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Abstract: Reliable and accurate carrier phase ambiguity resolution is the key to high-precision Global
Navigation Satellite System (GNSS) positioning and application. With the fast development of
modern GNSS, the increased number of satellites and ambiguities makes it hard to fix all ambiguities
completely and correctly. The partial ambiguity fixing technique, which selects a suitable subset of
high-dimensional ambiguities to fix, is beneficial for improving the fixed success rate and reliability
of ambiguity resolution. In this contribution, the bootstrapping success rate, bounded fixed-failure
ratio test, and the new defined baseline precision defect are used for the selection of the ambiguity
subset. Then a model and data dual-driven partial ambiguity resolution method is proposed with the
above three checks imposed on it, which is named the Triple Checked Partial Ambiguity Resolution
(TC-PAR). The comprehensive performance of TC-PAR compared to the full-fixed LAMBDA method
is also analyzed based on several criteria including the fixed rate, the fixed success rate and correct
fixed rate of ambiguity as well as the precision defect and RMS of the baseline solution. The results
show that TC-PAR could significantly improve the fixed success rate of ambiguity, and it has a
comparable baseline precision to the LAMBDA method, both of which are at centimeter level after
ambiguities are fixed.

Keywords: partial ambiguity resolution; bootstrapping success rate; bounded fixed-failure ratio test;
baseline precision defect; GPS/BDS RTK positioning

1. Introduction

With the gradual updating and construction of the four global navigation satellite systems,
the number of satellites in orbit will reach more than 100 in the future, and the frequency of navigation
signals will increase to three or even more, providing users with more observation information,
which will greatly improve the precision, reliability, and availability of satellite navigation and
positioning services [1]. Integer ambiguity resolution is the key problem in achieving high-precision
positioning of the GNSS. With an increased number of satellite observation equations, the float
ambiguities will have higher precision and be easier to fix accurately. However, this will inevitably
lead to an increase in the ambiguity resolution dimension at the same time, which will increase the risk
of fixing all ambiguities, thus possibly reducing the fixed success rate. Therefore, the Partial Ambiguity
Resolution (PAR), which only fixes a suitable subset of the high-dimensional ambiguity set, may be a
better choice.
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The idea of PAR was first proposed by Teunissen, and the subset was selected based on the
Bootstrapping Success Rate (BSR) criterion, so it is named the Success Rate Criterion (SRC) [2]. As SRC
performs well in guaranteeing the fixed success rate of ambiguities, it has been widely used in ambiguity
resolution [3–7]. Many other strategies have been proposed to select ambiguity subsets, which can
generally be divided into three levels and two categories [8], that is, the satellite level, frequency
level, and ambiguity level and the model-driven category and data-driven category. The methods
used for the satellite level are mostly based on experience, such as the elevation order strategy [9–12],
the Signal-to-Noise Ratio (SNR) order strategy [13], the continuous tracking epochs strategy [14,15],
etc. These methods are easy to realize but may not work very well. The frequency level is mainly
determined by the Wide-Lane/Narrow-Lane (WL/NL) cascading strategy [1,16–18], which first fixes
the WL ambiguities that have relatively higher precision, and then the NL ambiguities are updated,
and if possible, are also fixed sequentially. The methods used to determine the ambiguity level usually
involve the selection of subsets according to the precision order of each ambiguity, such as SRC
and the minimum Ambiguity Dilution Of Precision (ADOP) strategy [13,19]. The model-driven and
data-driven categories are distinguished by whether actual observations are used or not [8,20–23].
A representative data-driven method is the general integer aperture [21–23].

Although many studies have been carried out, some problems in PAR have still not been solved
well. First, as there are several methods to select an ambiguity subset, most of them are independent
from each other and have their own advantages and disadvantages, so it is difficult for users to choose
which method to use. In addition, since the purpose of fixing ambiguity is to improve the precision of
the baseline vector, its influence on the baseline solution needs to be considered when selecting an
ambiguity subset [6,24–26]. Therefore, a comprehensive method that includes most of the advantages
of the current methods as well as considers the precision improvement at baseline is needed.

In this study, a new partial ambiguity resolution method with multiple checks of both the
model-driven and data-driven categories is proposed, and the practical effects are evaluated compared
to the full-fixed Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) method. The outline
of this paper is as follows: Section 2 describes the basic theories of ambiguity resolution. Section 3
describes the main theories of the proposed method. Section 4 shows the experimental results,
and finally, Section 5 draws the main conclusions.

2. Theory of Ambiguity Resolution

The GNSS linear observation equation is generally expressed as

E(y) = Aa + Bb + ∆, D(y) = P−1
yy (1)

where y is the vector of the carrier phase and code observation, and Pyy is the weight matrix. E(y)
and D(y) are, respectively, the mathematical expectation and variance of y; a is the vector of integer
ambiguities; b is the vector of real-valued parameters such as baseline components; A and B are the
corresponding design matrices; and ∆ is the vector of measurement noise which is assumed to have a
zero-mean Gaussian normal distribution.

Due to the integer nature of ambiguity, Equation (1) is a mixed real-integer model, and it is
usually solved by a four-step procedure, including (1) estimation of the float ambiguities and baseline
parameters, (2) fixing of the float ambiguities to integer values, (3) validation of the integer ambiguities,
and (4) update of the baseline with fixed ambiguities [25].

In step (1), we discard the integer nature of ambiguities and perform a standard least-squares
adjustment. As a result, we obtain the real-valued estimates of a and b as well as their
variance-covariance matrix: (

â
b̂

)
,

(
Qââ Qâb̂
Qb̂â Qb̂b̂

)
. (2)
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In step (2), the integer constraints are taken into account, and the real-valued float ambiguities
are fixed to integers. The most extensively used integer estimation methods are Integer Rounding
(IR), Integer Bootstrapping (IB) [27] and Integer Least Square (ILS) [28], among which ILS is the
optimal method, as it can maximize the probability of correct integer estimation. In this paper, we use
ILS estimation, and the following contents are based on its representative method LAMBDA [29,30],
which first reduces the correlation of ambiguities by Z-transformation:

ẑ = ZT â, Qẑẑ = ZTQââZ (3)

where Z is a integer transformation matrix that satisfies two conditions: First, each element of Z should
be an integer; second, the determinant value of Z should equal to one. After reduction, the float
ambiguities ẑ are fixed to integers

^
z by a fast search procedure, and then an inverse Z-transformation

is performed to recover the original ambiguities
^
a .

In step (3), the fixed ambiguities
^
a are validated with ambiguity accepting tests. If

^
a is rejected by

the acceptance test, it is unreliable and may be an incorrect integer solution, then only a float solution
can be used.

If
^
a is accepted by ambiguity accepting tests, then in step (4), we update the float baseline solution

by fixed ambiguities:
^
b (
^
a ) = b̂−Qb̂âQ−1

ââ (â−
^
a ). (4)

According to the error propagation law, the variance-covariance matrix of
^
b (
^
a ) can be evaluated

as follows, which shows the baseline precision promotion when ambiguities are fixed to integers:

Q^
b (
^
a )
^
b (
^
a )

= Qb̂b̂ −Qb̂âQ−1
ââ Qâb̂. (5)

As for partial ambiguity resolution, we can fix a subset of the full ambiguities set. Suppose that
the dimensions of the full ambiguities set and partial ambiguities subset are, respectively, n and p,
Equation (3) can be rewritten as

Z =
[

Zn−p Zp
]
, ẑ = ZT â =

[
ẑn−p

ẑp

]
. (6)

According to Equations (4) and (5), we now get the updated baseline solution
^
b (
^
z p) and its

variance-covariance matrix Q^
b p
^
b p

with the partial fixed ambiguities subset:

^
b (
^
z p) = b̂−Qb̂ẑp

Q−1
ẑpẑp

(ẑp −
^
z p) (7)

Q^
b p
^
b p

= Qb̂pb̂p
−Qb̂ẑp

Q−1
ẑpẑp

Qẑpb̂ (8)

where Qb̂ẑp
= Qb̂âZp, Qẑpẑp = ZT

p QââZp.
Equation (8) shows the baseline precision promotion when partial ambiguities are fixed to

integers [26]. Note that Qẑpẑp
is always a positive definite matrix. The second term on the right of

Equation (8) will increase with the rise of the ambiguity subset dimension, and Q^
b p
^
b p

will decrease

correspondingly, which leads to higher baseline precision. This is significant for the selection of
ambiguity subsets, as the baseline precision promotion is directly related to the dimensions of the
ambiguity subset. So even in a partial ambiguity resolution, the dimensions of the subset should be as
large as possible to get a high enough precision.
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2.1. A Basic Proof of Equivalence

Similarly, the remaining float ambiguities ẑn−p can be updated with the fixed ambiguity subset
^
z p:

ẑ′n−p = ẑn−p −Qẑn−pẑpQ−1
ẑpẑp

(ẑp −
^
z p) (9)

Q′ẑn−pẑn−p = Qẑn−pẑn−p −Qẑn−pẑpQ−1
ẑpẑp

Qẑpẑn−p (10)

where ẑ′n−p are the conditionally updated float ambiguities, which generally have higher precision than
ẑn−p.

However, there are two questions about whether to consider using ẑ′n−p to update the baseline

solution [31]. The first one is whether using both
^
z p and ẑ′n−p could further improve baseline precision.

The second is whether using both
^
z p and

^
z
′

n−p (fixingẑ′n−p to integers
^
z
′

n−p by IR estimation) to update
baseline solution is effective. Next, we analyze these questions from three aspects.

Case 1: If subset
^
z p is correctly fixed, but the remaining subset

^
z
′

n−p is incorrectly fixed, using
^
z p

and
^
z
′

n−p together to update the baseline solution would cause a large deviation due to existing
incorrect ambiguities. The result may be even worse than the real-valued baseline solution using
float ambiguity.

Case 2: If the ambiguities in subset
^
z p and the remaining

^
z
′

n−p are all correctly fixed, according

to Equation (10), using
^
z p and

^
z
′

n−p together to update the baseline solution will obtain the largest
precision promotion. However, considering the multi-frequency and multi-system background,
the ambiguity subsets usually have high dimensions, and a pretty high baseline precision can be
obtained when it is updated by the ambiguity subsets. So, it is unnecessary to fix the remaining
ambiguities, which may bring about wrong ambiguity fixing and do harm to the baseline precision.

Case 3: Not fixing conditionally updated float ambiguities ẑ′n−p, but using
^
z p and ẑ′n−p together

to update the baseline solution is in fact equivalent to directly using
^
z p. This can be demonstrated

as follows:
For convenience, we set ẑ =

[
ẑ1 ẑ2

]T
. If we only use the fixing subset

^
z 2 to update the baseline

solution, we have

^
b (
^
z 2) = b̂−Qb̂ẑ2

Q−1
ẑ2ẑ2

(ẑ2 −
^
z 2). (11)

If we use subset
^
z 2 and the conditionally updated float ambiguity ẑ′1 to update the baseline

solution, we have
^
b
′

= b̂−
[

Qb̂ẑ1
Qb̂ẑ2

][ Qẑ1ẑ1 Qẑ1ẑ2

Qẑ2ẑ1 Qẑ2ẑ2

]−1[ ẑ1 − ẑ′1
ẑ2 −

^
z 2

]
(12)

where ẑ′1 = ẑ1 −Qẑ1ẑ2 Q−1
ẑ2ẑ2

(ẑ2 −
^
z 2).

The second term on the right of the Equation (12) can be reduced as

[
Qb̂ẑ1

Qb̂ẑ2

] Qẑ1 ẑ1 Qẑ1 ẑ2

Qẑ2 ẑ1 Qẑ2 ẑ2

−1 ẑ1 − ẑ′1
ẑ2 −

^
z 2


=

[
Qb̂ẑ1

Qb̂ẑ2

] Q̃−1
ẑ1 ẑ1

−Q̃−1
ẑ1 ẑ1

Qẑ1 ẑ2 Q−1
ẑ2 ẑ2

−Q−1
ẑ2 ẑ2

Qẑ2 ẑ1 Q̃−1
ẑ1 ẑ1

Q−1
ẑ2 ẑ2

+ Q−1
ẑ2 ẑ2

Qẑ2 ẑ1 Q̃−1
ẑ1 ẑ1

Qẑ1 ẑ2 Q−1
ẑ2 ẑ2


 Qẑ1 ẑ2 Q−1

ẑ2 ẑ2
(ẑ2 −

^
z 2)

ẑ2 −
^
z 2


=

[
Qb̂ẑ1

Qb̂ẑ2

] 0
Q−1

ẑ2 ẑ2

(ẑ2 −
^
z 2

)
= Qb̂ẑ2

Q−1
ẑ2 ẑ2

(
ẑ2 −

^
z 2

)
(13)

where Q̃ẑ1ẑ1 = Qẑ1ẑ1 −Qẑ1ẑ2Q−1
ẑ2ẑ2

Qẑ2ẑ1 .
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According to Equations (12) and (13), we get
^
b
′

= b̂ −Qb̂ẑ2
Q−1

ẑ2ẑ2

(
ẑ2 −

^
z 2

)
=

^
b (
^
z 2), and the

equivalence is proved. Thus, in this paper, it is considered that directly updating the baseline using
Equations (7) and (8) is a better way of performing partial ambiguity resolution, as this strategy is
more reliable, more effective, and simpler than the above three cases, especially in multi-frequency and
multi-system backgrounds where the dimension of the ambiguities is generally higher.

Up until now, we have identified the usage of the ambiguity subset. The next question is how to
select a proper subset, and this is the key problem in partial ambiguity resolution. Ambiguity subset
selection contains two main questions: First, we need to define the screening order of every ambiguity
based on certain criteria. Many methods have been used, such as the elevation ordering strategy [9–12],
the ADOP minimization strategy [13,19], and the SRC strategy [2–7]. Second, after the order is
determined, the size of ambiguity subset needs to be determined as well. This also requires a criterion,
for example, the ambiguity accepting test. Aiming at addressing the above two questions, many studies
have been carried out, and they can be divided into two categories including the model-driven category
and the data-driven category.

2.2. Model Driven Ambiguity Subset Selection

If the ambiguity subsets are chosen without taking any measurement, namely only making use
of the variance-covariance matrix Qââ or other empirical information like satellite elevation, then the
method used belongs to the model-driven category. Another property of the model-driven category is
that the strength of the observation model is usually used to judge whether the fixed ambiguities are
correct or not. A representative method is the SRC, which uses the ambiguity fixed success rate as a
criterion, and the screening order of SRC is based on the conditional variance of ambiguity.

The essence of choosing ambiguity subsets is screening out the low-precision ambiguities and
preserving those with high precision, but we must determine how to judge the precision of each
ambiguity. Some empirical methods such as satellite elevation order were used at first, but they lack a
certain theoretical basis and may be ineffective in some cases, for example, GEO satellites always have
a high elevation but usually have a worse observation quality due to the larger distance. It will also be
hard to achieve a good performance using the elevation order if some gross errors exist in it. On the
other hand, some linear combination ambiguities with higher relative precision are fixed first, such as
the extra wide-lane and wide-lane ambiguity, which is, in fact, a special case of the LAMBDA method.
Linear combination is an example of integer bootstrapping [32]. So, the LAMBDA algorithm based on
Integer Least Squares Estimation (ILSE) is a better choice for studying partial ambiguity resolution,
and a representative method to select the ambiguity subset is applying the order of conditional variance
matrix D.

A Cholesky decomposition of Qẑẑ can be presented as

Qẑẑ = LTDL (14)

where L is a unit upper triangular, and D is a diagonal matrix named the conditional variance matrix.
According to the LAMBDA algorithm, matrix D is sorted in descending order as much as

possible. The ambiguity searching order goes from the last conditional variance to the first conditional
variance. Therefore, when screening an ambiguity subset, we can also adopt this order and select the
higher-precision ambiguities at first.

The ambiguity fixed success rate is widely used to determine the reliability of the ambiguity
subset, as it reflects the strength of the GNSS observation model to a certain extent as well as quantifies
it by a mathematical expression. When the fixed success rate is high enough and, corresponding,
the failure rate is low enough, it is considered reliable to accept the ambiguity fixed solution. The SRC
is proposed based on this principle.
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The ILSE has been proven to have the largest success rate and is considered theoretically
optimal [28], but it is difficult to directly perform numerical calculations. However, the BSR is easily
calculated and is usually used as the lower boundary of the ILSE [27,33]:

Ps_IB =
n∏

i=1

(2Φ(
1

2
√

di
) − 1) (15)

where n is the dimension of the ambiguities; Φ(·) is the cumulative distribution function of the standard
Gaussian normal distribution; and di represents the diagonal elements of the conditional variance
matrix D. Note that D is decomposed from the variance-covariance matrix Qẑẑ after decorrelation.

SRC selects ambiguity subsets by setting a certain threshold of ε (e.g., ε = 0.995). First, it calculates
the Ps_IB of the full ambiguity set and compares it with the given threshold ε. If it is smaller than
ε, then sequentially remove the ambiguity with a small subscript and recalculates the Ps_IB of the
remaining ambiguities. This process is repeated until the BSR of the ambiguity subset is larger than
or equal to ε, or we end up with a minimal admissible subset (usually the subset size is set to four).
The discriminant condition based on SRC can be expressed as follows:

I f
{

Ps_IB < ε use ẑ
Ps_IB ≥ ε use

^
z

. (16)

According to the process mentioned above, we may find SRC to be a simple and easy-to-use
method, as Ps_IB can be calculated quickly as soon as we obtain the decorrelated matrix Qẑẑ, and the
decision as to whether or not to accept the fixed ambiguities can be made prior to the integer estimation
step, which is very timesaving. Besides, it is also benefit for users to have a global knowledge of the
GNSS observation model as well as a quality description of the ambiguities and baseline solution [34].

However, in multiple frequencies and multiple system scenes where more observations are
available, the increase of satellite number will improve the strength of the observation model, as well
as the value of BSR. An experiment was applied to illustrate the change of BSR value: The BSR values
of GPS and GPS+BDS were calculated based on real-measured dual-frequency data (cf. Figure 1),
respectively. As shown in Figure 1, the BSR of some epochs is low when only the GPS system is adopted,
and SRC may achieve good performance by screening out individual ambiguities with low precision.
However, when GPS + BDS is adopted, the BSR is always close to 100% due to the enhancement of the
model’s strength. Thus, in the multiple frequencies and multiple systems scene, the BSR indicator
may not continue to be used effectively for ambiguity screening, and other strategies like data-driven
methods need to be performed together.

Figure 1. Bootstrapping success rate of GPS (a) and GPS+BDS (b) dual-frequency data.

2.3. Data Driven Ambiguity Subset Selection

Different from the model-driven category, if the ambiguity subsets are chosen with actual
measurements involved, then the method belongs to the data-driven category. Almost all the ambiguity
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accepting tests belong to this category, such as the ratio test [35–37], the difference test [38,39], and the
project test [40].

Once the ambiguity subset ẑp is fixed to integer vector
^
z p, an acceptance test is performed to

validate the reliability of this subset. Taking the most widely used ratio test as an example, suppose
the threshold of the ratio test is expressed by ‘c’ (it could be 2.5, 3, or other suitable values), then the
discriminant condition can be expressed as follows:

I f
(ẑp −

^
z p,2)Q−1

ẑpẑp
(ẑp −

^
z p,2)

(ẑp −
^
z p)Q−1

ẑpẑp
(ẑp −

^
z p)

{
≥ c use

^
z p

< c use ẑp
(17)

where
^
z p,2 is the suboptimal candidate.

As Equation (17) shows, the ratio test is constructed by the second minimum and minimum
quadratic form of the ambiguity residual, which is obviously a data-driven method, as the ambiguities
calculated from actual observations are considered. The subset

^
z p will be used to update the baseline

solution if it is accepted by the ratio test, or furthermore, ambiguities need to be screened out if
^
z p

is rejected.
The key problem of the ratio test is the selection of the threshold c, which is normally an

empirical value such as 2.5 or 3 [41,42]. However, this empirical value will no longer be applicable in
multi-frequency and multi-system cases, as the difference between the second minimum and minimum
quadratic form will no longer be significant with the increase in the ambiguity dimension, and the
ratio value will gradually approach to one. As a result, the empirical threshold of 2.5 or 3 may be too
strict in high-dimension cases, and subset

^
z p will be continuously rejected until the size of the subset

becomes very low, which is not conducive to the improvement of baseline precision.
FFRT provides a more reasonable method to determine threshold c. An adaptable threshold is

calculated according to the underlying model (measured by BSR) and failure rate tolerance. We calculate
the ratio value of 5 to 65 dimensions using the Monte Carlo method with 100,000 samples, and the BSR
is set from 0.5 to 1. The failure rate tolerance is set to 0.001. Then, a look-up table is established for
convenience, which is like the table published by Verhagen [37].

As Figure 2 shows, the testing threshold calculated by FFRT is more sensitive to the dimension of
ambiguity, as it is larger in low-dimension cases and smaller in high-dimension cases. An empirical
value like 2.5 or 3 is more suitable for single-system cases where the dimension is around 10, and it is
not suitable for the multi-frequency and multi-system cases. In this paper, we adopt the FFRT method
for screening ambiguity subsets, and an improvement is made on it.

Figure 2. A plot of the threshold under FFRT as function of ambiguity dimension. Blue denotes
thresholds calculated at different BSR values and dimensions; red denotes the mean threshold of
each dimension.
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Note that the thresholds calculated by FFRT are not strictly accurate, as they are influenced by the
BSR and simulated results, which may be overoptimistic compared with the real case, so the threshold
is close to one when ambiguity has a high dimension or the underlying model is very strong. As a
missed detection may occur if the testing threshold is too small, in order to guarantee the reliability of
fixed ambiguity subsets, the testing threshold is set to a constant value of 1.5 when it is smaller than 1.5.
This modified method is named the Bounded-FFRT (B-FFRT). An experiment was applied to compare
the FFRT and B-FFRT. Real-measured GPS+BDS dual-frequency data were processed by LAMBDA
and then validated by FFRT and B-FFRT respectively, and an ambiguity fixing with no validation (the
threshold of ratio is set as 1) is also evaluated as a comparison (cf. Figure 3).

Figure 3. Baseline bias obtained by No-Validation (a), FFRT (b), B-FFRT (c) respectively, and the ratio
value (d) of it.

As Figure 3 shows, the FFRT method really makes it more reasonable compared to an empirical
threshold, but some wrongly fixed ambiguities still exist compared to B-FFRT. Combined with the ratio
value, we can see that wrong fixing is more likely to arise when the ratio is small. As the threshold of
FFRT is calculated by simulation experiments, it may not be completely in line with the actual situation,
so a missed detection may happen when the calculated threshold is too small. We evaluated the missed
detection rate and false alarm rate (cf. Table 1); the missed detection rate of No-Validation, FFRT,
and B-FFRT is 11.74%, 6.88%, and 0.69%, respectively, and the false alarm rate is 0%, 5.63%, 31.11%,
respectively. Although the false alarm rate of B-FFRT is much larger than FFRT, the missed detection
rate is also much smaller, which may realize higher reliability and perform better in an actual situation.

Table 1. Comparation of missed detection rate and false alarm rate.

Method Fixed Epochs Missed Detection Rate False Alarm Rate

No-Validation 2880 11.74% 0%

FFRT 2578 6.88% 5.63%

B-FFTR 1666 0.69% 31.11%
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3. A New Model-Driven and Data-Driven Partial Ambiguity Resolution Method

3.1. The Baseline Precision Defect (BPD)

The main contribution and purpose of fixing ambiguities is to improve the precision of the baseline
solution. For instance, in a single-epoch processing mode, the float solution and fixed solution of the
baseline vector can be expressed as

Qb̂b̂ = δ2
p

(
GTPG

)−1
(18)

Q^
b
^
b
≈ δ2

ϕ

(
GTPG

)−1
(19)

where δp and δϕ are the priori accuracy of the code and carrier phase observations, respectively.
G is the direction of the cosine matrix of satellites and receiver line-sight. The detailed proof of
Equations (18) and (19) is given in Appendix A.

According to Equations (18) and (19), the precision of the float baseline solution mainly depends
on the code observations, while the fixed baseline solution depends on the carrier phase observations,
so the precision of the baseline can obtain great promotion after the ambiguities have been fixed.
Furthermore, as presented in Equation (10), the larger the dimension of the ambiguity subset is,
the higher the baseline precision is, so when choosing an ambiguity subset, its influence on baseline
precision should also be considered. In order to fully evaluate the baseline precision after fixing the
partial ambiguities, the Baseline Precision Defect (BPD) is defined in this paper as follows, and a similar
concept can also be found in Teunissen [24] and Hou [6]:

BPD =

√√
tr(Qb̂b̂)

tr(Q^
b
^
b
)
−

√√√ tr(Qb̂b̂)

tr(Q^
b (
^
z p)

^
b (
^
z p)

)
(20)

where Qb̂b̂, Q^
b
^
b

, and Q^
b (
^
z p)

^
b (
^
z p)

represent the variance-covariance matrix of the float baseline,

fixed baseline (updated by the full ambiguities set), and partial fixed baseline (updated by the
ambiguity subset), respectively. tr(·) is the matrix tracing operation.

The first term on the right of Equation (20) reflects the baseline precision promotion of the full
ambiguity set, and the second term reflects the promotion of the ambiguity subset, so the subtraction
of them reflects the precision defect caused by partial ambiguity fixing, which is better when it is
smaller. Suppose that the a priori accuracy of the code and carrier phase observations is 0.3 and 0.003 m,
respectively, then the first right term will be approximately equal to 100 and the second right term will
be less than (when the dimension of the subset is smaller than that of the full set) or approximately
equal to (the subset is equal to the full set) 100. As the baseline solution will obtain a larger precision
with a smaller BPD, the influence of partial ambiguity fixing can be quantitatively evaluated easily
through BPD. Hence, the upper boundary value of BPD (50 for example) can be set while choosing
ambiguity subsets to ensure high enough baseline precision promotion.

An experiment was applied to illustrate the beneficial effect of the BPD check. Partial ambiguity
fixing was performed on real-measured GPS+BDS dual-frequency data, and the result of the baseline
vector was compared with its real value (cf. Figure 4). The left figure of Figure 4 shows the results
that satisfied BPD < 50. Most of them were wrongly fixed. The right figure shows those that satisfied
BPD < 50, in which only little wrong fixing occurred.
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Figure 4. Baseline bias obtained with BPD > 50 (a) and BPD < 50 (b).

3.2. The Triple Checked Partial Ambiguity Resolution (TC-PAR) Method

From the above analysis, we conclude that the model-driven method SRC gives an overall
description of the GNSS observation model and an ambiguities/baseline solution with high precision,
while the modified data-driven method B-FFRT can distinguish among ambiguity candidates.
Combining these two methods would better ensure the reliability of ambiguity subsets. In addition,
the newly defined data-driven criteria, BPD, could ensure that the baseline precision promotion is high
enough after the ambiguity subset is fixed.

According to the analysis above, we propose a new partial ambiguity resolution method named
Triple Checked Partial Ambiguity Resolution (TC-PAR), which can achieve high reliability as well as a
baseline solution with high precision. The flow chart is shown in Figure 5, and the detailed steps are
given as follows:

Figure 5. Flow chart of Triple Checked Partial Ambiguity Resolution (TC-PAR).

Step 1: Using the order of the conditional variance matrix D as a screening order of ambiguity
subsets, suppose an LTDL decomposition of Qẑẑ is performed and d1, d2, ..., dn are, respectively,
the diagonal elements of D (d1 is the first one and dn the last one), then the ambiguity corresponding to
d1 has the lowest relative accuracy. If the full ambiguity set cannot be fixed, it will be screened out
from d1 until the residual subsets can be fixed one by one.

Step 2: The model-driven SRC method is used as the first check to ensure the strength of the GNSS
observation model as well as a high enough fixed success rate of ambiguities. The threshold condition
of BSR is set as Ps_IB ≥ 0.995 in this step, and the ambiguities are eliminated one by one according to
the order of Step 1 until this condition is satisfied.
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Step 3: After the ambiguity subset is fixed by ILS search, the data-driven B-FFRT method is used
as the second check to ensure the reliability of the fixed ambiguity subset. The established B-FFRT
look-up table is adopted in this step with the minimum of ratio threshold set as 1.5.

Step 4: The data-driven BPD method is used as the third check to ensure the baseline solution can
obtain high enough precision promotion after the ambiguity subset is fixed. The threshold condition of
BPD is set as BPD ≤ 50 in this step. The ambiguity subset will be obtained if this condition can be met;
otherwise, only a float solution can be used.

4. Results

In order to validate the performance of TC-PAR, four groups of real-measured data in different
scenes and different baseline lengths are adopted. These data are processed with two strategies: (a) the
traditional LAMBDA method of fixing the full ambiguity with an empirical threshold 2.5; (b) the
proposed TC-PAR method of fixing the partial ambiguities subset. The detailed information of these
data is given in Table 2, where Dataset1 and Dataset2 are static and Dataset3 and Dataset4 are kinematic.
The dynamic trajectory of Dataset3 and Dataset4 is shown in Figure 6.

Table 2. Data information.

Dataset Scene Date Instruments Length

1 Static (WHDH-WHKC) 23 January 2018 Trimble NetR9 18.6 km
2 Static (HKLM-HKQT) 5 July 2017 Trimble NetR9 12.5 km
3 Vehicle 13 March 2015 Sinan M300 0.1~5.7 km
4 Shipborne 7 November 2015 Novatel OME6 5~27 km

Figure 6. Dynamic trajectory of Dataset3 (a) and Dataset4 (b).

The basic configuration of data processing is given in Table 3. The dual-frequency and dual-system
data of GPS/BDS, which can reach approximately 40 dimensions, are used to satisfy the features of
high-dimensional ambiguity resolution. In order to better evaluate the real accuracy of each ambiguity,
a single-epoch geometry-based double-difference RTK technique is adopted (Kalman filter is only
applied in the estimation of float baseline parameters, and the float ambiguities are calculated by the
combination of pseudo-range and carrier phase observations in each epoch). The residual ionosphere
and troposphere are corrected by the model, the cut-off angle is set as 10◦, and the weight of the
code/phase is set as 1:100.
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Several criteria are evaluated in this section, including the fixed rate, the fixed success rate,
correct fixed rate of ambiguity resolution, as well as the Root Mean Square (RMS) of baseline positions
and the BPD value. The fixed rate, fixed success rate and correct fixed rate are defined as follows:

Fixed rate: the ratio of the number of fixed ambiguities to all effective epochs. Note that both
correctly fixed and wrongly fixed epochs participate.

Table 3. Basic processing configuration.

System and Frequency GPS(L1/L2)+BDS(B1/B2)

Process Model Single-epoch RTK
Ambiguity Resolution LAMBDA/TC-PAR
Validation Threshold 2.5/B-FFRT

Cut-off Angle 10◦

Ionosphere Model Klobuchar
Troposphere Model Saastamoinen

Weight of Code and Phase 1:100

Fixed success rate: the ratio of the number of correctly fixed ambiguities to all effective epochs,
which reflects the availability of fixed ambiguities. The correctness of ambiguities is evaluated
by comparing the ambiguity-fixed positions with the real positions, for instance, the ambiguities
are considered correct if the deviations of E/N/U are less than 3 cm/3 cm/6 cm in static scene and
5 cm/5 cm/10 cm in kinematic scene, respectively.

Correct fixed rate: the ratio of the number of correctly fixed ambiguities to all fixed epochs,
which reflects the reliability of fixed ambiguities.

4.1. Experiment on Static Data

In this experiment, the above types of two static data were processed according to Table 3, with the
LAMBDA and TC-PAR methods, respectively. The results are shown in Figures 7 and 8. Note that
for static data, the real values of baseline positions were calculated by the commercial software CHC
Geomatics Office (CGO) developed by CHCNAV, China. As the true ambiguity values were unknown,
the ambiguity-fixed baseline positions were compared to determine whether the ambiguities had been
fixed correctly.

The top figure of Figure 7 gives the dimensions of the full ambiguity set and partial ambiguity
subset with red and green points, respectively, and the BPD of ambiguity subset is also presented with
blue points. It can be seen that the dimension of the ambiguity subsets is equal to or slightly lower than
that of the full set in most of the epochs, where the first case (equal to) means that the ambiguity full
set could be fixed by LAMBDA, and the second case (lower than) means that the unfixed ambiguities
could be fixed after screening out a little part. This phenomenon is consistent with the real case,
as usually, only a few of the ambiguities/phase observations are abnormal. Additionally, the BPD value,
which is better when it is lower, was lower than 20 in most epochs, reflecting a high improvement in
baseline precision.

The bottom figures of Figure 7 show the deviation sequence of the baseline vector processed by
LAMBDA (b) and TC-PAR (c), respectively, and the epoch numbers of right fixed and wrong fixed
are given in the figure. The right fixed epoch of LAMBDA was 2158, and it increased to 2777 when
processed by TC-PAR while the float epoch decreased from 712 to 12. Hence, most of the float epochs
could be fixed after adopting partial ambiguity fixing; thus, the availability of the fixed solution
evidently improved. Figure 8 shows the results of Dataset2; note that the ionosphere of Hong Kong
is more active than that of Wuhan, which may explain the worse results of this dataset compared to
Dataset1. As the general characteristics of Dataset2 are like Dataset1, no more explanations will be
given here.
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Figure 7. Dimensions of the ambiguity full set/subset and BPD value (a), and the baseline deviation
sequence of LAMBDA (b) and TC-PAR (c) in Dataset1. R, W, and F denote the right fixed epoch,
wrong fixed epoch, and float epoch, respectively.

Figure 8. Dimensions of the ambiguity full set/subset and BPD value (a), and the baseline deviation
sequence of LAMBDA (b) and TC-PAR (c) in Dataset2. R, W, and F denote the right fixed epoch,
wrong fixed epoch, and float epoch, respectively.
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The statistical results of Dataset1 and Dataset2 are given in Table 4, including the fixed rate, fixed
success rate, correct fixed rate, and the RMS of the fixed solution of the baseline vector (including
correctly fixed solutions and wrongly fixed solutions) as well as RMS of the fixed and float solution
(including both fixed solutions and float solutions). Compared to LAMBDA, TC-PAR was shown
to significantly improve the fixed rate and fixed success rate; for instance, the fixed success rates of
Dataset1 and Dataset2 improved from 74.93% and 64.49% to 96.42% and 94.77%, respectively. As the
float RTK solutions are generally in decimeter accuracy, the baseline RMS of LAMBDA method is in
decimeter accuracy when considering float epochs, while TC-PAR could generally maintain centimeter
accuracy. The correct fixed rates are decreased to a certain degree, but even though decreased,
the correct fixed rates are still higher than 95%, and the RMS of baseline when ambiguities are fixed is
comparable to LAMDBA. As partial ambiguity resolution is exactly an attempt at solving the problems
of those epochs that are hard to overcome, we think the decrease is unavoidable, and it could be
accepted considering the significant improvement of fixed success rate.

Table 4. Static experiment results of LAMBDA and TC-PAR.

Method Fixed
Rate

Fixed Success
Rate

Correct
Fixed Rate

Fixed Epochs Fixed and Float Epochs

RMS-E/cm RMS-N/cm RMS-U/cm RMS-E/cm RMS-N/cm RMS-U/cm

Dataset1
LAMBDA 75.28% 74.93% 99.54% 0.75 0.60 1.42 10.83 11.60 36.01

TC-PAR 99.58% 96.42% 96.83% 0.80 0.83 1.87 1.87 1.31 4.89

Dataset2
LAMBDA 64.54% 64.49% 99.93% 1.27 0.88 2.53 8.04 9.17 19.67

TC-PAR 99.68% 94.77% 95.08% 1.76 1.28 2.80 1.91 1.71 3.18

4.2. Experimental of Kinematic Data

In this experiment, the above two types of kinematic data were processed according to Table 3
with the LAMBDA and TC-PAR methods, respectively. The results are shown in Figures 9 and 10.
For kinematic data, the real values were calculated by the commercial software GrafMov developed by
NovAtel, Calgary, CA. And only the fixed solution of GrafMov (Quality number = 1) was adopted.

Different from the static data, the overall quality of the kinematic data was worse due to the
complex environment. It can be seen from Figure 9 that the number of satellites showed large
fluctuations, as the car was frequently shaded by nearby buildings and trees. According to the
statistical results given in Table 5, the fixed rate of Dataset3 was only 72.33% when processed by
LAMDBA, although its baseline length was less than 6 km. However, when processed by TC-PAR,
the fixed rate of Dataset3 improved to 98.53%, and the fixed success rate improved from 69.56% to
92.90%, which is as significant as the results shown for the static data. The worse quality of observation
of course had an adverse influence on TC-PAR, too. For instance, the BPD value was obviously larger
than that in the static case, which means that more ambiguities were screened out due to low accuracy.
So, according to practical experience, the discriminant condition of BPD ≤ 50 was set to guarantee the
reliability and precision of solutions.

Table 5. Kinematic experiment results of LAMBDA and TC-PAR.

Method Fixed
Rate

Fixed Success
Rate

Correct
Fixed Rate

Fixed Epochs Fixed and Float Epochs

RMS-E/cm RMS-N/cm RMS-U/cm RMS-E/cm RMS-N/cm RMS-U/cm

Dataset3
LAMBDA 72.33% 69.56% 96.16% 0.66 0.70 2.22 9.64 11.65 27.37

TC-PAR 98.53% 92.90% 94.29% 0.73 0.72 2.31 3.77 5.92 16.41

Dataset4
LAMBDA 49.50% 49.25% 99.50% 1.52 1.08 3.82 17.46 16.48 36.73

TC-PAR 98.74% 95.03% 96.24% 1.76 2.20 3.93 2.95 4.14 7.31
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Figure 9. Dimension of ambiguity full set/subset and BPD value (a), and the baseline deviation sequence
of LAMBDA (b) and TC-PAR (c) in Dataset3. R, W, and F denote the right fixed epoch, wrong fixed
epoch, and float epoch, respectively.

Figure 10. Dimensions of the ambiguity full set/subset and BPD value (a) and the baseline deviation
sequence of LAMBDA (b) and TC-PAR (c) in Dataset4. R, W, and F denote the right fixed epoch,
wrong fixed epoch, and float epoch, respectively.

Figure 10 shows the results of Dataset4, which were collected at sea in an open environment. It can
be seen that the fixed rate of Dataset4 was very low when processed by LAMBDA, especially after
GPST 348000 s. Note that the baseline length of Dataset4 continuously increased, and the reason for
this is obvious: The residual error for factors such as the ionosphere and troposphere get larger with
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the increase of the baseline and is absorbed into the float ambiguities, causing the ratio of Equation (17)
to become insignificant. This phenomenon reflects another shortage of the ratio test, as the ratio value
itself will be insignificant if the float ambiguities have low accuracy. According to Figure 10 and Table 5,
the proposed TC-PAR method, which adopts B-FFRT rather than the traditional ratio test, obtained
a higher fixed success rate as well as comparable baseline precision when ambiguities were fixed,
and higher baseline precision when float solutions were also considered. However, as shown in the top
figure of Figure 10, the dimensions of the ambiguity subsets decreased drastically after GPST 350500,
due to the baseline length being too large so that even B-FFRT could not tolerate it anymore.

5. Discussion and Conclusions

The experiment results presented in Section 4 show that both the fixed rate and fixed success
rate obtained significant improvements when the TC-PAR method was adopted, and although the
correct fixed rate is decreased to a certain degree, it is still higher than 95% in the static experiment and
higher than 94% in the kinematic experiment. The precision of the baseline solution still maintained a
centimeter level after the ambiguity subsets were fixed, which is comparable to the LAMBDA method,
and if float solutions are also considered, the precision can be increased from decimeter level to
centimeter level. These facts above illustrate the excellent properties of TC-PAR, and the benefits can
be classified into three categories:

First is the screening order of ambiguities. The order of the conditional variance matrix D can
reflect the precision order of each ambiguity effectively. As shown in Figures 7–10, the dimensions
of ambiguity subsets are slightly lower than that of the full set most of the time, as the low precision
ambiguities are identified and eliminated accurately.

Second, the double checks imposed by both model-driven (BSR) and data-driven methods (B-FFRT)
guarantee the high reliability of fixed ambiguities. Thus, the fixed rate and fixed success rate of the
ambiguities are high.

Third, checked by the new defined data-driven criterion, BPD, the precision of the baseline solution
can be maintained at a high level to obtain a precision comparable to that of fixing full ambiguities.

However, although TC-PAR performs well most of the time, some shortages still exist. As we can
see from the above experiments, the dimensions of the subsets are low in some epochs and may even
reach 4 (the minimum value set for ambiguity resolution) at times. This phenomenon is abnormal in
multi-frequency and multi-system cases. We consider that there are two main reasons for this situation:
First, as analyzed in the experiment of Dataset4, due to the inherent characteristics of the ratio test,
even the B-FFRT method cannot always perform well if the precision of most ambiguities is at a low
level, so another acceptance test method with better features is needed. Besides, as the conditional
variance matrix D is decomposed from the variance-covariance matrix Qẑẑ, which is largely determined
by mathematical models, the order of D may be inaccurate if the mathematical model is inappropriate.
Hence, the anomaly of TC-PAR may be caused by this inaccurate order; thus, the mathematical model
needs to be further refined if a better performance is requested.

In conclusion, partial ambiguity resolution is one of the hottest topics in GNSS ambiguity resolution
and remains an open problem. Through the theoretical analysis and experiment results above, the new
proposed TC-PAR method was shown to achieve a greater fixed success rate with high reliability and
high accuracy, which may be beneficial to the future application of GNSS positioning.
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Appendix A

Proof of Equations (18) and (19). According to Equation (1), its normal equation can be presented as[
ATPyyA ATPyyB
BTPyyA BTPyyB

][
â
b̂

]
=

[
ATPyyy
BTPyyy

]
. (A1)

Then, the variance-covariance matrix of the float ambiguity â and baseline b̂ can be calculated as

Q =

[
ATPyyA ATPyyB
BTPyyA BTPyyB

]−1

=

[
Qââ Qâb̂
Qb̂â Qb̂b̂

]
. (A2)

When code and phase observations are both used, suppose that y =
[

l f lp
]T

, A =
[
λIn 0

]T
,

B =
[

GT GT
]T

, and Pyy = diag(P/δ2
φ, P/δ2

P). Then, the precision of the float baseline can be
presented as

Qb̂b̂ =
[
BTPyyB− BTPyyA(ATPyyA)

−1
ATPyyB

]−1
= δ2

p

(
GTPG

)−1
. (A3)

Similarly, after ambiguities fix the integers, the precision of fixed baseline can be presented as

Q^
b
^
b
=

(
BTPyyB

)−1
=

δ2
ϕ

1 + δ2
ϕ/δ2

p

(
GTPG

)−1
≈ δ2

φ

(
GTPG

)−1
. (A4)

End of proof. �
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