geolocation using TanDEM-X’s spotlight mode SAR images. Moreover, this paper 
provides a method which can also be used in other spaceborne SAR systems, such as COSMO-
SkyMed, Radarsat, Sentinel etc. The accurate azimuth time can be calculated with less than one pulse 
repetition time (PRT) with very few errors compared to the traditional three-dimensional, indirect 
geolocation method. 
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