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Abstract: To suppress noise in signals, a denoising method called AIC–SVD is proposed on the basis 
of the singular value decomposition (SVD) and the Akaike information criterion (AIC). First, the 
Hankel matrix is chosen as the trajectory matrix of the signals, and its optimal number of rows and 
columns is selected according to the maximum energy of the singular values. On the basis of the 
improved AIC, the valid order of the optimal matrix is determined for the vibration signals mixed 
with Gaussian white noise and colored noise. Subsequently, the denoised signals are reconstructed 
by inverse operation of SVD and the averaging method. To verify the effectiveness of AIC–SVD, it 
is compared with wavelet threshold denoising (WTD) and empirical mode decomposition with 
Savitzky–Golay filter (EMD–SG). Furthermore, a comprehensive indicator of denoising (CID) is 
introduced to describe the denoising performance. The results show that the denoising effect of 
AIC–SVD is significantly better than those of WTD and EMD–SG. On applying AIC–SVD to the 
micro-vibration signals of reaction wheels, the weak harmonic parameters can be successfully 
extracted during pre-processing. The proposed method is self-adaptable and robust while avoiding 
the occurrence of over-denoising. 

Keywords: signal denoising; singular value decomposition; Akaike information criterion; reaction 
wheel; micro-vibration 

 

1. Introduction 

As a most common mechanical device, rotating machinery plays a vital role in modern industry. 
Unlike general equipment, rotating machinery is typically operated in harsh, high-speed, and heavy-
load environments. These conditions can easily harm the key components of a mechanical system, 
such as gears, bearings, and rotors. With further expansion, the damage can cause equipment failure 
and even casualties. To ensure the safe operation of rotating machinery, fault detection techniques 
including vibration analysis, acoustic emission, temperature analysis, and wear debris analysis have 
been developed [1]. Among them, vibration analysis is widely used, owing to its signal testability 
and high correlation with structural dynamics. Simultaneously, in the fault diagnosis of rotating 
machinery, the corresponding signal processing technologies have been a part of the most useful 
approaches [2]. 

Considering the environmental and structural factors, the source signals are commonly mixed 
with random noise, which is problematic for the early fault detection of machinery [3]. For the 
purpose of extracting effective information, numerous reasonable methods are applied to reduce the 
noise from measured vibration signals. Affected by a series of non-linear factors, such as internal 
friction, loads, stiffness, and assembly gap, the vibration signals of rotating machinery have strong 
non-linear and non-stationary characteristics [4]. As powerful tools for non-stationary signal 
processing, time–frequency analysis methods are commonly used to analyze the characteristics of 
vibration signals. In general, time–frequency analysis methods include short-time Fourier transform 



Sensors 2019, 19, 5032 2 of 18 

 

(STFT), discrete wavelet transform (DWT), empirical mode decomposition (EMD) [5], local mean 
decomposition (LMD) [6], and variational mode decomposition (VMD) [7]. Concurrently, in practical 
applications, the denoising methods based on time–frequency analysis have also made significant 
contributions. Currently, the methods based on wavelet analysis are the most well-known processing 
methods of signal denoising [8]. As a typical approach, based on the multi-resolution and self-similar 
characteristics of wavelet analysis, wavelet threshold denoising (WTD) reduces the noise in non-
stationary signals [9]. In engineering applications, there are still a few limitations in WTD, such as 
the selection of the wavelet basis functions [10] and phase lag after denoising [11]. Similar to WTD, 
the quality of EMD threshold denoising strongly depends on the selection of threshold parameters 
[12]. To achieve ideal denoising, comparatively more advanced denoising methods are developed by 
the improvement of time–frequency analysis, such as EMD with Savitzky–Golay filter (EMD–SG) 
[13]. Apart from time–frequency analysis, significant research efforts have been made for realizing 
noise reduction, such as singular value decomposition (SVD) [14], matching tracking [15], and sparse 
representation [16]. 

SVD is a non-parametric technique first proposed by Beltrami in 1873 [17]. In engineering 
applications, signal processing based on SVD has been an effective approach to analyze non-linear 
and non-stationary signals. It has been utilized in various applications, including speech recognition 
[18], data compression [19], image processing [20], fault diagnosis [21], and signal denoising [22]. As 
a powerful signal processing technique, SVD exhibits excellent performance in mechanical fault 
diagnosis. Unlike the traditional decomposition algorithm, SVD ensures the stability of feature 
extraction based on the theory of matrix transformation [23]. For monitoring the condition of rotating 
machinery, Yang and Tse developed a denoising method of vibration signals by singular entropy; it 
studied the distribution characteristics of the noise and clean signals [24]. In addition, Golafshan and 
Sanliturk developed a novel SVD-based denoising method, which was successfully applied for ball 
bearing localized fault detection in both the time and frequency domains of the vibration signals [25]. 

However, there are two critical problems in SVD signal denoising: the selection of the 
construction matrix and determination of the effective singular values. Initially, a one-dimensional 
signal must be constructed in the trajectory matrix based on the matrix transformation principle of 
SVD. The common matrix forms include the Toeplitz matrix, cycle matrix, and Hankel matrix [26], of 
which the most widely used is the Hankel matrix. In reference [27], it was proven that an original 
signal could be decomposed into a linear superposition of a series of component signals by SVD using 
the Hankel matrix. Zhao and Ye pointed out that SVD based on the Hankel matrix was quite similar 
to the signal processing effect of wavelet transform [11]. In 2015, Jiang et al. used the singular values 
of Hankel–SVD as the characteristic parameters to diagnose bearings [28]. For the order 
determination of singular values, energy-based methods can appropriately select the active order 
under the premise of good prior knowledge, such as entropy increments [24] and cumulative 
contributions of the singular values [29]. In 2010, Zhao et al. used a curvature spectrum of singular 
values to choose the order of the valid singular values, thus reliably determining the total number of 
bearing raceway peeling pits [30]. Furthermore, numerous studies have been devoted to the analysis 
of the difference spectrum relying on the abrupt change of singular values to reduce noise [31]. 
Li et al. found a unique relationship between valid singular values and major frequencies, which 
assisted in the inverse verification of the singular value order [32]. In 2016, Zhang et al. completed 
order determination based on the difference of singular value variance, and thus extended SVD to 
the denoising of non-periodic signals [33]. When dealing with complex vibration signals in 
SVD-based denoising, the accuracy and robustness of the order determination are still the most 
significant properties. 

To reduce noise effectively, a signal denoising method based on SVD and the Akaike 
information criterion (AIC) is proposed. This method can solve the problems of the selection of matrix 
structure and order determination of singular values. Based on the energy characteristics of the 
singular values, the optimal structure of the Hankel matrix is determined to act as the trajectory 
matrix of the signals. In the process of SVD, the effective singular values are accurately selected by 
adopting the improved AIC. After eliminating noise components, the remaining singular 



Sensors 2019, 19, 5032 3 of 18 

 

components are used to reconstruct an approximate matrix. Finally, the averaging method is utilized 
to obtain the denoising time series signal. 

The remainder of this paper is organized as follows. Section 2 briefly reviews the principles of 
the SVD and AIC. Section 3 describes AIC–SVD to make it applicable for vibration signals containing 
colored noise. The effectiveness of the proposed method is verified by simulation analysis, as 
presented in Section 4, and the application of a reaction wheel, as described in Section 5. Finally, in 
Section 6, the conclusions are drawn. 

2. Theoretical Background 

2.1. Singular Value Decomposition of Signals 

SVD is an orthogonal transformation. For a real matrix, m n×∈A R , there exist two orthogonal 
matrices, m m×∈U R  and n n×∈V R , that satisfy the equation given below [14] 

1

q
T T

i i i
i
u vσ

=

= =A UΣV , (1)

where the diagonal matrix, Σ , is 1 2[ ( , , , ) ]qσ σ σ ，diag 0  or its transposition. The elements, iσ (

1 2 qσ σ σ> > > ), are the singular values of the matrix A , and min( , )q m n= . U  and V  are the 

unitary matrices of A , and their column vectors iu  and iv  are the eigenvectors of the covariance 

matrices, TAA  and TA A , respectively.  
The singular values correspond to the feature components of the decomposition matrix. Apart 

from their high stability, they also have the characteristics of proportional and rotational invariance. 
Therefore, SVD can ensure the robustness of the signal features represented by different singular 
values, in compliance with the properties required by the feature vectors in pattern recognition. In 
the SVD-based process of signals, the Hankel matrix is typically accepted as the trajectory matrix 
because of its characteristic of zero phase shift [11]. A signal containing a noise is indicated as a vector 
form, [ (1), (2), , ( )]s s s N=s  , and its corresponding m × n dimensional Hankel matrix form is 

expressed as 
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where 1m N n= − +  and 1 n N< < . 
The sampling signal can be expressed by Equation (2) as 

 = [ (1, : ), (2: , )]m ns A A . (3)

Defining T
i i i iu vσ=A , the signal component, iP , can be expressed as [28] 

 = [ (1, :), (2: , )]i i m niP A A . (4)

Based on Equations (1), (3), and (4), the original signal can be written as 

1
 = 

=

q

i
is P . (5)

Based on Equation (5), by SVD using the Hankel matrix, the polluted signal can be decomposed 
into a simple linear superposition of a series of component signals [27]. For an additive noise signal, 

= + noises x w , an advantage of this decomposition is that the clean signal can be solved by the order 

of the effective singular values. 
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where x  is the clean signal, and k  is the order of the effective singular values. 

2.2. Order Determination of Akaike Information Criterion 

The AIC is an estimated measure of the fitting goodness of statistical models [34], and is 
currently used in the estimation of the source number. The decision functions of the AIC are as 
follows [35]: 

( )10( )  2 ( )log 2 (2 )dAIC d N n d L d n d= − − + −  (7)
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where 2
ii σλ =  denotes the eigenvalues of the unitary matrices, dL  is the maximum likelihood 

estimation of the eigenvalues, and 1, 2, , 1d n= −  denotes the number of sources. 

The AIC function consists of two parts. The former term is the maximum likelihood estimation 
of the model parameters, which reflects the parameter fitness of the principal components. The 
second term is the bias correction term inserted to convert the AIC into an unbiased estimator. The 
former term decreases with the increase in the number of sources, whereas the second term is 
contrary to the former. When the sum of the two terms is minimum, the best estimate of the effective 
order is obtained by balancing both the terms as 

( ))(minarg dAICk
d

= . (9)

3. Signal Denoising of Akaike Information Criterion – Singular Value Decomposition 

3.1. Selection of Hankel Matrix Rows and Columns 

To select the number of rows and columns of the Hankel matrix, the energy characteristics of the 
singular values are considered. The energy of the singular values indirectly reflects the information 
richness of the trajectory matrix [36], which is defined as 
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The relationship between the energy of the singular values and elements of the Hankle matrix 
can be derived from Equation (11). 
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The difference in the number of rows and columns will modify the singular value energy. To 
easily distinguish the singular components and avoid feature coupling, the optimal number of matrix 
columns is selected based on the maximum energy of the singular values, i.e. 
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n n j i
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− +

= =
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  . (13)

According to Equation (13), the energy of the singular values is equal to the sum of the squares 
of all the matrix elements. When the structure of the Hankel matrix is a square or an approximate 
square, the corresponding energy of the singular values is maximum. Specifically, if N  is even, the 
energy of the singular values is maximum at 2/Nn =  and 12/ += Nm . If N  is odd, the energy of 
the singular values is maximum at 2/)1( +== Nmn . As the basis for selecting the optimal structure 

of Hankel matrix, the maximum criterion of singular value energy makes it convenient to identify 
the effective singular components. 

3.2. Verification and Improvement of Order Determination 

To verify the validity of the order determination based on the AIC, the different types of signals 
are designed. The expressions of the periodic, attenuation and sweep signal are given as 

1
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Mixed with Gaussian white noise of different signal-to-noise ratios (SNRs), the initial signals 
turn into a series of polluted signals 1( )SNRss , 2( )SNRss  and 3( )SNRss , respectively. At a sampling rate of 
1 kHz and sampling time of 1 s, the polluted signals are constructed as 501 × 500 Hankel matrices to 
calculate by SVD. For simulation signals of different SNRs, the AIC is used to determine orders in 
comparison with cumulative contribution rate (CCR) and singular value curvature spectrum (CSM), 
as shown in Figure 1. 

 
(a) 

 
(b) 

 
(c) 
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Figure 1. Comparison of the different methods in order determination: (a) signals 1( )SNRss
; (b) signals 

2( )SNRss
; (c) signals 3( )SNRss

. CCR: cumulative contribution rate; CSM: singular value curvature 
spectrum; AIC: Akaike information criterion; SNR: signal-to-noise ratio. 

Based on the main frequency analysis method, the effective orders of 1( )SNRss  and 2( )SNRss  can 
be rapidly determined as 6 and 4. In Figure 1a,b, the results calculated by the AIC are consistent with 
those by main frequency analysis method, remaining constant irrespective of the change in the SNR. 
Concurrently, violent jumps occur in the curves of both the CCR and CSM. As can be observed in 
Figure 1c, the effective orders by the AIC are more stable than the compared methods for sweep 
signals 3( )SNRss . Therefore, the AIC improves the accuracy and robustness of the order determination, 
yielding results better than those obtained with other methods at different SNRs. The AIC can achieve 
viable noise separation, which is beneficial for reasonable noise reduction and feature extraction. 

Apart from a white noise of uniform power, the actual vibration signals are also mixed with an 
uneven colored noise. To smooth the interference components in the background of the colored noise, 
the eigenvalues are modified by the diagonal loading technique [37] as follows: 


=

+=
n

i
iii

1

22 σσμ . (15)

Substituting the modified eigenvalues into the maximum likelihood estimation of the signals, 
the improved AIC function becomes as expressed in Equation (16). Therefore, the adaptive 
determination of the singular components can be achieved by minimizing the AIC objective function 
for the signals containing the colored noise. 
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3.3. Denoising of Akaike Information Criterion – Singular Value Decomposition 

Combining the energy characteristics and AIC-based order determination of the singular values, 
a signal denoising method called AIC–SVD is proposed, as shown in Figure 2. The detailed steps of 
the method can be described as follows: 

Step 1. An m × n dimension Hankel matrix is chosen as the trajectory matrix of the sampling 
signal, [ (1), (2), , ( )]s s s N= s , and then the optimal number of rows and columns of the 

matrix is selected according to the maximum energy criterion of the singular values; 
Step 2. SVD is performed on the optimal construction matrix to obtain a sequence of non-
zero singular values, 1 2( , , , )qσ σ σ= σ . For signals containing the colored noise, the 

eigenvalues are corrected according to Equation (16). Next, the index of the minimum AIC 
value is determined by using the AIC, which is the order of effective singular values; 
Step 3. The inverse operation of SVD is applied to the singular components of the forward 
k  order to obtain the approximate matrix, Â ; 
Step 4. According to the averaging method expressed in Equation (17), the denoised signal 
is obtained by the reconstruction of the time series signals from the approximate matrix. 
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where Ni ,,2,1 = , max (1, 1)l i n= − + , and min ( , )h n i= . 
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Figure 2. Flow chart of the signal denoising method using AIC–SVD. SVD: singular 
value.decomposition. 

4. Simulation of Akaike Information Criterion – Singular Value Decomposition 

4.1. Numerical Simulation 

To verify the effectiveness of AIC–SVD in signal denoising, simulation experiments are 
performed with signal 1s , 2s  and 3s  mixed with a Gaussian white noise of 5 dB. At a sampling 
rate of 1 kHz and sampling time of 1 s, the corresponding waveform diagrams of the clean and 
polluted signals are shown in Figure 3. After selecting 501 × 500 Hankel matrices to construct the 
trajectory matrix of the signals, the singular values and the AIC values are calculated, as shown in 
Figure 4. Concurrently, the relevant parameters are extracted and listed in Table 1. 

  
(a) (b) 

Figure 3. Waveform diagrams of simulation signals: (a) clean signals; (b) polluted signals with 
Gaussian white noise of 5 dB. 
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(a) 

 
(b) 

Figure 4. Calculation of simulation signals based on AIC–SVD: (a) singular values; (b) AIC values. 

Table 1. Simulation parameters of signals based on AIC–SVD. 

Signal k SV AIC Energy Ratio 1  Valid Singular Spectrum  Error 

1s  6 127.8 2.485 × 105 84.49% 89.19% 5.92% 

2s  4 53.4 2.727 × 105 59.82% 54.82% 8.36% 

3s  46 32.9 3.426 × 105 63.84% 66.75% 4.56% 
1 Energy ratio is the energy ratio of clean signals to polluted signals. 

As listed in Table 1, the minimum AIC value indices of the above-mentioned three signals are 6, 
4, and 46, respectively. Concurrently, the corresponding effective singular spectral values are 89.19%, 
54.82%, and 66.75%. The values of the valid singular spectrum are extremely close to the energy ratio 
of the initial pure signals, and the maximum error is 8.36%. This illustrates that the AIC exhibits a 
high performance for the order determination of singular values. To determine the reliability of the 
method, AIC–SVD is compared to WTD and EMD–SG by reconstructing the signals. The processed 
signals are shown in Figures 5–7. 

 

Figure 5. Comparison of denoising effects by different methods for signal 1s . WTD: wavelet 
threshold denoising; EMD-SG: empirical mode decomposition with Savitzky–Golay filter. 
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Figure 6. Comparison of denoising effects by different methods for signal 2s . 

 

Figure 7. Comparison of denoising effects by different methods for signal 3s . 

The comparison reveals that the signals processed by AIC–SVD are well restored by the 
morphology of the pure signal without a phase shift. For a periodic signal, the denoising effects of 
WTD and EMD–SG are similar overall to that of AIC–SVD. However, the attenuated signal and swept 
frequency signal have a notable issue. Specifically, the reconstructed signals exhibit a major 
waveform distortion, which is not conducive to the subsequent extraction and analysis of the 
features. The denoising method of AIC–SVD can prevent signal distortion while effectively removing 
noise. With zero phase shift characteristics, the method of AIC–SVD is suitable in the denoising of 
different types of signals. 

4.2. Denoising Performance Evaluation 

To describe the performance of denoising more intuitively and accurately, the simulation signals 
are further quantitatively analyzed by combining the SNR, root mean square error (RMSE), and 
waveform correlation coefficient (NCC). These evaluation indicators are defined as follows [38]: 
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The SNR and RMSE reflect the global characteristics of the denoising performance, whereas the 
NCC describes the local characteristics of the signals. To avoid the limitations of a single evaluation 
index, a comprehensive evaluation index (CID) of denoising is introduced by integrating the SNR, 
RMSE and NCC. It can be defined as 

SNR NCCCID
RMSE

⋅= . (21)

 According to Equation (21), a large value of CID corresponds to a good performance in signal 
denoising. For the simulation signals, the denoising performance parameters of different methods 
are calculated and listed in Table 2. Subsequently, Gaussian white noise with different SNRs (2 dB, 
5 dB, and 10 dB) is added to the pure signals. The CID values of the denoising at the different SNRs 
are shown in Figure 8. 

Table 2. Denoising performance parameters at SNR of 5 dB. 

Evaluation 
Parameters 

WTD EMD–SG AIC–SVD 

1s  2s  3s  1s  2s  3s  1s  2s  3s  
SNR 31.548 7.196 19.007 34.548 9.908 18.334 51.407 38.295 23.496 

RMSE 0.309 0.273 0.274 0.266 0.239 0.283 0.115 0.058 0.219 
NCC 0.979 0.800 0.933 0.985 0.845 0.933 0.997 0.990 0.954 
CID 100 21 65 128 35 60 447 657 103 

Computing time (s) 0.9 1.2 1.4 3.6 2.5 2.4 3.7 2.7 2.7 
RMSE: root mean square error; NCC: waveform correlation coefficient; CID: comprehensive evaluation index. 
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Figure 8. Comparison of the CID for the different denoising methods. 

The data in Table 2 prove that the SNRs of the signals are improved after denoising by both the 
methods, of which AIC–SVD leads to the largest increase. The minimum NCC value of AIC–SVD is 
0.954, which can preserve the local waveform characteristics of the initial signal well, avoiding signal 
distortion. In Figure 8, the CID values of the different denoising methods increase with the 
improvement in the SNR of the initial signal, and the overall denoising performance of AIC–SVD is 
significantly better than those of the compared methods. Specifically, for the attenuated signal, the 
corresponding CID value of AIC–SVD at a 5 dB SNR is 657, which is much larger than those of the 
other methods. The powerful denoising performance of AIC–SVD for the attenuated signal shows 
that it is an effective pre-processing tool for vibration signals with pulse characteristics. 

5. Study on Micro-Vibration Signal Denoising of Reaction Wheels 

5.1. Micro-Vibration Test 

As important attitude control components of a satellite, reaction wheels have the general 
characteristics of rotating machinery. The specific structure of a reaction wheel is depicted in Figure 
9. It primarily consists of a rotor supported by ball bearings encased in a housing and driven by a 
brushless direct current (DC) motor. Influenced by some factors such as the internal rotor imbalance, 
bearing imperfections, and structural modes, a reaction wheel generates disturbance forces and 
moments during running. The negative impact of the disturbances is unacceptable for the normal 
operation of the payloads in satellites [39]. To ensure the successful implementation of the operations 
in space, it is necessary to analyze the micro-vibration characteristics of reaction wheels. 

An on-ground micro-vibration test is frequently performed as an approach to study the micro-
vibration characteristics of reaction wheels. It is conducted using the Kistler micro-vibration test 
device, as depicted in Figure 10. During the operation of a reaction wheel, the disturbance response 
is transmitted to the force measurement platform through the transfer tool. Then, the micro-vibration 
signals collected by piezoelectric sensors are transmitted to a data acquisition (DAQ) system via a 
charge amplifier, which are displayed and processed on a computer. 

 
Figure 9. Structure of a reaction wheel. DC: direct current. 

 
Figure 10. Micro-vibration test of a reaction wheel. DAQ: data acquisition. 

The micro-vibration signals of the reaction wheel are collected at different rotational speeds 
(0–2000 rpm). Performing the fast Fourier transform on the time domain signals, three-dimensional 
waterfall diagrams of the radial and axial disturbances are obtained, as shown in Figure 11. The 
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vibration of the reaction wheel mainly concentrates on the radial disturbance forces xF , axial 

disturbance forces zF , and radial disturbance torque xM . Relatively, the magnitude of the axial 

disturbing moment zM  is small, which can be ignored. Therefore, the analysis of the micro-

vibration signals is carried out in xF , zF  and xM . 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. Waterfall diagrams of a reaction wheel: (a) xF ; (b) zF ; (c) xM ; (d) zM . 

5.2. Analysis of Micro-Vibration Denoising 

Excluding the environmental factors, the noise of micro-vibration signals is also derived from 
the internal torque fluctuations and frictional interference. To separate the noise component from the 
micro-vibration signals, a general processing method called peak threshold denoising is used in 
reaction wheels at present. Based on the amplitude statistical characteristics of the noise, the 
threshold value to remove the noise from the original signal is determined. It is described as [40] 

DT Nδμ δ= + ⋅ , (22)

where μ  and δ  are the mean and standard deviation of the spike amplitude, respectively, and 
Nδ  is a user-defined tolerance level, which also depends on the SNR of the sampling signals. 

Generally, the value of Nδ  can be 2 or 3. 

In the study of a reaction wheel under the ultimate working conditions, the micro-vibration 
signals at 1800 and 2000 rpm are selected for the denoising analysis. The frequency of interest is set 
within 500 Hz, which is the main frequency band that causes satellite jitter. The threshold values are 
calculated according to different tolerance levels, as shown in Figure 12. Similarly, WTD and 
EMD–SG are used to suppress noise in micro-vibration signals, as shown in Figure 13. 
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(a) 

 
(b) 

Figure 12. Peak threshold denoising of the micro-vibration signals: (a) 1800 rpm; (b) 2000 rpm. 

 
(a) 

 
(b) 

Figure 13. Spectra of micro-vibration signals by WTD and EMD–SG: (a) 1800 rpm; (b) 2000 rpm. 

As exhibited in Figure 12, the magnitude of the user tolerance level directly affects the final effect 
of the signal denoising. In Figure 12a, a reaction wheel generates a large disturbance force at 131.5 Hz 
owing to the coupling of the harmonic responses and structural modes, which increases the threshold 
value to filter out some critical frequency features. Some obvious feature frequencies are equally easy 
to be removed in Figure 12b, such as 20 Hz. As shown in Figure 13, WTD and EMD–SG mainly act 
on high-frequency of test signals, which appear under-denoising in the low-frequency range and lose 
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super-harmonics. The filtered details frequently indicate that the system experiences a significant 
motion mechanism, which is not conducive to the subsequent characteristic analysis and fault 
diagnosis. 

 Owing to inappropriate parameter setting and resonance coupling, these denoising methods 
can easily cause phenomena of over-denoising and under-denoising. Therefore, AIC–SVD is 
introduced into the pre-processing of the micro-vibration signals of the above-mentioned reaction 
wheel. By constructing the Hankel matrix of micro-vibration signals, the singular values are solved 
by SVD. Owing to the presence of colored noise in the micro-vibration signals, the improved AIC is 
used to determine the order of the effective singular value by correcting the eigenvalues. According 
to the calculation results as shown in Figure 14, the indices of minimum AIC value is selected to 
reconstruct the approximate matrixes. Once the time series signals are restored by the averaging 
method, denoised frequency spectra are obtained, as shown in Figure 15. 

 
(a) 

 
(b) 

Figure 14. AIC diagrams at different rotational speeds: (a) 1800 rpm; (b) 2000 rpm. 

 
(a) 

 
(b) 

Figure 15. AIC–SVD denoised frequency spectrum of xF : (a) 1800 rpm; (b) 2000 rpm. 

By comparing Figures 12, 13 and 15, it is observed that AIC–SVD can effectively eliminate the 
noise from the micro-vibration signals. The denoised signals are convenient in the extraction of 
harmonic features. As shown in Figures 16 and 17, the micro-vibration signals of zF  and xM  are 

processed by AIC–SVD. And the related parameters of the reaction wheel are listed in Table 3. 
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(a) 

 
(b) 

Figure 16. AIC–SVD denoised frequency spectra of zF : (a) 1800 rpm; (b) 2000 rpm. 

 
(a) 

 
(b) 

Figure 17. AIC–SVD denoised frequency spectra of xM : (a) 1800 rpm; (b) 2000 rpm. 

Table 3. Characteristic parameters of micro-vibration signals by AIC–SVD. 

Disturbing 
Component 

Speed 
(rpm) k 

Valid singular 
Spectrum 

Computing Time 
(s) 

Harmonic 
Coefficient 

xF  
1800 442 94.9% 436 0.6, 1, 4.4, 5, 5.6, 9.4, 

14.4 2000 460 92.4% 448 

zF  
1800 422 99.3% 444 

5, 7.1, 7.5, 10 2000 498 98.9% 450 

xM  
1800 64 86.7% 440 0.6, 1, 4.4, 5, 5.6, 9.4, 

14.4 2000 68 88.1% 442 
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The data listed in Table 3 provide all the harmonic coefficients and related frequencies. The 
average running time of AIC–SVD is 443 s, which is mainly caused by SVD of matrices at the high 
sampling frequency. Combined with the analysis of the disturbance mechanism, it reveals that the 
denoised signals include a fundamental harmonic caused by the rotor imbalance, a sub-harmonic of 
0.6 times frequency caused by the bearing cage defects, and super-harmonics. Super-harmonics 
contain 4.4, 5, 5.6, 9.4, and 14.4 times frequency in both xF  and xM , 5, 7.1, 7.5, and 10 times 

frequency in zF , which are caused by the coupling of bearing imperfections. 

6. Conclusions 

This paper presents a powerful denoising method based on SVD and the improved AIC. 
Simulation analysis and an engineering application are undertaken to demonstrate the effectiveness 
of the proposed AIC–SVD, and the following conclusions can be drawn:  

(1) In the signal processing of SVD based on Hankel matrix, the energy of the singular values 
is maximum when the matrix structure is a square or an approximate square. Currently, the 
feature components provide the largest degree of distinction, which is convenient for the 
order determination of the effective singular values. 

(2) The method of order determination based on the AIC possesses high accuracy and 
robustness. Furthermore, AIC–SVD is significantly better than WTD and EMD–SG in the 
denoising performance for the signals containing Gaussian white noise. 

(3) In the micro-vibration signal pre-processing of reaction wheels, AIC–SVD achieves a 
reasonable denoising effect for the signals containing Gaussian white noise and colored 
noise. This solves the problem of over-denoising and under-denoising caused by 
inappropriate parameter selection and modal resonance factor. The proposed method has 
strong adaptability to vibration signal processing under different working conditions, 
which is beneficial in the extraction of harmonic features. 

By extracting the harmonic parameters, a reasonable disturbance model of reaction wheels will 
be established to describe the characteristics of micro-vibration. This will be of far-reaching 
significance in the study of orbital-operation monitoring and vibration-reduction space satellites. In 
addition, there is still room for improvement in the running efficiency of AIC–SVD, which would be 
optimized in the following study. 
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