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Zbigniew Wiśniewski, Robert Duchnowski * and Andrzej Dumalski

Institute of Geodesy, University of Warmia and Mazury in Olsztyn, 1 Oczapowskiego St., 10-957 Olsztyn,
Poland; zbyszekw@uwm.edu.pl (Z.W.); andrzej.dumalski@uwm.edu.pl (A.D.)
* Correspondence: robert.duchnowski@uwm.edu.pl

Received: 18 October 2019; Accepted: 18 November 2019; Published: 19 November 2019 ����������
�������

Abstract: Sets of geodetic observations often contain groups of observations that differ from each
other in the functional model (or at least in the values of its parameters). Sets of observations obtained
at various measurement epochs is a practical example in such a context. From the conventional point
of view, for example, in the least squares estimation, subsets in question should be separated before
the parameter estimation. Another option would be application of Msplit estimation, which is based on
a fundamental assumption that each observation is related to several competitive functional models.
The optimal assignment of every observation to the respective functional model is automatic during
the estimation process. Considering deformation analysis, each observation is assigned to several
functional models, each of which is related to one measurement epoch. This paper focuses on the
efficacy of the method in detecting point displacements. The research is based on example observation
sets and the application of Monte Carlo simulations. The results were compared with the classical
deformation analysis, which shows that the Msplit estimation seems to be an interesting alternative
for conventional methods. The most promising are results obtained for disordered observation sets
where the Msplit estimation reveals its natural advantage over the conventional approach.
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1. Introduction and Motivation

Consider the classical functional model of geodetic observations, which is given for l = 1, . . . , q
different measurement epochs, namely

y = AX + v ⇒ yl = AlXl + vl (1)

where yl = [y1,l, · · · , ynl,l]
T are the observation vectors whose elements belong to the respective sets

Φl =
{
y1,l, . . . , ynl,l

}
; Xl = [X1,l, · · · , Xr,l]

T are the parameter vectors; vl = [v1,l, · · · , vnl,l]
T are vectors of

random errors; and Al ∈ Rnl,r are known coefficient matrices. Such models are the basis of deformation
analysis, namely for determining the shifts ∆X(k,l) = Xl −Xk between the epochs l and k (for example,
the changes of the point coordinates between such epochs).

The vectors ∆X(k,l) can be estimated by applying different methods or strategies (e.g., [1–3]).
The least squares method (LS-method) is still the most popular approach in such an analysis,
note that LS-estimates are often supplemented with respective statistical tests (e.g., [4–6]).
However, some unconventional methods are also in use, for example, robust M-estimation [7,8]
or R-estimation [9–14]. In the case of relative networks, one can also apply methods of free adjustment
(e.g., [15–18]). Some methods as well as their properties are well known, other methods are still
being researched.

The Msplit estimation surely belongs in the latter group. The Msplit estimation was proposed
by Wiśniewski [19,20] and has been applied to some practical problems in which each observation
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could be assigned to several different functional models. For example, it was used in remote sensing
(terrestrial laser scanning or ALS data) for data modeling [21] and in some geodetic problems,
for example, in deformation analysis [22–25], and robust estimation (e.g., [26]). Automatic assignment
of each observation to the best fitted model is one of the most important features of Msplit estimation.
It is also very useful in deformation analysis, when the observation set might include observations
from all measurement epochs (the set is an unrecognized mixture of such observations). Note that there
is usually no problem with separating observations from different epochs and hence with separate
analyses. However, there are some cases when the application of the Msplit estimation is advisable.
For example, when a point is displaced during an observation session, thus, one should consider two
pseudo-epochs, and the Msplit estimation allows us to estimate the parameters of the functional models
for such pseudo-epochs. Such models can also be applied when an observation set is disturbed by
outliers [23,24]. Note that the method under investigation can be applied in all observation sets that
are an unrecognized (and/or unordered) mixture of observation aggregations. Such data can result
from different sources or instrumentations. In fact, the source of data does not matter here. It can be,
for example, geodetic instruments: total stations, GNSS receivers, etc., or in remote sensing such as
terrestrial or airborne laser scanners.

The main properties of the Msplit estimation are discussed in the papers cited above; that study
focused on the efficacy of the method in estimating parameters of the competitive functional models,
hence also in estimating point displacements. The analyses were based on simulations of the crude
Monte Carlo method and the application of elementary functional models or models of a leveling
network. The results were compared with the results of the LS-method.

2. Theoretical Foundations

Without loss of generality, we can assume two measurement epochs, thus in the model of
Equation (1), we have q = 2. Then, the optimization criterion of the LS-method and its solution can be
written in the following way (l = 1, 2)

ϕLS(Xl) =
n∑

i=1

v2
i,lpi,l = vT

l Plvl = min → X̂LS,l = DLS,lyl (2)

where vi,l = yi,l − ai,lXl, DLS,l = (AT
l PlAl)

−1
AT

l Pl, Pl are respective weight matrices, (ai,l– ith row of
matrix A(l)). The difference ∆X̂LS(1,2) = X̂LS,2 − X̂LS,1 is a LS-estimate of the shift ∆X(1,2).

In the case of the Msplit estimation, we assumed that each observation belonged to either of
two sets Φ1 or Φ2; however, there is one observation set Φ = Φ1 ∪Φ2 and one observation vector
y = [y1, · · · , yn]

T, n = n1 + n2. There are two competitive functional models

y = AX(1) + v(1), y = AX(2) + v(2) (3)

with two competitive versions of the parameter X, namely X(1) and X(2) (A ∈ Rn,r,rank(A) = r).
The vectors v(1), v(2) ∈ Rn are two competitive versions of the observation errors related to all elements
of the vector y.

The theoretical basis of the Msplit estimation is an assumption that every observation yi can
be assigned to either of two density function f (yi; X(1)) or f (yi; X(2)). If yi occurs, it brings the
f -information I f (yi; X(1)) = − ln f (yi; X(1)) or the f -information I f (yi; X(2)) = − ln f (yi; X(2)), which are
competitive to each other. Msplit estimates of the parameters X(1) and X(2), namely X̂(1) and X̂(2),
minimize the following global information that is brought by all elements of the vector y [19]

I f (y; X(1), X(2)) =
n∑

i=1

I f (yi; X(1))I f (yi; X(2)) =
n∑

i=1

[− ln f (yi; X(1))][− ln f (yi; X(2))] (4)
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In other words, the estimators in question are the solutions of the following optimization problem:

minI f (y; X(1), X(2)) = minI f (y; X̂(1), X̂(2)) (5)

For such solutions, the occurrence of the particular observation vector is the most probable.
If X(1) = X(2) = X, then I f (y; X(1), X(2)) = ϕML(X) =

∑n
i=1 [− ln f (yi; X)], which is the objective

function of the maximum likelihood method (ML-method). In such a context, the Msplit estimation is a
special development of the ML-method. Huber [27,28] generalized the ML-method to M-estimation by
introducing ϕM(X) =

∑n
i=1 ρ(yi; X), where ρ(yi; X) is an arbitrary function for which estimators obtain

the desired properties (for example, they are robust against outliers). A similar generalization was also
proposed for the Msplit estimation [19,20]. The objective function of Equation (4) is replaced by the
following function

ϕρ(X(1), X(2)) =
n∑

i=1

ρ(1)(yi; X(1))ρ(2)(yi; X(2)) (6)

Of course, Msplit estimation is also a development of classical M-estimation, if only X(1) = X(2) = X,
and hence ϕρ(X(1), X(2)) = ϕM(X).

There are several variants of Msplit estimation that differ from one another in the objective function
or assumed parameters [19,22,29]. So far, the most popular is the squared Msplit estimation for which
ρ(1)(yi; X(1)) = piv2

i(1) and ρ(2)(yi; X(2)) = piv2
i(2). Hence, one can write the following optimization

problem of such a method [19,30] as

ϕsq(X(1), X(2)) =
n∑

i=1

p2
i v2

i(1)v
2
i(2) = (v(1) ∗ v(1))

TP2(v(2) ∗ v(2)) = min (7)

where P = Diag(p1, . . . , pn) is a diagonal weight matrix of the observations y (∗ – the Hadamard
product). It is obvious that if X(1) = X(2) = X, then ϕsq(X(1), X(2)) =

∑n
i=1 piv2

i , which means that the
squared Msplit estimation is a development of the LS method. Considering such a relationship and
the range of the practical applications of the Msplit estimation, we will only discuss the squared Msplit

estimation. To compute Msplit estimates, one can use the sufficient conditions for the minimum of the
objective function. Considering the optimization problem (7), one can write the following equations

g(1)(X(1), X(2)) =
(
∂ϕ(X(1), X(2))/∂X(1)

)T

X(1) = X̂(1)
X(2) = X̂(2)

= 0

g(2)(X(1), X(2)) =
(
∂ϕ(X(1), X(2))/∂X(2)

)T

X(1) = X̂(1)
X(2) = X̂(2)

= 0
⇔

ATw(1)(v̂(2))v̂(1) = ATw(1)(v̂(2))(y−AX̂(1)) = 0
ATw(2)(v̂(1))v̂(2) = ATw(2)(v̂(1))(y−AX̂(2)) = 0

(8)

where g(1)(X(1), X(2)) and g(2)(X(1), X(2)) are the gradients of the function ϕsq(X(1), X(2)).
The following matrices

w(1)(v(2)) = Diag
(
. . . , w(1)(vi(2)), . . .

)
, w(2)(v(1)) = Diag

(
. . . , w(2)(vi(1)), . . .

)
(9)

are diagonal weight matrices that are based on the cross-weighting functions [20,31]

w(1)(vi(2)) =
∂p2

i v2
i(1)v

2
i(2)

2vi(1)∂vi(1)
= p2

i v2
i(2), w(2)(vi(1)) =

∂p2
i v2

i(1)v
2
i(2)

2vi(2)∂vi(2)
= p2

i v2
i(1) (10)
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The solutions of Equation (8) are the following Msplit estimators

X̂(1) = D(1)(v̂(2))y, X̂(2) = D(2)(v̂(1))y (11)

where

D(1)(v̂(2)) = [ATw(1)(v̂(2))A]
−1

ATw(1)(v̂(2)), D(2)(v̂(1)) = [ATw(2)(v̂(1))A]
−1

ATw(2)(v̂(1)) (12)

Thus, X̂(1) is a function of v̂(2) = y−AX̂(2), whereas X̂(2) is a function of v̂(1) = y−AX̂(1). For this
reason, this solution has an asymptotic character. The following iterative procedure can be applied to
compute the sought estimates ( j = 1, . . . , m)

X j+1
(1)

= D(1)(v
j
(2)

)y, v j+1
(1)

= y−AX j+1
(1)

X j+1
(2)

= D(2)(v
j+1
(1)

)y, v j+1
(2)

= y−AX j+1
(2)

(13)

(for the given starting point, for example, v0
(2)

= y−AX̂LS). The process stops when for each l = 1, 2,

it holds that g(l)(X̂(1), X̂(2)) = 0 and hence X̂(l) = Xm
(l) = Xm−1

(l) . Note that other iterative processes
that use both the gradients and the Hessians of ϕ(X(1), X(2)), namely Newton’s method, can be found
in [19,20,29].

Now, the elementary property the of Msplit estimates is shown. Here, we consider a basic
example that precedes the more detail analysis presented in the next section. Let us assume
the functional model yi = X + vi, i = 1, . . . , 7, and the observation set Φ as a following vector
y = [1.2 0.9 1.8 1.3 2.2 1.1 1.9]T (Figure 1a). Then, X̂LS = 1.49. For the sake of comparison,
let the robust M-estimate be computed. By applying the Huber method [27,28], where the weight
function is w(v) = min{1, k/|v|} and k = 3, one can obtain X̂M = 1.27 (Figure 1b). Both estimates in
question are not satisfactory, and do not reflect the nature of the observation set. The robust estimate
X̂M lies closer to the “bigger” aggregation of observations. Next, the question of how to treat the
observations that are furthest from that estimate arises. In the classical approach, such observations
are regarded as outliers (for example, affected by gross errors), and we are no longer interested in such
observations. Different conclusions follow the Msplit estimation where X̂(1) = 1.10 and X̂(2) = 2.00
(Figure 1c).
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The Msplit estimates show that set Φ consists of two subsets Φ1 and Φ2 (Figure 1d), whose
elements can be regarded as realizations of two different random variables that differ from each other in
location parameters X1 and X2, respectively. Similar assumptions can also be found in other estimation
problems, for example, cluster analysis (e.g., [32,33]); or in a mixed model estimation applied in
geosciences (e.g., [34,35]). Such approaches can be regarded as alternatives; however, we should have
some understanding that they differ significantly in their general ideas.

Assigning each observation to the model that is the most suitable for it is a natural process
in Msplit estimation. This property can be applied in the analysis of network deformation where
there are two functional models: y1 = A1X1 + v1 and y2 = A2X2 + v2 for two measurement epochs,
respectively. Thus, one can create one common observation vector y = [yT

1 , yT
2 ]

T, the common weight

matrix P = Diag
(
P(1), P(2)

)
, and the coefficient matrix A =

[
AT

1 , AT
2

]T
. It is noteworthy that the order

of the observation within vector y can be arbitrary. The actual order of the observations must coincide
with the order of the rows within matrix A and order of the weights in weight matrix P. Here, the shift
∆X(1,2) can be estimated by ∆X̂(1,2) = X̂(2) − X̂(1). It is worth noting that ∆X(1,2) can also be estimated
directly by applying the Shift-Msplit estimation proposed by Duchnowski and Wiśniewski [22].

3. Empirical Analyses

3.1. Elementary Tests

The elementary analysis was based on the univariate models and simulations of observations
related to such models. Thus,

yi,1 = X1 + vi,1, i = 1, . . . , n1

yi,2 = X2 + vi,2, i = 1, . . . , n2
⇔

y1 = 1n1X1 + v1

y2 = 1n2X2 + v2
(14)

where 1nl = [11, · · · , 1nl ]
T; X1 and X2 are parameters that differ from each other in the shift

∆X(1,2) = X2 −X1. The measurements, namely the elements of vectors y1 and y2, were simulated by
using the Gaussian generator randn(n, 1) of MATLAB. We assumed that σ = 1, and the following
theoretical values of the parameters: Xt

1 = 0 and hence Xt
2 = Xt

1 + ∆X(1,2) = ∆X(1,2). Considering the
LS-estimation of X1 and X2 we can apply the model of Equation (14) or Equation (1) where
A1 = 1n1 and A2 = 1n2 . In the case of Msplit estimation, we assumed the model of Equation (3),

taking y = [yT
1 , yT

2 ]
T
∈ Rn, n = n1 + n2, and A = [1T

n1
, 1T

n2
]
T

= 1n. We also applied the iterative
procedure of Equation (13) by taking LS-estimates as the starting point (note that the starting point can
usually be arbitrary).

Let us now consider an example of observation simulation for which ∆X(1,2) = 5σ = 5 and
n1 = 50, n2 = 10. The parameter estimates, together with the respective residuals, are presented in
Figure 2.

Now, let us consider more simulated observation sets. By applying the crude Monte Carlo method
(MC) for N simulations, one can compute the MC estimates by applying the formula

θ̂MC =
1
N

N∑
i=1

θ̂i (15)

where θ̂i are the estimates obtained for the ith simulation. The location of the MC estimates for
N = 5000 and ∆X(1,2) = 5 or ∆X(1,2) = 20 is presented in Figure 3.

This shows that the MC estimates that were obtained for both estimation methods were close to
the respective theoretical values (considering the simulated standard deviation). Generally, the LS
estimates seemed more satisfactory. Please note that the results obtained for different values of shift
∆X(1,2) indicate that Msplit estimation is more satisfactory for bigger shifts than for smaller ones. Thus,
let us examine how efficient the Msplit estimation is for different shifts.
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Let the measure of efficacy be defined in relation to the LS estimates, thus

λ(l)(X̂(l), X̂LS,l) = abs(X̂(l) −Xt
l) − abs(X̂LS,l −Xt

l) (16)
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Note that when λ(l)(X̂(l), X̂LS,l) < 0, then the Msplit estimate is closer to the theoretical value than
the LS estimate. Now, we can define the following function of an elementary success of Msplit estimation

s(l)(X̂(l), X̂LS,l) =

{
1 f or λ(X̂(l), X̂LS,l) < 0
0 f or λ(X̂(l), X̂LS,l) > 0

(17)

The application of MC simulations allowed us to present the success rate (SR), which can be
computed for different values of the shift ∆X(1,2)

γ(l)(X̂(l), X̂LS,l; ∆X(1,2)) =
1
N

N∑
i=1

si
(l)(X̂(l), X̂LS,l) (18)

where si
(l)(X̂(l), X̂LS,l) is the value of Equation (17) at the ith simulation.
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Note that such a SR is defined in a very similar way to the mean success rate (MSR) given by
Hekimoglu and Koch [36]. SRs for different ∆X(1,2) and for N = 5000 simulations are presented in
Figure 4.
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3.2. Vertical Displacement Analysis

Let us now consider the efficacy of Msplit estimates in a more practical example, namely the
analysis of vertical displacements within the leveling network, which is presented in Figure 5. Such a
network has already been under investigation in previous papers [24,25].
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The network consists of four reference points R1, . . . , R4 with the known heights
HR1 = · · · = HR4 = 0 m and five object points of P1, . . . , P5. We assumed that each of the height
differences h1, . . . , h16 was measured twice at each of two measurement epochs, and that σ = 2 mm
was the known standard deviation of all measurements. We also assumed that at the first
epoch Xt

1 = [H1,1 = 0, · · · , H5,1 = 0]T = 0, where Hi,1 is the height of the ith object point at the
first epoch. The shift of the object points between the measurement epochs is given by
∆X(1,2) = [∆H1(1,2), · · · , ∆H5(1,2)]

T, where ∆Hi(1,2) = Hi,2 − Hi,1. In the classical approach to the
estimation of the point displacements, we used the functional model of Equation (1). Since all
height differences were measured twice at two measurement epochs, namely, we had two series
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of measurements at each epoch, then we should assume that yl ∈ R32, Xl = [H1,l, · · · , H5,l]
T, and

A⊗ = A⊗ 12 ∈ R32,5 where A ∈ R16,5 is a known coefficient matrix related to one series of measurements,
12 = [1, 1]T, and ⊗ is the Kronecker product. On the other hand, in the case of Msplit estimation, we

should apply the functional model of Equation (3) for which y = [yT
1 , yT

2 ]
T
∈ R64, A = [AT

⊗
, AT
⊗
]
T
∈ R64,5,

and X(1), X(2) ∈ R5 are the competitive versions of the parameter vector, hence v(1), v(2) ∈ R64 are the
respective competitive versions of the measurement errors.

When analyzing the efficacy of Msplit estimation, we can use two measures, namely the local
measure of the distance between the LS and Msplit estimates

λ(l) j([X̂(l)] j
, [X̂LS,l] j) =

= abs([X̂(l)] j
− [Xt

l ] j) − abs([X̂LS,l] j − [X
t
l ] j)

(19)

as well as the global one
λ(l)(X̂(l), X̂LS,l) = ‖X̂(l) −Xt

l‖ − ‖X̂LS,l −Xt
l‖ (20)

where [•] j is jth element of the vector and ‖•‖ is the Euclidean norm. The local distance, which is
just another form of Equation (16), is related to a particular parameter, for example, the height of a
displacing point. The global distance describes the whole parameter vector. Thus, we can define the
local and global success rates in the following way

γ(l), j([X̂(l)] j
, [X̂LS,l] j; ∆X(1,2)) =

1
N

N∑
i=1

si
(l), j([X̂(l)] j

, [X̂LS,l] j)

γ(l)(X̂(l), X̂LS,l; ∆X(1,2)) =
1
N

N∑
i=1

si
(l)(X̂(l), X̂LS,l)

(21)

where si
(l) j([X̂(l)] j

, [X̂LS,l] j) and si
(l)(X̂(l), X̂LS,l) are functions of an elementary success from Equation (17)

and indexed with the respective arguments.
The empirical analysis, which was based on the MC method for N = 5000 simulations, was

carried out for several variants of the point displacements. First, we assumed that only point P5 was
displaced. The respective MC estimates obtained for the LS and Msplit estimations and ∆H5(1,2) = −50,
∆H5(1,2) = −100, or ∆H5(1,2) = −200 mm are presented in Table 1, which also presents the local and
global SRs.

Table 1. The Monte Carlo estimates of the point heights and success rates for one unstable point.

∆H5(1,2)=−50 ∆H5(1,2)=−100 ∆H5(1,2)=−200

X̂LS,1 X̂(1) X̂LS,2 X̂(2) X̂LS,1 X̂(1) X̂LS,2 X̂(2) X̂LS,1 X̂(1) X̂LS,2 X̂(2)

0.2 −3.1 0.4 2.9 −0.5 −1.1 −0.6 0.6 0.9 −1.8 −0.7 −0.4
1.4 −1.2 −1.0 0.9 −0.4 −1.3 0.7 2.9 0.5 0.7 0.5 −0.8
2.1 −0.6 −0.6 −0.6 0.1 −0.6 0.5 1.3 −0.3 −2.8 −0.1 1.1
-0.8 −3.6 −0.6 0.6 1.1 −0.9 −1.0 1.2 0.0 −0.4 −1.5 1.5
0.8 −1.9 −50.4 −49.1 0.3 −1.2 −99.8 −98.7 0.8 −0.8 −200.1 −199.7
γ(1) = 0.018
γ(1),5 = 0.172

γ(2) = 0.019
γ(2),5 = 0.182

γ(1) = 0.020
γ(1),5 = 0.177

γ(2) = 0.017
γ(2),5 = 0.187

γ(1) = 0.025
γ(1),5 = 0.171

γ(2) = 0.024
γ(2),5 = 0.196

The MC estimates were similar for both estimation methods and the stable points. The SRs
indicate that the LS estimates were closer to the theoretical values in the vast majority of the simulations.
Note that the local SRs obtained for point P5 were much higher than the global ones. All estimates of
the point heights obtained in the MC simulations (for the variant ∆H5(1,2) = −50 mm) are presented in
Figure 6.
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In the second variant, we assumed that there were two unstable points, namely P5 and P4.
The results, which were obtained for the different point shifts, are presented in Table 2. Here, the MC
estimates obtained for both methods were also similar. Figure 7 presents the LS and Msplit estimates
that were obtained for all of the MC simulations. Generally, this confirmed the correctness of both
estimation methods; however, differences between these two estimation methods were also apparent.
The main difference was the dispersion, which was larger in the case of the Msplit estimation, especially
for the stable points, which suggests that the accuracy of the Msplit estimation was worse than LS
estimation. It is also worth noting that the SRs of the Msplit estimation achieved bigger values in this
variant. In the case of point P5, the results of the Msplit estimation were better than the results of the
classical approach in almost one third of the simulations.

Table 2. The MC estimates of the point heights and SRs for two unstable points.

∆H5(1,2)=−50; ∆H4(1,2)=−50 ∆H5(1,2)=−100; ∆H4(1,2)=−50 ∆H5(1,2)=−200; ∆H4(1,2)=−50

X̂LS,1 X̂(1) X̂LS,2 X̂(2) X̂LS,1 X̂(1) X̂LS,2 X̂(2) X̂LS,1 X̂(1) X̂LS,2 X̂(2)

−0.2 −0.5 −0.3 0.6 −0.5 0.1 −0.4 0.3 0.0 −1.3 −0.3 −1.1
−0.4 −2.0 −0.1 −0.1 0.2 0.5 −0.2 −0.4 0.0 −0.2 −0.1 0.9
−0.4 −0.4 −0.9 0.2 0.1 −0.3 0.2 −0.3 −0.2 −0.2 −0.3 −0.4
−0.1 −0.3 −50.5 −50.1 0.4 0.5 −49.9 −49.6 −0.1 −0.4 −50.0 −50.1
−0.5 −1.4 −50.1 −50.2 −0.6 −0.4 −100.1 −99.8 −0.5 −0.8 −200.3 −200.2
γ(1) = 0.070
γ(1),5 = 0.272

γ(2) = 0.070
γ(2),5 = 0.268

γ(1) = 0.080
γ(1),5 = 0.281

γ(2) = 0.080
γ(2),5 = 0.288

γ(1) = 0.103
γ(1),5 = 0.314

γ(2) = 0.105
γ(2),5 = 0.312
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The results, which are presented here, show that both methods, namely LS and Msplit estimation,
yielded satisfactory solutions. However, such a conclusion was valid for the ordered observation
sets, namely when each observation was properly assigned to its measurement epoch. If such a
condition is not met, then the observation from another epoch will usually be regarded as an outlier.
Since LS estimation as well as Msplit estimation are not robust against outliers, they both break down
(please note that Msplit estimation is generally not robust unless we introduce an additional virtual
model for outliers). Note that in the context addressed here, the outliers result from the assignment of
an observation to the wrong measurement epoch, but not from gross errors. The natural feature of
Msplit estimation is the automatic assignment of each observation to the proper epoch. Thus, we can
suppose that this estimation method will not break down if such outliers occur. To illustrate this feature
of Msplit estimation, we simulated that point P5 was displaced and that ∆H5(1,2) = −50 mm. Now, let us
consider the following variants of the observation sets: variant A, where both observation sets were
correct (all observations were assigned to their epochs properly); variant B, where the observation h16

at the second epoch was equal to h16 at the first one, namely h2
16 = h1

16; and variant C, where h2
16 = h1

16,
but also h2

15 = h1
15. Thus, in variants B and C, we simulated that some observations that were assigned

to the second measurement epoch should be related to the first one. The results obtained for all variants
are presented in Table 3. In the case of variant A, the results were very close to the respective results
presented in Table 1. If the observation sets are not ordered correctly, then the local SRs at the second
epoch are close to 1, which means that almost always, the height of point P5 at the second measurement
epoch is better assessed by the Msplit estimation than by LS estimation. Additionally, the global SRs
were very high at the second epoch, hence one can say that the heights of all network points were
better estimated by the application of Msplit estimation.
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Table 3. The MC estimates of the point heights and SRs for the disturbed observation sets.

Variant A: Correct Order Variant B: h2
16

=h1
16

Variant C: h2
15

=h1
15

, h2
16

=h1
16

X̂LS,1 X̂(1) X̂LS,2 X̂(2) X̂LS,1 X̂(1) X̂LS,2 X̂(2) X̂LS,1 X̂(1) X̂LS,2 X̂(2)

0.0 2.2 0.3 −1.1 0.4 −1.5 −6.8 0.3 −0.8 0.4 −4.5 −5.2
0.4 −0.1 1.1 0.4 −0.5 −1.5 2.1 1.8 −0.2 −0.8 −5.3 −7.7
0.6 0.8 0.3 −1.5 −0.6 −3.6 3.4 1.6 −0.1 −1.0 4.9 7.4
−0.7 −0.9 0.0 1.0 0.3 −1.4 2.0 2.4 −1.3 −0.6 5.2 7.1
−0.2 0.5 −49.8 −50.3 0.4 −1.5 −36.2 −46.5 −2.0 −1.0 25.3 −42.6
γ(1) = 0.018
γ(1),5 = 0.172

γ(2) = 0.019
γ(2),5 = 0.210

γ(1) = 0.127
γ(1),5 = 0.321

γ(2) = 0.875
γ(2),5 = 0.986

γ(1) = 0.263
γ(1),5 = 0.474

γ(2) = 0.887
γ(2),5 = 0.998

4. Conclusions

The paper showed that Msplit estimation can be successfully applied in deformation analysis.
The results were generally similar to the results of the more conventional LS estimation; however,
the latter method usually yielded slightly better outcomes. The elementary tests showed that the
efficacy of the Msplit estimation grew with an increasing shift between the observation sets. In the case
of geodetic networks, where a parameter vector usually consists of several point coordinates, the shift
of one or two such coordinates between measurement epochs does not influence the efficacy of the
Msplit estimation in a significant way. The real advantage of the Msplit estimation was revealed for
the disordered observation sets, for example, when the observations from at least two measurement
epochs were mixed for some reason. Note that the LS estimates break down in such cases, in contrast
with the Msplit estimation, for which the ordering of all observations within the combined observation
set can be arbitrary and does not influence the final results of the method as well as its iterative process.
Such a feature results directly from the theoretical foundations of the method, which are based on the
concept of the split potential. In short, each observation “chooses” the functional model that fits it
best. In this context, Msplit estimates are robust against some kind of “outliers”, namely observations
that come from other observation sets. Referring to the presented example, there were four height
differences regarding the height of network point P5. If one of them does not fit the other, then the
method tries to fit such an “outlying” observation into another epoch. If it works, then the whole
estimation process succeeds. However, if such an observation is in fact affected by a gross error, then it
does not fit any epoch, and the estimation must break down. The introduction of a virtual epoch,
which is not related to any real measurements, is one solution to this problem. One can say that such an
epoch can collect all “loners” that do not fit any real measurement epochs. Generally speaking, one can
say that the Msplit estimation is not robust against outliers, which results from the occurrence of gross
errors. However, if one assumes an additional competitive functional model (dedicated to outliers),
then the Msplit estimation can estimate the location parameters for “good” observation aggregations as
well as outlier(s). Increasing the number of competitive functional models protects the estimation of
location parameters of good observations from the bad influence of outliers. Note that in this context,
outliers are no longer “outlying”, and become regular observations of the third (or more generally
next) aggregation. This concept, which is out of the scope of this paper, was discussed in [23,24,30].
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