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Abstract: Herein, a compact refractive index nanosensor comprising a metal- insulator- metal (MIM)
waveguide with symmetric two triangle stubs coupled with a circular split-ring resonance cavity
(CSRRC) is theoretically presented. An analysis of the propagation characteristics of the designed
structure is discussed employing the finite element method (FEM). The calculation results revealed
that a Fano resonance outline emerged, which results from an interaction between the continuous
broadband state of the waveguide with two symmetric triangle stubs and the discrete narrowband
state of the CSRRC. The influence of geometric parameters on sensing properties was studied in detail.
The maximum sensitivity reached 1500 nm/RIU with a high figure of merit of 65.2. The presented
structure has great applications for on-chip plasmonic nanosensors.

Keywords: refractive index sensor; Fano resonance; metal-insulator-metal waveguide; finite
element method

1. Introduction

Surface plasmon polaritons (SPPs) are transverse electromagnetic waves, originating from
incident photons coupled with free electrons on the surface of the metal [1,2]. The electric field
intensity of SPPs is tightly bound along the metal–dielectric interface and decays significantly in
the orientation vertical to the interface [3,4]. SPPs break the classical diffraction limit of light and
can realize the optical manipulation within sub-wavelength scales [5,6]; hence, the application of
SPPs is extensive [7,8]. There are various SPPs-based waveguides, for instance, stripe waveguides,
semiconductor–insulator–semiconductor (SIS) waveguides, metal-insulator-metal (MIM) waveguides,
and trench waveguides. Among these, the MIM waveguide has better properties, for instance,
stronger confinement of light, shorter propagation length, low band loss, smaller mode size, and
low fabrication cost [9,10]. To date, a number of the optical devices of the MIM waveguide structure
have been extensively studied, for example, nanosensors [11–14], demultiplexers [15], splitters [16,17],
filters [18–20], and optical switching [21,22].

Special optical effects have been found in the SPP waveguide system, such as plasmonically
induced reflection (PIR) [23], Fano resonance [24–26], and electromagnetically induced transparency
(EIT) [27,28]. Differing from the traditional symmetric Lorentzian lineshape, Fano resonance produces
a sharp and asymmetric spectral lineshape and exhibits a narrower full width at half maximum
(FWHM) [29]. Additionally, Fano resonance is greatly susceptible to the variation of structural
parameters and medium environment. Hence, combining Fano resonance and MIM structures can
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achieve high sensitivity with an excellent figure of merit (FOM). Heretofore, numerous refractive-index
nanosensor systems based on Fano resonance have been studied. Wang et al. [30] proposed a Fano
system of the plasmonic waveguide coupled with a T analogs cavity, with a sensitivity of 680 nm/RIU.
Zhao et al. [11] reported a sensor based on MIM structure, that comprised a ring cavity and an F-P
cavity, and its sensitivity could reach 718 nm/RIU. Qiao et al. [14] designed a nanosensor composed of
a baffle coupled with an M-type cavity, which could attain a sensitivity of 780 nm/RIU. Compared with
fiber sensors, plasmonic sensors [31,32] have many advantages; however, they have a lower sensitivity.
Therefore, it is crucial to improve the sensitivity of plasmonic sensors [33].

In this paper, a novel refractive index nanosensor is theoretically presented, which consists of a
MIM waveguide with two symmetric triangle stubs coupled with a circular split-ring resonance cavity
(CSRRC). The transmission spectra and the HZ field distributions were numerically demonstrated
employing the finite element method (FEM). The spectra of the Fano resonance are readily affected
by structural parameters of the proposed system. Therefore, the effects of the geometric parameters
on the transmission properties were studied. These geometric parameters include the outer radius
of CSRRC, the distance between two triangle stubs, the height of the triangle stub, the split size of
CSRRC, and the coupling distance.

2. Structure Model and Analytical Method

The schematic of the designed sensor is plotted in Figure 1. The structure comprised a MIM
waveguide with two symmetric triangle stubs and a CSRRC. Since the thickness of the proposed
structure was significantly longer than the light wavelength, the 2D model could be used to approximate
the 3D model. As a result, the calculation was simplified and the problem of the computer workstation
limitation was fixed. The white and yellow areas in the figure, respectively, represent air and silver.
The relative dielectric constant of air is 1 (i.e., εd = 1). The relative dielectric constant of silver is
defined by the Debye–Drude dispersion model [34]:

ε(ω) = ε∞ +
εs − ε∞

1 + iτω
+

σ

iωε0
(1)

where ε∞ = 3.8344 denotes the relative permittivity of infinite frequency, εs = −9530.5 denotes the
static permittivity, the relaxation time is taken as τ = 7.35× 10−15 s, and the conductivity of silver is
taken as σ = 1.1486× 107 S/m.
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Figure 1. 2D schematic of a waveguide with two symmetric triangle stubs coupled with a circular
split-ring resonance cavity (CSRRC).

The two triangular stubs are symmetric about the reference line. The height of the two triangle
stubs is h. The distance between the two symmetric triangle stubs is H. Two notches are made in the
unbroken ring to obtain the CSRRC structure. R and r, respectively, express the outer and inner radii of
the CSRRC. The length of the CSRRC split is l and the angle between the two splits of the CSRRC is
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defined as ϕ. The coupling distance is described by g and w = 50 nm denotes the width of the CSRRC,
the two triangle stubs and the MIM waveguide, which is remarkably shorter than the wavelength of
the incident light. Hence, only the fundamental transverse magnetic (TM0) mode exists and propagates
in the structure [35], which can support SPP waves.

A geometric model of this sensor system was built by employing COMSOL Multiphysics 5.3a [36].
Then, ultra-fine meshing was chosen to ensure the accuracy of calculations. The perfect matched layer
(PMLs) was chosen to be the absorbing boundary condition of the designed system, which could
greatly absorb the waves emitted from the inside of the structure and prevent all reflected waves
from entering the interior of the structure. The input port and output port were marked as P1 and
P2, respectively.

3. Simulations and Results

For a clear understanding of the propagation characteristics of the designed structures, the
structural parameters were set as follows: R = 130 nm, l = 30 nm, ϕ = 135◦, H = 360 nm, h = 80 nm,
g = 10 nm. The whole system was compared with the single CSRRC structure and the single two
symmetric triangle stubs structure, which is depicted in Figure 2. The purple, green and orange solid
lines denote transmission spectra of the single two symmetric triangle stubs structure, the single
CSRRC structure and the whole system, respectively. It can be observed that the transmission spectrum
of the whole system had an obvious Fano resonance, which is characterized by an asymmetrical sharp
shape. This phenomenon was aroused by the interaction of the continuous broadband state and the
discrete narrowband state [37,38]. The transmission spectrum of the single two symmetric triangle
stubs structure has a positive slope, and its entire curve has very similar relatively high transmittance.
Thus, it is considered as the continuous broadband state. The transmission spectrum of the single
CSRRC structure was similar to the Lorentz shape, which is deemed as the discrete narrowband state.
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Figure 2. Transmission spectra of the single two symmetric triangle stubs (purple line), the single
CSRRC (green line), and the sensor system (orange line).

To understand the internal mechanism of Fano resonance more clearly, the normalized HZ field
distributions of the single CSRRC structure and the whole system at the resonance dip (λ = 1185 nm)
were studied. They are depicted in Figure 3a,b, respectively. From Figure 3b, it can be seen that
the normalized HZ field distribution was only in the left part of the waveguide and the long part of
the CSRRC, and a relatively strong resonance was formed in the CSRRC. In addition, the upper and
bottom areas of the long part of the CSRRC were out of phase. However, there was normalized HZ

field distribution in the right part of the waveguide in Figure 3a. The other area of the normalized HZ

field distribution of the single CSRRC structure was similar to that of the whole system. It is to be
noted that a stronger resonance exists in the CSRRC when the normal waveguide adds two symmetric
triangle stubs, which can promote the formation of Fano resonance. Then, when the strong resonance
is excited, the SPPs are almost confined within the CSRRC, which leads to a low transmittance at the
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dip. It is obvious in Figure 3b that the SPPs are, directly and indirectly, coupled to the waveguide
and the CSRRC, respectively. Thus, they can be regarded as the continuous broadband state and the
discrete narrowband state, respectively.
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(b) the whole system at λ = 1185 nm.

We then studied the eight similar structures, whose parameters were all the same as those in
Figure 3, except the angle between the two splits of the CSRRC ϕ. Among them, seven structures
included two splits, while one structure contained a complete ring as the comparison. We calculated
the transmission spectra of the different structures, whose angle between the two splits was 45◦,
90◦, 135◦, 180◦, 225◦, 270◦ and 315◦, respectively. The transmission spectrum of the complete ring
structure was also considered. As shown in Figure 4, there were differences between the transmittance
spectra of these eight structures. As for the complete ring, ϕ = 45◦ and the ϕ = 315◦ side-coupled
CSRRC structures, their transmittance spectra were the Lorentz shape curve, which had ultra-low
transmittance at their dip (the complete ring was at λ = 935 nm while the other two structures were both
at λ = 830 nm) and a broad FWHM. As for the ϕ = 90◦ and ϕ = 270◦ side-coupled CSRRC structures,
their FMHW was relatively narrow, but they had high transmittance at the dip (λ = 1385 nm), which
leads to difficulty in detecting signals. As for the ϕ = 135◦ and ϕ = 225◦ side-coupled CSRRC structures,
as we analyzed previously, they showed a Fano resonance phenomenon and thus, had ultra-low
transmittance at their dip (λ = 1185 nm) and relatively narrow FWHM. The ultra-low transmittance
can lead to a larger extinction ratio, and the relatively narrow FWHM can lead to a high figure of
merit (FOM) and better sensing resolution. As for the ϕ = 180◦ side-coupled CSRRC structure, there
were two dips (one at 910 nm and the other at 990 nm) in the transmittance spectrum. The first dip
(λ = 910 nm) had a relatively broad FWHM and low transmittance at the dip, while the second dip
(λ = 990 nm) had a narrower FWHM and very high transmittance at the dip. In addition, the distance
between these two dips was very close, thus they would interfere with each other’s detection. From
the above comparison, it can be concluded that proper destruction of the symmetry of the structure can
support Fano resonance, which has better sensing properties of high sensitivity alongside a better FOM.
It was found that the transmission spectra of the ϕ = 45◦ and ϕ = 315◦ side-coupled CSRRC structure,
the ϕ = 90◦ and ϕ = 270◦ side-coupled CSRRC structure, the ϕ = 135◦ and the ϕ = 225◦ side-coupled
CSRRC structure were the same. This is because the complete ring structure was symmetrical about
the reference line.

Their normalized HZ field was also investigated, as depicted in Figure 5. Three phenomena
are observable in the figure: Firstly, there were two nodes in the complete ring structure, ϕ = 45◦,
ϕ = 180◦ and ϕ = 315◦ side-coupled CSRRC structures, whereas there was only one node in the other
side-coupled CSRRC structures. Secondly, the filed distribution of the complete ring structure was
symmetric about the reference line. The filed distribution of the ϕ = 45◦ and ϕ = 315◦ side-coupled
CSRRC structures was symmetrical about the axis that was in the center between the two splits.
However, the filed distribution of the others was asymmetric about the axis that was in the center
between two splits. Thirdly, when the resonance occurred in the CSRRC, there were no SPPs in the
short part of the CSRRC. It can be observed that the filed distribution of the ϕ = 45◦ and ϕ = 315◦

side-coupled CSRRC structure, the ϕ = 90◦ and ϕ = 270◦ side-coupled CSRRC structure, and the
ϕ = 135◦ and ϕ = 225◦ side-coupled CSRRC structure was similar. These three phenomena occurred
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because the different positioning of the splits would lead to different field distribution in the CSRRC.
Therefore, it is necessary to choose a better position to make splits. According to the above analysis,
the ϕ = 135◦ and ϕ = 225◦ side-coupled CSRRC structures have ultra-low transmittance at the dip, a
relatively narrow FWHM and fewer detection interference factors. Hence, we chose to study one of
them—the ϕ = 135◦ side-coupled CSRRC structure—in the rest of this paper.
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When the refractive indices of the dielectric change, the position of the Fano resonance will move
with it. Accordingly, the resonance wavelength that we can detect will change. So different refractive
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indices can be attained by detecting different resonance wavelengths. Furthermore, the transmittance
spectrum of Fano resonance is sharp so that it is sensitive to the change of refractive indices. Therefore,
the influence of diverse refractive indices on the sensing properties of the designed structure was
studied. The structural parameters were as follows: R = 160 nm, l = 30 nm, ϕ = 135◦, H = 280 nm,
h = 120 nm, g = 10 nm. The refractive index was gradually set as 1.00, 1.01, 1.02, 1.03, 1.04, 1.05 RIU.
It was then found, as shown in Figure 6a, that as the refractive index increased, the transmission
spectra exhibited an obvious redshift. The sensitivity (S) and the figure of merit (FOM) are two crucial
parameters for weighting the capability of the sensing system. One can be expressed by S = ∆λ/∆n,
where the change of resonance wavelength is described by ∆λ and the variation of refractive index is
expressed by ∆n, and the other can be defined as FOM = S/FWHM [39]. Here, it is necessary to explain
that there are two methods for defining the FOM, and the value of the FOM we get using this method
is much lower than in that of the other method.
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As shown in Figure 6b, when the variation of refractive indices changed, the wavelength shift
of the dip altered linearly. As a result, this structure can serve as a refractive index sensor because it
has the advantage of being more easily detected. The sensitivity of the sensor was obtained by linear
fitting, which was 1500 nm/RIU with a FOM of 62.5. This is the best parameter for this structure.

From the above analysis, it is found that Fano resonance was formed by the interference between
the waveguide with two symmetric triangle stubs and the CSRRC. It can be inferred from this that the
propagation characteristics of the designed sensor are affected by changing its geometric parameters.
Hence, it is essential to discuss the effects of different geometric parameters on propagation properties.
In the following analysis, the default geometry parameter values are the same as in Figure 3.

Firstly, the effects of the CSRRC outer radius on Fano resonance are discussed. The CSRRC outer
radius R was adjusted from 120 to 160 nm for an interval of 10 nm, while other parameters remained
unaltered. The transmission spectra are plotted in Figure 7a. As R increased, the dip position of Fano
resonance showed an obvious redshift and the transmittance at the dip became a little higher. The
simulation result indicates that the dip wavelength of Fano resonance was determined by R, which
is a key parameter of the CSRRC. In other words, the wavelength of the dip relies on the CSRRC
corresponding to the discrete narrowband state. By linear fitting, the different sensitivities of the
various structures were obtained, as is shown in Figure 7b. It was found that sensitivity became better
with the increase of the CSRRC outer radius R. Thus, it is necessary to make a compromise among
device size, transmittance and sensitivity.
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of the dip wavelength with the variation of refractive index.

Successively, the influence of the distance between the two symmetrical triangle stubs H on the
propagation characteristics was investigated. The distance between the two symmetric triangle stubs
H was adjusted from 280 to 360 nm with intervals of 20 nm, while the other parameters remained
invariable. As plotted in Figure 8a, the dip position of Fano resonance remained unchanged regardless
of how H changed. When H increased, the transmittance of the dip slightly decreased and the FWHM
of the transmission spectra became broader, which is displayed in Figure 8b. When the FWHM becomes
smaller, a higher FOM and a better sensing resolution can be obtained. Thus, a smaller H should be
applied to our sensor system. The distance between the two symmetric triangle stubs H is one of the
significant parameters of the waveguide with two symmetric triangle stubs, which is considered as the
continuous broadband state. Hence, it can be inferred from these calculation results that the continuous
broadband state affects the lineshape of Fano resonance rather than its wavelength of the dip.
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To further study the influence of geometric parameters on transmission properties, we altered
the length of the CSRRC splits l. The l was adjusted from 30 to 70 nm with intervals of 10 nm, and
here, other parameters were kept constant. Their transmission spectra can be observed from Figure 9a.
The dip position of Fano resonance produced a blueshift and the Fano lineshape remained unchanged
as the length of the CSRRC splits l increased. Then, we kept other parameters constant except for
increasing the height of triangle stub h from 80 to 120 nm, with intervals of 10 nm. The simulation
results of the different heights of the triangle stubs are depicted in Figure 9b. It is found that the dip
wavelength of Fano resonance did not shift and the Fano lineshape changed from a nearly symmetrical
shape to a completely asymmetrical shape, while increasing the height of triangle stub h. Next, we
increased the coupling distance from 10 to 30 nm with intervals of 5 nm and kept other parameters
invariable. The transmission characteristics can be attained from Figure 9c. When the coupling
distance g became larger, the Fano resonance dip showed a blueshift, the FWHM got narrower, and
the transmittance of the Fano resonance dip became higher. This can be explained by the fact that the
coupling strength becomes weaker with the increase of the coupling distance g. Based on the above
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analysis, it can be concluded that the parameters of the CSRRC can change the dip wavelength of Fano
resonance, whereas the parameters of the waveguide with two symmetric triangle stubs can change
the shape of transmittance spectrum. This is attributed to the stronger field energy restriction of the
ring cavity rather than the waveguide, which is displayed in Figure 3b.
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4. Conclusions

In this paper, a compact refractive index sensor was theoretically presented, comprising a MIM
waveguide with two symmetric triangle stubs coupled with a circular split-ring resonance cavity
(CSRRC). Its transmission properties were studied by using the finite element method. Calculation
results revealed that a Fano resonance emerged in the transmission spectrum, which was aroused by
interference between the continuous broadband state related to the waveguide with two symmetric
triangle stubs and the discrete narrowband state related to the CSRRC. By comparing it with similar
structures, it has been found that the ϕ = 135◦ side coupled CSRRC structure that was studied in this
paper has superior properties. In addition, the Fano resonance is significantly determined by the
structural parameters of the sensing system. The dip wavelength of Fano resonance largely depends
on the geometric parameters of the CSRRC, i.e., R and l. The lineshape of the transmission spectra are
susceptible to the structural parameters of the waveguide with symmetric two triangle stubs, i.e., H
and h. Particularly, the coupling distance influences both the dip wavelength of the Fano resonance
and the spectra lineshape. The sensitivity of the designed system can reach 1500 nm/RIU with a high
FOM of 65.2. The proposed structure is highly promising for nanophotonic applications.

Author Contributions: Conceptualization, S.Y.; Data curation, M.W.; Formal analysis, Y.W.; Investigation, X.Y.;
Methodology, X.Y. and E.H.; Supervision, S.Y.; Validation, E.H.; Writing—original draft, X.Y.; Writing—review &
editing, E.H., F.W. and S.Y.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 61675185,
61875250, 61975189), and Sponsored by the Fund for Shanxi ‘1331 Project’ Key Subject Construction.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.
[CrossRef] [PubMed]

2. Haddouche, I.; Lynda, C. Comparison of finite element and transfer matrix methods for numerical
investigation of surface plasmon waveguides. Opt. Commun. 2017, 382, 132–137. [CrossRef]

3. Zhao, C.; Li, Y. Multiple Fano resonances based on different waveguide modes in a symmetry breaking
plasmonic system. IEEE Photonics J. 1943, 6, 1–8.

4. Lu, H.; Liu, X.; Mao, D.; Wang, G. Plasmonic nanosensor based on Fano resonance in waveguide-coupled
resonators. Opt. Lett. 2012, 37, 3780–3782. [CrossRef] [PubMed]

5. Gramotnev, D.K.; Bozhevolnyi, S.I. Plasmonics beyond the diffraction limit. Nat. Photonics 2010, 4, 83–91.
[CrossRef]

6. Yin, Y.; Qiu, T.; Li, J.; Chu, P.K. Plasmonic nano-lasers. Nano Energy 2012, 1, 25–41. [CrossRef]

http://dx.doi.org/10.1038/nature01937
http://www.ncbi.nlm.nih.gov/pubmed/12917696
http://dx.doi.org/10.1016/j.optcom.2016.07.068
http://dx.doi.org/10.1364/OL.37.003780
http://www.ncbi.nlm.nih.gov/pubmed/23041857
http://dx.doi.org/10.1038/nphoton.2009.282
http://dx.doi.org/10.1016/j.nanoen.2011.09.002


Sensors 2019, 19, 4972 9 of 10

7. Kumara, N.; Chau, Y.; Huang, J. Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal
nanoparticle pairs with different core patterns for biosensor and solar cell applications. J. Opt. 2016, 18,
115003. [CrossRef]

8. Chau, Y.; Jheng, C.; Joe, S. Structurally and materially sensitive hybrid surface plasmon modes in periodic
silver-shell nanopearl and its dimer arrays. J. Nanoparticle Res. 2013, 15, 1424. [CrossRef]

9. Zia, R.; Schuller, J.A.; Chandran, A.; Brongersma, M.L. Plasmonics: The next chip-scale technology. Mater.
Today 2006, 9, 20–27. [CrossRef]

10. Lee, B.; Na, H.; Lee, I.M. Trapping light in plasmonic waveguides. Opt. Express 2010, 18, 598–623.
11. Zhao, X.; Zhang, Z.; Yan, S. Tunable Fano resonance in asymmetric mim waveguide structure. Sensors 2017,

17, 1494. [CrossRef] [PubMed]
12. Wen, K.; Hu, Y.; Chen, L. Fano resonance based on end-coupled cascaded-ring MIM waveguides structure.

Plasmonics 2017, 12, 1875–1880. [CrossRef]
13. Zhang, Z.; Luo, L.; Xue, C.; Zhang, W.; Yan, S. Fano resonance based on metal-insulator-metal

waveguide-coupled double rectangular cavities for plasmonic nanosensors. Sensors 2016, 16, 642. [CrossRef]
[PubMed]

14. Qiao, L.; Zhang, G.; Wang, Z.; Fan, G.; Yan, Y. Study on the Fano resonance of coupling M-type cavity based
on surface plasmon polaritons. Opt. Commun. 2019, 433, 144–149. [CrossRef]

15. Zand, I.; Abrishamian, M.S.; Pakizeh, T. Nanoplasmonic loaded slot cavities for wavelength filtering and
demultiplexing. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 4600505. [CrossRef]

16. Veronis, G.; Fan, S. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides.
Appl. Phys. Lett. 2005, 87, 131102. [CrossRef]

17. Tian, J.; Yang, R.; Song, L. Optical properties of a Y-Splitter based on hybrid multilayer plasmonic waveguide.
IEEE J. Quantum Electron. 2014, 50, 898–903. [CrossRef]

18. Ma, F.; Lee, C. Optical nanofilters based on meta-atom side-coupled plasmonics metal-insulator-metal
waveguides. J. Lightwave Technol. 2013, 31, 2876–2880. [CrossRef]

19. Chen, P.; Liang, R.; Huang, Q. Plasmonic filters and optical directional couplers based on wide
metal-insulator-metal structure. Opt. Express 2011, 19, 7633–7639. [CrossRef]

20. Wang, S.; Li, Y.; Xu, Q.; Li, S. A MIM Filter Based on a side-coupled crossbeam square-ring resonator.
Plasmonics 2016, 11, 1291–1296. [CrossRef]

21. Fang, M.; Shi, F.; Chen, Y. Unidirectional all-Optical absorption switch based on optical tamm state in
nonlinear plasmonic waveguide. Plasmonics 2016, 11, 197–203. [CrossRef]

22. Tao, J.; Wang, Q.; Huang, X. All-Optical plasmonic switches based on coupled nano-disk cavity structures
containing nonlinear material. Plasmonics 2011, 6, 753–759. [CrossRef]

23. Zhang, Z.; Ma, L.; Gao, F. Plasmonically induced reflection in metal-insulator-metal waveguides with two
silver baffles coupled square ring resonator. Chin. Phys. B 2017, 26, 312–316. [CrossRef]

24. Tang, Y.; Zhang, Z.; Wang, R.; Hai, Z.; Xue, C.; Zhang, W. Refractive index sensor based on Fano resonances
in metal-insulator-metal waveguides coupled with resonators. Sensors 2017, 17, 784. [CrossRef] [PubMed]

25. Wang, M.; Zhang, M.; Wang, Y. Fano resonance in an asymmetric MIM waveguide structure and its
application in a refractive index nanosensor. Sensors 2019, 19, 791. [CrossRef] [PubMed]

26. Yan, S.; Zhang, M.; Zhao, X. Refractive index sensor based on a metal–insulator–metal waveguide coupled
with a symmetric structure. Sensors 2017, 17, 2879. [CrossRef] [PubMed]

27. Ni, B.; Chen, X.; Xiong, D. A novel plasmonic nanosensor based on electro-magnetically induced transparency
of waveguide resonator systems. In Proceedings of the IEEE International Conference on Numerical
Simulation of Optoelectronic Devices, Palma de Mallorca, Spain, 1–4 September 2014; pp. 33–44.

28. Chen, Z.; Wang, W.; Cui, L. Spectral splitting based on electromagnetically induced transparency in plasmonic
waveguide resonator system. Plasmonics 2015, 10, 721–727. [CrossRef]

29. Chen, Z.; Yu, L.; Wang, L.; Duan, G.; Xiao, J. Sharp asymmetric line shapes in a plasmonic waveguide system
and its application in nanosensor. J. Lightwave Technol. 2015, 33, 3250–3253. [CrossRef]

30. Wang, L.; Zeng, Y.; Wang, Z. A refractive index sensor based on an analogy T shaped metal–insulator–metal
waveguide. Optik 2018, 172, 1199–1204. [CrossRef]

31. Chau, Y.; Chao, C.; Huang, H. Ultra-High Refractive Index Sensing Structure Based on a Metal-Insulator-Metal
Waveguide-Coupled T-Shape Cavity with Metal Nanorod Defects. Nanomaterials 2019, 9, 1433. [CrossRef]

http://dx.doi.org/10.1088/2040-8978/18/11/115003
http://dx.doi.org/10.1007/s11051-013-1424-9
http://dx.doi.org/10.1016/S1369-7021(06)71572-3
http://dx.doi.org/10.3390/s17071494
http://www.ncbi.nlm.nih.gov/pubmed/28672828
http://dx.doi.org/10.1007/s11468-016-0457-1
http://dx.doi.org/10.3390/s16050642
http://www.ncbi.nlm.nih.gov/pubmed/27164101
http://dx.doi.org/10.1016/j.optcom.2018.09.055
http://dx.doi.org/10.1109/JSTQE.2012.2224645
http://dx.doi.org/10.1063/1.2056594
http://dx.doi.org/10.1109/JQE.2014.2359232
http://dx.doi.org/10.1109/JLT.2013.2275950
http://dx.doi.org/10.1364/OE.19.007633
http://dx.doi.org/10.1007/s11468-015-0174-1
http://dx.doi.org/10.1007/s11468-015-0042-z
http://dx.doi.org/10.1007/s11468-011-9260-1
http://dx.doi.org/10.1088/1674-1056/26/12/124212
http://dx.doi.org/10.3390/s17040784
http://www.ncbi.nlm.nih.gov/pubmed/28383510
http://dx.doi.org/10.3390/s19040791
http://www.ncbi.nlm.nih.gov/pubmed/30781360
http://dx.doi.org/10.3390/s17122879
http://www.ncbi.nlm.nih.gov/pubmed/29232929
http://dx.doi.org/10.1007/s11468-014-9858-1
http://dx.doi.org/10.1109/JLT.2015.2419456
http://dx.doi.org/10.1016/j.ijleo.2018.07.093
http://dx.doi.org/10.3390/nano9101433


Sensors 2019, 19, 4972 10 of 10

32. Chau, Y.; Chao, C.; Huang, H. Plasmonic perfect absorber based on metal nanorod arrays connected with
veins. Result Phys. 2019, 15, 102567. [CrossRef]

33. Wu, T.; Liu, Y.; Yu, Z.; Peng, Y.; Shu, C.; Ye, H. The sensing characteristics of plasmonic waveguide with a
ring resonator. Opt. Express 2014, 22, 7669–7677. [CrossRef] [PubMed]

34. Gai, H.; Wang, J.; Tian, Q. Modified debye model parameters of metals applicable for broadband calculations.
Appl. Opt. 2007, 46, 2229–2233. [CrossRef] [PubMed]

35. Kekatpure, R.D.; Hryciw, A.C.; Barnard, E.S.; Brongersma, M.L. Solving dielectric and plasmonic waveguide
dispersion relations on a pocket calculator. Opt. Express 2009, 17, 24112–24129. [CrossRef] [PubMed]

36. COMSOL China|Multiphysics Simulation Software. Available online: https://cn.comsol.com/ (accessed on 6
March 2019).

37. Luk’yanchuk, B.; Zheludev, N.I.; Maier, S.A.; Halas, N.J.; Nordlander, P.H.; Chong, C.T. The Fano resonance
in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715. [CrossRef] [PubMed]

38. Chen, Z.Q.; Qi, J.W.; Chen, J.; Li, Y.D.; Hao, Z.Q.; Lu, W.Q.; Xu, J.J.; Sun, Q. Fano Resonance Based on
Multimode Interference in Symmetric Plasmonic Structures and Its Applications in Plasmonic Nanosensors.
Chin. Phys. Lett. 2013, 30, 057301. [CrossRef]

39. Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rinp.2019.102567
http://dx.doi.org/10.1364/OE.22.007669
http://www.ncbi.nlm.nih.gov/pubmed/24718142
http://dx.doi.org/10.1364/AO.46.002229
http://www.ncbi.nlm.nih.gov/pubmed/17415391
http://dx.doi.org/10.1364/OE.17.024112
http://www.ncbi.nlm.nih.gov/pubmed/20052123
https://cn.comsol.com/
http://dx.doi.org/10.1038/nmat2810
http://www.ncbi.nlm.nih.gov/pubmed/20733610
http://dx.doi.org/10.1088/0256-307X/30/5/057301
http://dx.doi.org/10.1021/cr100313v
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Structure Model and Analytical Method 
	Simulations and Results 
	Conclusions 
	References

