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Abstract: Flexible physiological medical devices have gradually spread to the lives of people,
especially the elderly. Here, a flexible integrated sensor based on Au nanoparticle modified copper
hydroxide nanograss arrays on flexible carbon fiber cloth (Au@Cu(OH)2/CFC) is fabricated by a facile
electrochemical method. The sensor possesses ultrahigh sensitivity of 7.35 mA mM−1 cm−2 in the linear
concentration range of 0.10 to 3.30 mM and an ultralow detection limit down to 26.97 nM. The fantastic
sensing properties can be ascribed to the collective effect of the superior electrochemical catalytic
activity of nanograss arrays with dramatically enhanced electrochemically active surface area as well
as mass transfer ability when modified with Au and intimate contact between the active material
(Au@Cu(OH)2) and current collector (CFC), concurrently supplying good conductivity for electron/ion
transport during glucose biosensing. Furthermore, the device also exhibits excellent anti-interference
and stability for glucose detection. Owing to the distinguished performances, the novel sensor shows
extreme reliability for practical glucose testing in human serum and juice samples. Significantly, these
unique properties and the soft structure of silk fabric can provide a promising structure design for a
flexible micro-device and a great potential material candidate of electrochemical glucose sensor.

Keywords: Cu(OH)2 nanograss; Au nanoparticles; glucose detection; flexible electrochemical biosensor

1. Introduction

Diabetes mellitus, also known as the disease of affluence, is caused by both genetic and environmental
factors. Currently, there is no radical cure for diabetes, but it can be controlled by various treatments.
It will cause many serious complications when not diagnosed and treated in time [1]. One effective
way to prevent such dire consequences is to monitor blood sugar levels accurately on a daily basis.
Therefore, a flexible glucose sensor with high reliability and portability is particularly important [2,3].
However, most studies have focused on the preparation and application of flexible glucose sensor
materials [4–7] and integrating flexible non-enzymatic glucose sensors has rarely been reported before.

For a flexible sensor, it is equally important to fabricate a flexible electrode material and a flexible
substrate such that the final sensor can be applied to a curved surface, e.g., a surface in the human
body. In this aspect, carbon fiber cloth is a very ideal electrochemical flexible substrate, which has
excellent electrical conductivity for deposition of active substances and soft structure of silk fabric to
meet wearable needs. In addition, its macroporous structure provides a fast transport path for ions
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and accelerates the diffusion of electrolytes in the electrode material [8]. More importantly, research
shows that electrochemical material electrodes using carbon fiber cloth as a substrate have a larger
electrochemically active surface area and higher utilization of active materials, compared to applying
other common substrates [9,10]. Based on the above, this paper selects and uses carbon fiber cloth as
the substrate to make flexible glucose sensors.

Enzyme glucose sensors have matured over three generations, but their own fatal shortcomings, such
as poor stability and high cost [11,12], have led to extensive research on non-enzyme glucose sensors [13,14],
for which non-enzymatic catalytic material is a most vital factor. Because the microstructures of catalytic
materials, including surface area, porosity, special structure, etc., have close contact with their
biocatalytic activity [15,16], various nanostructured catalytic materials for non-enzyme glucose sensors
have been widely studied, such as nanoporous metal (Au, Pt, Cu, etc. [17–19]) and metal oxides/
hydroxides (CuO, Ni(OH)2, Co3O4, etc. [20–23]) and nanocomposites (Pt-CuO, ZnO-CuO, Co3O4-PbO2,
etc. [9,24,25]). Among them, the nanocomposites of noble metal with the copper oxides are excellent
materials for non-enzymatic glucose sensors, due to it possessing the properties of stable, low cost
and high catalytic activity of copper oxides and its catalytic performance being further enhanced by
noble metal [3,24,26–28]. For copper-based non-enzyme glucose sensors, the possible electrocatalytic
mechanism of glucose oxidation has been attributed to the mediation by Cu(OH)2/CuOOH [29,30].
Thus, it can be better to fabricate copper hydroxide electrode materials instead of copper oxides for
glucose detection. However, there are only a few works on copper hydroxide electrode research
and they have also demonstrated improved catalytic performance for glucose [30–32]. Even more
regrettably, there is no nanocomposite material of noble metal–copper hydroxide. In addition, the noble
metal–copper oxides sensing catalyst is fabricated by a one step chemical process and immobilized on
hard substrates such as the screen printed electrodes and glassy carbon electrodes [24,27,28]. But the
chemical syntheses are usually energy-consuming and could result in impurities that hinder glucose
sensing [6]. In contrast, the electrochemical synthesis provides a facile method to fabricate the oxides
and hydroxides of copper and deposit noble metal on the flexible substrates [20,33,34].

In this paper, we produced flexible electrodes on carbon fiber cloth (CFC) by a facile electrochemical
method, such as the working electrode of Au nanoparticle modified copper hydroxide nanograss arrays
(Au@Cu(OH)2/CFC), counter electrode of Pt/CFC and reference electrode of Ag/AgCl/CFC. Compared
to the previous chemical method [35–37], this method greatly shortens the electrode preparation
time, saves energy and especially makes the electrochemical material pure. Moreover, the three
electrodes are assembled on a polytetrafluoroethylene (PTFE) film simultaneously to make a flexible
micro-sensor. The novel sensor possesses excellent performance in glucose sensing. Significantly,
the sensor possesses flexible properties and shows ultrahigh sensitivity of 7.35 mA mM−1 cm−2 in
the linear glucose concentration range of 0.10 to 3.30 mM. Meaningfully, the obtained device shows
extreme reliability for practical glucose testing in human serum and juice samples, which makes it a
good application prospect for flexible non-enzyme glucose sensors.

2. Materials and Methods

2.1. Reagents and Chemicals

Carbon fiber cloth (CFC) was purchased form Kunshan Tengerhui Electronic Technology Co., Ltd.
(W0S1002). Copper (II) pyrophosphate (Cu2P2O7), potassium pyrophosphate (K4P2O7), ammonium
citrate (C6H17N3O7), citric acid (C6H8O7), Na2SO4, HCl (36%) and KOH were purchased from Xilong
Chemical Co., Ltd. (Guangzhou, China). Chloroauric acid (HAuCl4), chloroplatinic acid (H2PtCl6),
potassium chloride (KCl), β-D-glucose (glucose), uric acid (UA, > 99%), dopamine (DA, > 98%), ascorbic
acid (AA, > 99%), maltose, fructose, cysteine (Cys) and 4-acetamidophenol (4-AP) were received from
Aladdin Company. AgNO3, Na2S2O3·5H2O, K2S2O5, NH4Ac and CH5N3S were purchased from Mclin
Biochemical Technology Co., Ltd. All chemicals were of analytical grade without further purification.
The human serum sample was obtained from Beijing Solarbio Science & Technology Co., Ltd. (Beijing,
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China) and the mulberry drink (Bosun) was purchased from a supermarket. Poly-tetra prone (PTFE)
film and nano-double-sided tape were purchased from Jincheng Plastic Co., Ltd. and Qichen Office
Supplies (Shenzhen) Co., Ltd., respectively.

2.2. Preparation of Cu/CFC

Firstly, carbon fiber cloth was immersed in 68% nitric acid at 90 ◦C for 30 min and then immersed
into a 1 M KOH solution for 10 min to improve hydrophilic and remove organic binder on its surface.
Then the processed carbon fiber cloth was stored in ethanol solution for later electrodeposition. Finally,
the Cu film was electrodeposited on the processed carbon fiber cloth under 4 ASD (A dm−2) at 35 ◦C for
15 min and with a continuous stirring of 300 rpm, in which the copper plating solution was composed
of 65 g L−1 Cu2P2O7, 380 g L−1 K4P2O7 and 22.5 g L−1 C6H17N3O7; the pH should be adjusted to 8.8
with citric acid.

2.3. Preparation of Au@Cu(OH)2/CFC, Pt/CFC and Ag/AgCl/CFC

The subsequent preparations were performed in a three-electrode system at 25 ◦C, in which
commercial Pt foil and an Ag/AgCl (3 M KCl) electrode were used as counter electrode and reference
electrode, respectively. After being washed with deionized water, the Cu/CFC electrode was immersed
into 50 mL 1 M KOH solution and then immediately scanned three times with a linear sweep
voltammetry (LSV) under the potential range from −0.40 to 0.40 V at 3 mV s−1 to oxidize the Cu on
the CFC to Cu(OH)2. Then, the obtained Cu(OH)2/CFC electrode, after being rinsed with pure water,
was put into a solution containing 1 mM HAuCl4 and 0.1 M KCl under a constant potential of−0.20 V for
180 s to electrodeposit Au nanoparticles to the surface of Cu(OH)2/CFC, that is, the Au@Cu(OH)2/CFC
electrode was obtained. The synthesized processes were also illustrated in the scheme of Figure 1 and
Figure S1 shows the corresponding optical images, from which it can be found that the color of the
electrodes changes significantly at each stage (except the process of Au deposition). For comparison,
an Au/CFC electrode was also prepared by employing the same electrodeposition procedure on
CFC directly.

Figure 1. Schematic illustration of the fabrication process for the Au nanoparticle modified copper
hydroxide nanograss arrays on flexible carbon fiber cloth (Au@Cu(OH)2/CFC) electrode and the
corresponding detection mechanism.

In our previous work, we fabricated a Pt counter electrode and an Ag/AgCl reference electrode [3,38].
In this paper, the same electrochemical method was used to fabricate the Pt/CFC and Ag/AgCl/CFC.
It is worth noting that after open circuit potential testing the Ag/AgCl/CFC electrode can be fully usable
(Figure S2, Appendix A).
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The obtained Cu(OH)2/CFC, Au@Cu(OH)2/CFC, Pt/CFC and Ag/AgCl/CFC should be stored at 60 ◦C
in a constant temperature dryer after washing with pure water and the subsequent drying procedure.

2.4. Preparation of the Flexible Integrated Sensor Device

As shown in Figure S3, the original blank electrodes used here are flexible carbon fiber cloth,
including the working electrode with a size of 30 mm × 5 mm and leaving a 5 mm × 5 mm area to load
the nanocomposites (Au@Cu(OH)2), the reference electrode with a size of 30 mm × 2.5 mm and leaving
a 5 mm × 2.5 mm area to be loaded with Ag/AgCl and the counter electrode in a seven formation
with a size of 32 mm × 2.5 mm as well as 9.5 mm × 2.5 mm and leaving 5 mm × 2.5 mm as well as a
5 mm × 2.5 mm area to be plated with Pt. After the three electrodes are fabricated, they are assembled
on a poly-tetra prone (PTFE) film with a size of 40 mm × 20 mm at equal intervals of 2 mm. Then,
another PTFE film with special openings (load material area of three electrodes) is laminated on it with
nano-double-sided tape. In this way, a flexible micro-glucose sensor is obtained, the optical images of
which can be seen in Figure S4.

2.5. Characterizations and Electrochemical Measurement

The surface morphologies of the electrodes were examined by Field Emission Scanning Electron
Microscopy (SEM, Hitachi, SU8010, 10 keV) equipped with an energy dispersive spectrometer (EDS,
IXRF). X-ray diffraction (XRD, Rigaku D-MAX 2200 VPC, Cu-Kα) was used to characterize the crystal
structure of each sample. X-ray photoelectron spectroscopy (XPS) was collected with K-ALPHA+

spectroscopy using a monochromatic Al Kα X-ray source (1486.6 eV photons). Chronoamperometry
(CA), linear sweep voltammetry (LSV), cyclic voltammetry (CV) and electrochemical impedance
spectroscopy (EIS) were performed by Gamry Reference 600. In addition, all electrochemical tests
were made in the three-electrode integrated system, in which the Au@Cu(OH)2/CFC, Cu(OH)2/CFC,
Au/CFC and CFC electrodes prepared on the device were used as working electrodes, respectively.
The as-prepared Pt electrode and Ag/AgCl/CFC electrode were, respectively, the counter electrode
and reference electrode. It should be noted that in electrochemical tests, the area outside the working
portion of the three electrodes is covered with Teflon tape to prevent the device from being damaged
by the test solution. The volume of different solutions (with 0.01 M KCl inside to maintain the stability
of the reference electrode) for all electrochemical tests are 50 mL and the components of each test
solution were presented in the corresponding test section. In this paper all potentials were referenced
to an as-prepared Ag/AgCl/CFC electrode and all LSV test potentials range from −0.3 V to 0.8 V unless
otherwise stated. Besides this, all the CA tests were carried out with a continuous stirring of 200 rpm
to allow the analyte to diffuse rapidly.

3. Results and Discussion

3.1. Characterizations of the Au@Cu(OH)2/CFC Sensor

Figure 2A,B shows the SEM images of pre-treated carbon fiber cloth and Cu/CFC, respectively.
Obviously, the copper film is plated on CFC successfully and the deposited copper is a layer of coarse
copper particles, which can greatly increase the contact area between the copper film and the electrolyte
solution. Cu(OH)2 arrays with a diameter about 100–280 nm and length of 1.5–2.0 µm show grass-like
morphology on the surface of CFC (Figure 2C), which was converted from Cu/CFC by repeatedly
scanning with LSV. The grass morphology structure significantly increased the space of Cu(OH)2/CFC
and the possibility of providing more active sites [39]. Subsequently, Cu(OH)2/CFC was decorated
with a tiny amount of Au nanoparticles by chronoamperometry (Figure 2D). Even after deposition of
Au, the final Au@Cu(OH)2/CFC electrode still exhibits well-defined nanograss structure and the Au
nanoparticles are distributed in the middle and lower parts of Cu(OH)2 nanograss, as seen from the
inset of Figure 2D. As seen from Figure S5, both the obtained Pt/CFC and Ag/AgCl/CFC have a rough
but very uniform structure.
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Figure 2. High-magnification SEM images of (A) CFC, (B) Cu/CFC and (C) Cu(OH)2/CFC, (D) Low-
magnification SEM image of Au@Cu(OH)2/CFC (Inset is the partial enlarged view), EDX elemental
mapping images of (E) Cu, (F) O and (G) Au corresponding to (D).

To further ascertain the detailed composition and the crystal structure of the synthesized materials,
EDS, XRD and XPS were performed. EDS element mapping images in Figure 2E–G demonstrate a
uniform distribution of Cu, O and Au elements on the Au@Cu(OH)2/CFC. Figure S6A,B presents the
typical EDS spectrums of Cu/CFC and Au@Cu(OH)2/CFC, with the core element compositions listed as
insets. It is obvious that the atomic ratio of Cu to O elements is changed from about 22:5 (Figure S6A)
to about 7:10 (Figure S6B), indicating a significant oxidation process on the Cu/CFC. Moreover, the Au
element with an atom content of 4.30% (Figure S6B) verifies the presence of Au on the electrode surface.
It is worth adding that the signal of C is mainly from the substrate (CFC).

To avoid strong signal interference from the CFC substrate, a copper plate was chosen instead
of it to be the substrate of Au@Cu(OH)2 for the XRD test. The XRD pattern of the Au@Cu(OH)2/Cu
plate is recorded in Figure S6C, which is magnified in Figure S6D to interpret its plate pattern in a
better manner. As shown in Figure S6D, there are seven diffraction peaks in the Au@Cu(OH)2/Cu
plate at 16.7◦, 23.8◦, 34.1◦, 35.8◦, 38.0◦, 39.8◦ and 53.2◦ corresponding to the (020), (021), (002), (011),
(041), (130) and (150) crystal planes of Cu(OH)2 (JCPDS NO. 80-0656), respectively. The peaks at 38.2◦,
44.5◦ and 64.7◦ correspond to the (111), (200) and (220) crystal planes of the cubic form of Au (JCPDS
NO. 65-8601), respectively. Moreover, the three major peaks at 43.3◦, 50.4◦ and 74.1◦ correspond to
the (111), (200) and (220) crystal planes of Cu (JCPDS NO. 04-0836), respectively. To further confirm
the material composition of the Au@Cu(OH)2/CFC, the XPS analysis was conducted. As shown in
the full spectrum survey in Figure 3A, the Cu, O, C and Au elements exist in this sample. As shown
in Figure 3B, the two peaks at 954.21 and 934.27 eV correspond to the Cu 2p1/2 and Cu 2p3/2 of the
oxidized Cu(II) species, respectively, and the satellite peaks indicate the presence of high-spin Cu(II)
ions [40]. It can be inferred that these Cu 2p peaks are consistent with Cu(OH)2 [41,42]. Figure 3C is
the high-resolution XPS spectra of O 1s, in which a well-resolved O 1s peak is observed at 532.06 eV
that further confirms the existence of Cu(OH)2 [43]. In addition, the binding energies of the doublet for
Au 4f7/2 (83.84 eV) and Au 4f5/2 (87.48 eV) shown in Figure 3D are characteristic of Au (0) [44], which
affirms that Au nanoparticles are decorated on the electrode as a pure element.
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Figure 3. XPS spectra of Au@Cu(OH)2/CFC; (A) full spectrum survey; (B) Cu 2P; (C) O 1s; (D) Au 4f.

3.2. Mechanism of Electrode Fabrication and Glucose Oxidation

Figure S7A presents the LSV curves of fabricating Cu(OH)2/CFC electrodes. In the present conditions,
the surface of the copper film is free of oxide at potentials negative of about -0.4 V and no Cu(III) species
produce [45]. Obviously, there exist two anode peaks at around -112 mV (peak A) and 80 mV (peak B),
which correspond to the oxidation processes of Cu to Cu(I) and Cu(I) to Cu(II), respectively [33,46].
The strength of both peaks drops sharply on the second and the third LSV curves, indicating that
the conversions of copper to oxide are basically completed. The corresponding mechanism can be
explained as follows:

Peak A : Cu + OH− → CuOH + e− (1)

2 CuOH ↔ Cu2O + H2O (2)

Peak B : CuOH + OH− → Cu(OH)2 + e− (3)

Cu2O + 2 OH− + H2O → 2 Cu(OH)2 + 2e− (4)

The electrocatalytic activity of the composite material was first studied by the LSV. Figure S7B
presents the LSV curves of the Cu(OH)2/CFC and Au@Cu(OH)2/CFC sensor devices in a 0.1 M KOH
solution without and with 1 mM glucose, respectively. In the presence of glucose, a well-defined
anodic peak appears at the potential of near 0.6 V for both Cu(OH)2/CFC and Au@Cu(OH)2/CFC
devices, indicating an obvious process of glucose oxidation [47]. The LSV curves of Au@Cu(OH)2/CFC,
Cu(OH)2/CFC, Au/CFC and CFC devices in 0.1 M KOH with 1 mM glucose are shown in Figure 4A;
Cu(OH)2/CFC shows a strong response to glucose and has a distinct anodic peak, indicating the
effective catalytic activity of Cu(OH)2. Similarly, Au@Cu(OH)2/CFC shows a stronger response starting
from around 0.2 V. Moreover, there is an anodic peak in Au/CFC at around 0.5 V, consistent with our
previous study that nanoporous Au catalyzes glucose in the around range of 0.2 to 0.52 V [38]. In order
to further study the role of gold nanoparticles in nanocomposites, the electrochemically active surface
areas (ECSA) and the impedances of the composite electrodes were measured.

ECSA proportional to the double layer capacitance (Cdl) is usually used to evaluate the active
sites of the electrocatalyst [48,49]. Herein, the Cdl was obtained by the CV method (Figure S8A,B)
in 0.1 M KOH at various scan rates (10–50 mV s−1) with the corresponding cyclic voltammograms
−0.20 to −0.10 V where the current changes are due to the charges of the double layer [50]. Figure S8C
shows the linearly fitted relationships between ∆j−0.15V and v of Cu(OH)2/CFC and Au@Cu(OH)2/CFC.
Obviously, the Cdl of Au@Cu(OH)2/CFC (1.0804 mF cm−2) is much larger than that of Cu(OH)2/CFC
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(0.4339 mF cm−2), which suggests the higher ECSA of Au@Cu(OH)2/CFC and further demonstrates
that the Au nanoparticles greatly help increasing the catalytic active sites [48,50]. Figure S8D shows
the Nyquist plots of Cu(OH)2/CFC and Au@Cu(OH)2/CFC electrodes in the frequency range from 10−1

to 105 Hz and the measurement was conducted in 5 mM K3[Fe(CN)6]/K4[Fe(CN)6] with a 0.1 M KCl
supporting electrolyte. It can be found that both Nyquist plots consist of a semicircle portion at high
frequencies and a linear portion at low frequency ranges that correspond to the electron-transfer limited
and diffusion limited processes, respectively [51]. The inset represents the equivalent Randle circuit for
the two cases and the Rct (charge-transfer resistance) of the Au@Cu(OH)2/CFC (Rct = 12.03 Ω cm2) is
found to be much lower than that of the Cu(OH)2/CFC (Rct = 27.72 Ω cm2). This indicates that the
modification of Au can significantly enhance the charge transfer ability of the electrode during the
electrocatalytic process [52].

Above all, the electrocatalytic process for glucose oxidation on the Au@Cu(OH)2/CFC electrode is
mediated by the Cu(II)/Cu(III) and Au(0)/Au(I) redox couples, as expressed in Equations (5)–(8) [31,38,53].
During anodic scan in an alkaline medium, the Cu(OH)2 and Au are first electrooxidized to CuOOH
and Au(OH)ads active intermediates. Then they could oxidize glucose to gluconic acid after the
addition of glucose.

Cu(OH)2 + OH− → CuOOH + e− + H2O (5)

Au + OH− → Au(OH)ads + e− (6)

2 CuOOH + C6H12O6 (Glucose) + H2O → C6H12O7 (Glucose acid) + 2 Cu(OH)2 (7)

2 Au(OH)ads + C6H12O6 (Glucose) → C6H12O7 (Glucoseacid) + 2 Au + H2O (8)

3.3. Non-Enzymatic Glucose Electrochemical Performance of an Au@Cu(OH)2/CFC Sensor

Figure 4B displays the LSV curves of the Au@Cu(OH)2/CFC in 0.1 M KOH with different concentrations
of glucose (ranging from 0 to 3.0 mM) at a scan rate of 50 mV s−1. The response current enhances
obviously following the increase of the glucose concentration, which indicates a good catalytic effect
of Au@Cu(OH)2/CFC towards glucose [54]. The LSV curves of Au@Cu(OH)2/CFC in 0.1 M KOH
with 1 mM glucose at different scan rates (from 5 to 110 mV s−1) are depicted in Figure 4C. Obviously,
the anodic peak current increases as the scan rates increases. In addition, the oxidation peak current
density j (mA cm−2) against square root of scan rate ν (mV s−1) shows a brilliant linear relationship
(Figure 4D) which can be expressed as: j = 0.4966*ν1/2+ 0.3171 (R2 = 0.9958). The relationship
suggests that the electrochemical behavior of glucose oxidation on Au@Cu(OH)2/CFC is controlled by
a diffusion process.

As can be seen from Equations (5) and (6), the OH− plays an important role in the catalytic
oxidation of glucose. Therefore, different concentrations of KOH solutions (ranging from 0.01 to
1.00 M) were researched by CA tests with the addition of 0.1 mM glucose at 0.60 V to optimize the
sensing performance of the Au@Cu(OH)2/CFC (Figure S9A). The results demonstrate that the optimal
concentration of KOH is 0.1 M. After a similar screening experiment, the optimized test potential for
the CA tests is determined to be 0.60 V (Figure S9B). Hence, a 0.10 M KOH solution and 0.60 V are
selected as the optimal electrolyte and test potential, respectively, for all the subsequent CA tests.

Figure 5A presents the chronoamperometric response curve of an Au@Cu(OH)2/CFC sensor
towards the successive addition of glucose. For ease of observation, the current response curve of
Au@Cu(OH)2/CFC to low concentrations of glucose is inserted in Figure 5A. It can be easily found
that an Au@Cu(OH)2/CFC sensor device has a current response sensitive to glucose even diluted
to 0.1 µM, and the current response exhibits a linear relationship towards the addition of glucose
(Figure 5B). In order to explore the exact upper limit of the linear range, the chronoamperometric
response of Au@Cu(OH)2/CFC towards the successive additions of 0.1 mM glucose was measured
(Figure 5C). As shown in Figure 5D, the current response is linearly enhanced up to 3.3 mM; after that,
the enhancement of the current response is gradually weakened. The linear relationship between the
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current density j (mA cm−2) and the corresponding glucose concentration c (mM) can be calculated by
the equation: j = 7.5983 c + 0.0896 with correlation coefficients of 0.9974. Therefore, the sensitivity of
the Au@Cu(OH)2/CFC electrode towards glucose detection is 7.5983 mA mM−1 cm−2 and the limit of
detection (LOD) can be calculated to be 26.97 nM (S/N = 3) by the criteria formula of LOD = 3δb/m,
where δb is the standard deviation (7.15 × 10−5 mA cm−2) of the blank sample and m is the sensitivity
of the electrode [51].

Figure 4. (A) Linear sweep voltammetry (LSV) curves of the bare CFC, Au/CFC, Cu(OH)2/CFC,
Au@Cu(OH)2/CFC at a scan of 50 mV s−1 in 0.1 M KOH with 1.0 mM glucose. (B) LSV curves of
Au@Cu(OH)2/CFC at different glucose concentrations (from 0.5 mM to 3.0 mM). (C) LSV curves of
Au@Cu(OH)2/CFC at a scan rate of 5–110 mV s−1 in 0.1 M KOH with 1.0 mM glucose. (D) Relationship
between square scan rate and the anodic peak currents, among which the maximum relative standard
deviation (RSD) is 2.04%. The arrows along the LSV curves represent the direction of scanning.

Figure 5. (A) Chronoamperometric response of Au@Cu(OH)2/CFC towards the successive additions
of different concentrations of glucose. (B) The corresponding calibration curve of Figure A. (C)
Chronoamperometric response of Au@Cu(OH)2/CFC towards the successive additions of 0.1 mM
glucose. (D) The calibration curve for chronoamperometric response to glucose concentration in the
high concentration range (corresponding to Figure C), among which the maximum RSD is 5.1%.
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Table S1 lists the glucose catalytic performances of the Au@Cu(OH)2/CFC sensor device and some
other composites materials. Obviously, compared to the commonly used non-electrochemical methods
for detecting glucose, the Au@Cu(OH)2/CFC sensor has the advantages of better sensitivity, faster
response and being more economical. Furthermore, our device also shows much better sensitivity and
a lower detection limit in comparison to these similar electrocatalyst materials. Thus, it is a promising
candidate for the application of the three-electrode integrated device structure and Au@Cu(OH)2/CFC
nanocomposite on glucose detection.

3.4. Selectivity, Stability and Reproducibility of the Au@Cu(OH)2/CFC Sensor

Selectivity is also a significant indicator of Au@Cu(OH)2/CFC for glucose detection. Hence, various
conventional organic and inorganic ions were selected for an anti-interference test of Au@Cu(OH)2/CFC
for glucose detection. The general glucose concentration in humans is fairly higher than that of the
coexisting interferences such as maltose, fructose, UA, DA, AA, Cys and 4-AP [15], so the concentration
of each interference (0.01 mM) was selected to be one tenth of the glucose concentration (0.1 mM) for the
anti-interference test (Figure 6A). In addition, high concentrations (1.00 mM) of KCl and Na2SO4 were
added to determine the anti-interference ability of Au@Cu(OH)2/CFC to conventional inorganic ions.
As the results show in Table S2, the signals of organic interferences are less than 4%, and the response
signal to inorganic substances is smaller (less to 2%). This test demonstrates that the Au@Cu(OH)2/CFC
is highly selective for glucose detection and is almost unaffected by conventional inorganic ions (K+,
Na+, Cl−). Figure 6B presents the continuous chronoamperometric response of Au@Cu(OH)2/CFC
towards 0.1 M glucose to measure the long-term operation ability of the electrode for glucose detection.
The result expounds that Au@Cu(OH)2/CFC can keep a stable current response for over 3000 s with
only 6.28% decay. Moreover, the same Au@Cu(OH)2/CFC sensor was tested in the same concentration
of glucose solution at the same time every two days and it could keep with a stable performance for
nine days, as demonstrated in the inset of Figure 6B. Thus, our Au@Cu(OH)2/CFC glucose sensor
has potential in practical applications with stable performance. The folded stability of the flexible
device was further tested. As presented in Figure 6C, it shows nearly no change in the response to
glucose after 1000 folded cycles, demonstrating the excellent flexible capacity of the obtained sensor.
Five pieces of the Au@Cu(OH)2/CFC sensor were fabricated using the same preparation process and
their chronoamperometric responses towards 0.1 mM glucose are collected in Figure S6D to study the
reproducibility. The low relative standard deviation (RSD) of 4.55% firmly certifies the reliability of the
preparation process.

3.5. Real Sample Analysis

To evaluate the capability of the Au@Cu(OH)2/CFC sensor for practical determination, the device
was used to detect the glucose concentrations of human serum samples and mulberry drink by the
standard addition method [55]. Before the test, the mulberry drink was centrifuged at 5000 rpm
for 30 min and then the serum and mulberry juice were separately diluted 500-fold and 50,000-fold
with 0.1 M KOH to reduce the matrix effect [56]. Finally, the glucose concentration of human serum,
mulberry drink and the spiked samples (the mulberry drink samples with added known concentrations
of glucose) were measured. From the results listed in Table 1, good recoveries from 92.09% to 97.89%
with low RSDs (0.75% to 1.02%) are achieved for mulberry juice detection. Besides this, the glucose
concentration of human serum samples measured by an Au@Cu(OH)2/CFC sensor is consistent with
the values detected by a blood glucose meter (SANNUO GA-3, Sinocare Inc., Changsha). These results
indicate that the Au@Cu(OH)2/CFC sensor is excellently reliable in actual glucose detection.
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Figure 6. (A) Chronoamperometric response of Au@Cu(OH)2/CFC sensor toward the addition of 0.1 mM
glucose and various interfering species. (a–i are Maltose, Fructose, UA, AA, DA, Cys, 4-AP, KCl and
Na2SO4, respectively). (B) Long-term stability tests of the Au@Cu(OH)2/CFC sensor in 0.1 M KOH and
0.01 M KCl solution containing 0.1 mM glucose for over 3000 s and 9 days (inset). (C) Folded stability
test of the Au@Cu(OH)2/CFC sensor; inset shows the repeating folded and recovery process (j is current
response density of the original sensor and j0 is current response density of the folded sensor). (D) The
chronoamperometric current response of five pieces Au@Cu(OH)2/CFC towards 0.1 mM glucose.

Table 1. The detection of glucose concentrations in the human serum sample and mulberry drink.

Samples Reference Values
(mM)

Added Glucose
(mM)

Au@Cu(OH)2/CFC c

(mM)
Recovery

(%)
RSD

(%, n = 3)

Mulberry juice 670.68 a 400.00 1030.83 ± 8.22 92.09 0.75
800.00 1439.60 ± 15.23 97.89 1.02

Human serum 5.4 b - 5.37 99.44 0.81
a Measured by standard addition method, b measured by blood glucose meter (GA-3), c expressed as “mean value ±
standard deviation”.

4. Conclusions

In this paper, the flexible Au@Cu(OH)2/CFC, Pt/CFC and Ag/AgCl/CFC electrodes were successfully
synthesized by simple electrochemical deposition and oxidation methods. And a flexible three-electrode
integrated portable glucose sensor was successfully fabricated, which consists of Au@Cu(OH)2/CFC as
the working electrode, Pt/CFC as the counter electrode and Ag/AgCl/CFC as the reference electrode.
Due to the following reasons, (I) Cu(OH)2 nanograss arrays possess superior electrochemical catalytic
activity for glucose sensing; (II) the modification of the Au nanoparticles accelerates the charge
transfer and increases the electrochemically active surface area of the nanograss arrays, providing more
catalytic active sites during the electrocatalytic process in an alkaline environment; (III) intimate contact
between the active material (Au@Cu(OH)2) and current collector (CFC) with a macroporous structure
supplies good conductivity for electron/ion transport, the sensor exhibited very high sensitivity of
7.35 mA mM−1 cm−2, low limit of detection of 26.97 nM (S/N = 3), superb selectivity and considerable
stability towards glucose detection. Additionally, the Au@Cu(OH)2/CFC flexible portable sensor shows
excellent flexible capacity and good reliability in actual glucose detection. All in all, the novel sensor
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can provide a promising structure design for a flexible micro-device and is a great potential material
candidate of an electrochemical sensor for glucose sensing.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/22/5055/s1,
Figure S1: Optical images of (A) CFC, (B) Cu/CFC, (C) Cu(OH)2/CFC (D) Au@Cu(OH)2/CFC, Figure S2: Open
circuit potential (OCP) between deposited Ag/AgCl/CFC electrode and a commercial Ag/AgCl (3 M KCl) reference
electrode in electrolyte solution with 0.1 M KOH and 0.01 M KCl, Figure S3: Schematic illustration of the
fabrication process for the flexible micro glucose sensor, Figure S4: Optical images of the (A) original and (B)
folded flexible micro glucose sensor, Figure S5: Low-magnification SEM images of (A) Ag/AgCl/CFC and (B)
Pt/CFC, and High-magnification SEM images of (C) Ag/AgCl/CFC and (D) Pt/CFC, Figure S6: EDS patterns of (A)
Cu/CFC and (B) Au@Cu(OH)2/CFC, XRD patterns of (C) Au@Cu(OH)2/Cu plate and (D) The magnification of
(C), Figure S7: LSV curves of (A) fabricating Cu(OH)2 samples, from −0.4 V to 0.4 V with 3 mV s−1 sweeping
rate in 1 M KOH resolution for three times, (B) the Cu(OH)2/CFC and Au@Cu(OH)2/CFC sensors in 0.1 M
KOH and 0.01 M KCl solution without and with 1 mM glucose, Figure S8: CVs for (A) Cu(OH)2/CFC and (B)
Au@Cu(OH)2/CFC sensors with different scan rates( 10–50 mV s−1) in 0.1 M KOH and 0.01 M KCl solution,
(C) The capacitive current densities-scan rates calibration plots of the two sensors at −0.15 V (∆j−0.15V = (ja −
jc)/2), (D) Nyquist plots of Cu(OH)2/CFC and Au@Cu(OH)2/CFC sensors in 0.1 M KCl electrolyte with 5 mM
K3[Fe(CN)6] and 5 mM K4[Fe(CN)6], inset is equivalent Randle circuit for the two cases, Figure S9: (A) The
line chart of chronoamperometric current response of Au@Cu(OH)2/CFC towards 0.10 mM glucose in different
concentration KOH (0.01 to 1.00 M) and 0.01 M KCl solution at 0.60V. The maximum RSD is 2.8%. (B) The
chronoamperometric current response of Au@Cu( OH)2/CFC towards 0.10 mM glucose in 0.1 M KOH and 0.01 M
KCl solution at different potentials (ranging from 0.30 to 0.65 V), Table S1: The comparison of glucose sensing
performances based on various composites which reported previously. SPE: screen printed electrode, GCE: glassy
carbon electrode, rGO: reduced graphene oxide, PGF: porous graphene foam, MWCNTs: multi-walled carbon
nanotubes array, Table S2: Table S2. Influence of common interfering species on the determination of glucose with
Au@Cu(OH)2/CFC in 0.1 M KOH and 0.01 M KCl solution.
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Appendix A

A detailed description of the open circuit potential test mentioned in Section 2.3.
According to the Nernst equation, the relationship between EAg/AgCl and chloride ions activity

ACl
− (25 ◦C) can be described as the equation: EAg/AgCl (mV) = 222 − 59 lgACl

−. Generally, ACl
− was

replaced by chloride ion concentration CCl
− for approximate calculation. Thus, the theoretical value of

the electric potential difference between the prepared Ag/AgCl/CFC (0.01 M KCl) and the commercial
Ag/AgCl (3 M KCl) reference electrode was calculated to be 146 mV, which could be described as the
equation: EAg/AgCl (3 M KCl, mV) = EAg/AgCl (0.01 M KCl) − 146. In order to study the availability of the
prepared Ag/AgCl/CFC, an open circuit potential (OCP) test was performed in a two-electrode system,
in which the obtained Ag/AgCl/CFC worked as the working electrode and the commercial Ag/AgCl
(3 M KCl) reference electrode worked as the counter and reference electrode. As seen from Figure
S2, the OCP finally kept steady at 141.6 mV with less than 0.5 mV variation. This result is consistent
with the theoretical value, which strongly confirms the availability of the prepared Ag/AgCl/CFC
reference electrode.
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