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Abstract: Gas multisensor devices offer an effective approach to monitor air pollution, which has
become a pandemic in many cities, especially because of transport emissions. To be reliable, properly
trained models need to be developed that combine output from sensors with weather data; however,
many factors can affect the accuracy of the models. The main objective of this study was to explore the
impact of several input variables in training different air quality indexes using fuzzy logic combined
with two metaheuristic optimizations: simulated annealing (SA) and particle swarm optimization
(PSO). In this work, the concentrations of NO2 and CO were predicted using five resistivities from
multisensor devices and three weather variables (temperature, relative humidity, and absolute
humidity). In order to validate the results, several measures were calculated, including the correlation
coefficient and the mean absolute error. Overall, PSO was found to perform the best. Finally, input
resistivities of NO2 and nonmetanic hydrocarbons (NMHC) were found to be the most sensitive to
predict concentrations of NO2 and CO.

Keywords: air quality; adaptive neuro-fuzzy inference system; particle swarm optimization;
simulated annealing

1. Introduction

In the transport sector, fossil fuel-powered vehicles, such as motorcycles, cars, and buses, are
major contributors to local air pollution [1]. Two particularly important compounds in air pollution
are nitrogen oxides (NOx) and carbon monoxide (CO). On the one hand, primary NOx emissions are
mostly in the form of nitric oxide (NO), which can react with ozone (O3) to form nitrogen dioxide (NO2).
On the other hand, CO is produced by an incomplete combustion of fossil fuels, such as gasoline,
natural gas, oil, coal, and wood. Emissions from transport vehicles are responsible for more than half
of the NOx in the air and represent the largest anthropogenic source of CO [2,3]. In densely populated
cities and industrialized areas, air quality has become an important measure of quality of life, as is
the case in Vietnam. In fact, many studies have found that pollutants from vehicle exhaust can cause
adverse impacts on nearly every organ in the body [4–10]. Controlling air quality (by controlling air
pollution) is highly desirable to improve urban sustainability and quality of life [11], and it starts by
measuring and forecasting air quality.
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In the literature, two families of techniques are typically used to forecast pollutant concentrations
or determine the factors that control NO2 and CO concentrations. The first family uses detailed
atmospheric diffusion models, which take into account the physical and chemical equations that impact
pollutant concentrations [12–16]. The second family applies statistical methods and leverages statistical
models to capture the fundamental relationship between a set of input data (i.e., independent variables)
and their targets (i.e., dependent variables) [17–25]. As an example, Shi and Harrison [26] developed a
linear regression model to predict NOx and NO2 concentrations in London.

In parallel, low-cost gas multisensor technology can potentially revolutionize the research on air
pollution by providing highly disaggregate spatiotemporal pollution data. These data can be utilized to
supplement traditional pollution monitoring methods to help improve air pollution estimates and raise
awareness about air pollution. Nonetheless, data quality and data processing remain an important
concern, which hinders the adoption of these low-cost sensors. Indeed, unreliable sensors can easily
provide erroneous data, which may then inform the wrong policies.

To partly address these concerns, artificial intelligence (AI) can offer an effective numerical
approach to model complex and nonlinear relationships between a set of input data and targets,
and it has been applied to many fields, from transport [27,28] to water resource engineering [29,30].
For air quality, artificial neural networks (ANN) can model nonlinear systems, and they have been
successfully used to model sulfur dioxide concentrations in the industrial site of Priolo, Syracuse,
Italy [31]. Comrie et al. [32] compared multilayer perceptron (MLP) models with more traditional
regression models for ozone forecasting. Focusing on Central London (UK), Gardner and Dorling [33]
developed a MLP model with hourly NOx and NO2 data as well as meteorological condition data and
showed that MLP outperformed the regression models developed by Shi and Harrison [26] using the
same study site.

As the relationship between NO2, CO, and meteorology is complex and nonlinear, we developed
two AI models to predict hourly NO2 and CO concentrations from readily observable local
meteorological data. The two models were adaptive neuro-fuzzy inference system (ANFIS) optimized
by particle swarm optimization (hereafter denoted as ANFIS-PSO) and ANFIS optimized by simulated
annealing (hereafter denoted as ANFIS-SA). The main objective of this study was to explore the
influence of input data on predicting different air quality indexes. The input parameters were
divided into two main groups: (i) resistivities from multisensor devices, which included five inputs,
and (ii) meteorological variables, including temperature, relative humidity, and absolute humidity.
Furthermore, a sensitivity analysis was performed to determine the most important factors that affect
air quality, specifically to identify the dominant links between the sensors and the pollutants. The data
was collected in the center of a city in Italy between March 2004 and February 2005.

2. Methods Used

2.1. Machine Learning Methods

2.1.1. Adaptive Network-Based Fuzzy Inference System

The ANFIS algorithm combines fuzzy systems with neural networks. Jang [34] first proposed
the algorithm and used it to investigate nonlinear systems. Generally, an ANFIS includes five layers,
and each layer is formulated by some nodes and node functions [35]. In this study, we used the
Takagi–Sugeno model, considered to be the most prominent fuzzy inference system model [36–38].

2.1.2. Particle Swarm Optimization

Since its introduction by Kennedy and Eberhart [39], PSO has become one of the most commonly
used evolutionary methods for parameter optimization. The principle of PSO is based on the social and
biological behaviors of animals when seeking food. PSO originates with a random group of particles,
where each particle stands for a specific solution to the problem. It comprises groups of particles in
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which the position of each individual is affected by the position of the particles in the group. Essentially,
each individual can adjust their position in the search space based on the best locations possible and
the best locations adjacent to their neighbors. At every iteration step, the position of each particle is
also updated based on its current position and velocity [40].

Moreover, each particle randomly moves along the search space, but it can get disrupted as a
result of its own knowledge and that of its neighbors [41,42]. Therefore, the way a particle searches
can be influenced by other particles in the swarm. This means that the particles learn and acquire
knowledge from one another in a group and advance at the same rate as their best neighbors [41,42].
Combining regression modeling and PSO generally results in a high-performing model that is suitable
for addressing classification and forecasting problems [41,42]. For more information on PSO, the reader
is referred to [43–45].

2.1.3. Simulated Annealing

Simulated annealing was developed after PSO, and it has become a powerful tool for global
optimization. Based on the similarity between a search algorithm and the process of annealing in
metallurgy, the idea of simulated annealing first appeared in Metropolis et al. [46] as a simulation
algorithm. Similar to a cooling process, the algorithm simulates a steady temperature decrease until
the system converges to a stable state, thereby avoiding the inclusion of defects when cooling too
quickly or too slowly. Search algorithms also focus on identifying solutions without ignoring better
solutions that can be found later. Kirkpatrick et al. and Cerny et al. used Metropolis et al.’s idea and
applied it to search for feasible solutions and converge to an optimal solution, which they termed
“simulated annealing” [47–49].

Since then, the development of SA algorithms and their applications have generated a new field
of study. While annealing is the process of first heating a solid and then cooling it down slowly, in
simulated annealing, the temperature is kept variable to simulate this heating process. Specifically,
the temperature is initially set high and is then allowed to “cool down” slowly. The initial heating
essentially helps to avoid becoming trapped in a local minimum. As the system cools down, its
new structure becomes increasingly fixed, thus firmly setting its final properties. In the end, the
free energy of the system is minimized, imitating how a minimum is reached during the annealing
process, eventually resulting in an optimized solution [50,51]. For more information on SA, the reader
is referred to [52,53].

2.2. Model Validation

Model performance is primarily evaluated using three statistical measures: mean absolute error
(MAE), root mean squared error (RMSE), and correlation coefficient (R). The value of R ranges from 0
to 1; a higher value of R (i.e., closer to 1) indicates better performance [54–56]. On the contrary, lower
values of RMSE and MAE indicate better performance [57–59]. Mathematically, these three measures
are defined as

MAE =

∑n
i=1

∣∣∣pi − vi
∣∣∣

n
(1)

RMSE =

√∑n

i=1

(pi − vi)
2

n
(2)

R =

√√√√ ∑n
i=1 (pi − q)(vi − v)√∑n

i=1 (pi − q)2∑n
i=1 (vi − v)2

(3)

where n refers to the number of data points; pi and q are the predicted and mean predicted values of
the input data, respectively; and vi and v are the individual values and mean values of concentrations
of NO2 and CO as atmospheric pollutants, respectively.



Sensors 2019, 19, 4941 4 of 16

3. Dataset

While air quality data is abundant, large multivariable datasets to develop models are not. In this
work, we used data collected between March 2004 and February 2005 in the center of an unnamed,
polluted Italian city with heavy traffic, mainly by cars [60,61]; the data is available in open access
from the University of California, Irvine (UCI) machine learning repository. While the original dataset
contained 9357 records, one analyzer was out of service, and the corresponding data had to be removed.
A multisensor device was used to provide hourly averages of the resistivity expressed by the CO-, NOx-,
O3-, and NO2-specific metal oxide (MOX) chemiresistors, a nonmetanic hydrocarbon (NMHC)-targeted
MOX sensor [60,61]. The multisensor device also contained sensors to capture the temperature as well
as the relative and absolute humidity. In the end, the input parameters contained 6941 responses from
the eight inputs previously mentioned. In parallel, five conventional fixed stations provided reference
concentration estimations for CO (mg/m3), NMHC (g/m3), benzene (C6H6) (g/m3), NOx (ppb), and
NO2 (g/m3). These results were considered as outputs of the problem, which were recorded hourly by
taking averages of the concentration values. While the original dataset had five outputs, we focused
on estimating only concentrations of NO2 and CO. Table 1 shows the summary statistics of all the
variables used in this study.

The correlations between the inputs and concentrations of NO2 and CO are plotted in Figure 1;
both plots and linear correlation coefficients are shown. As Figure 1 clearly shows, some of the variables
were significantly correlated. In particular, most of the sensor variables were correlated, although not
in a strictly linear fashion. In this work, all variables were included to increase the accuracy of the final
models developed.
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Table 1. Dataset parameters and statistical analysis.

Parameters Sensor
CO

Sensor
NMHC

Sensor
NOx

Sensor
NO2

Sensor
O3

Temperature Relative
Humidity

Absolute
Humidity C(NO2) * C(CO) **

Role Input Input Input Input Input Input Input Input Output Output
Notation X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
Min (α) 647 390 322 551 221 −1.9 9.2 0.18 2 0.1
Average 1120 959 817 1453 1058 17.8 48.9 0.99 114 2.18
Median 1085 931 786 1457 1006 16.8 49.2 0.95 110 1.90
Max (β) 2040 2214 2683 2775 2523 44.6 88.7 2.2 333 11.9

Std 219 264 252 353 407 8.84 17.4 0.40 47 1.44
CV (%) 20 28 31 24 38 50 36 41 42 66

* denotes the concentration of NO2; ** denotes the concentration of CO.

The training dataset was scaled into the [−1, 1] range, as is common in machine learning, to better
follow the non-Gaussian distribution of variables. The scaling process of a variable x is expressed by
Equation (4), and it involves two parameters, α and β, shown in Table 1; essentially, α is the minimum
value of the dataset, and β is the maximum value. The same scaling procedure (with the same α and β)
was applied to the testing set as well.

xscaled =
2(x− α)
β− x

− 1 (4)

4. Results and Discussion

4.1. Optimization Procedure

In this section, the optimization of ANFIS using SA and PSO is detailed. First, we note that
there were 250 consequent and antecedent ANFIS parameters to be optimized, corresponding to an
eight-dimensional input space. The parameters of ANFIS were generated using C-means clustering. In
this work, both input space dimensionality and consuming time were evaluated when choosing the
parameters of SA and PSO, especially in terms of population size and maximum number of iterations.
Moreover, the maximum number of iterations was chosen as a stopping criterion.

Tables 2 and 3 show the final parameters selected for SA and PSO, respectively, through a
rigorous trial and error process [59,62]. Moreover, optimization curves are presented in Figure 2 for
concentration of NO2 and in Figure 3 for concentration of CO.

Table 2. Parameters of simulated annealing (SA) used in this study.

Parameter NO2 Concentration CO Concentration

Population size 40 60
Maximum number of iterations 1000 2000

Initial temperature 0.1 0.1
Temperature reduction rate 0.99 0.99

Number of neighbors per individual 5 5
Mutation rate 0.5 0.5

Mutation standard deviation 10% 10%

Table 3. Parameters of particle swarm optimization (PSO) used in this study.

Parameter NO2 Concentration CO Concentration

Swarm size 30 50
Maximum number of iterations 1000 2000

Inertia weight 0.4 0.4
Personal learning coefficient 1 1
Global learning coefficient 2 2

Maximum velocity 5 5
Minimum velocity −5 −5
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4.2. Model Performance

The performance of the two models developed is summarized in Table 4. In addition to MAE,
RMSE, and R, a straight line was fitted to predicted vs. actual plots shown in Figures 4 and 5. The
slope of the linear fit was then used to measure the angle between the x-axis and the linear fit, with
angles closer to 45◦ indicating better performance.

Figure 4a,c shows the prediction capability between the scaled predicted and actual values of NO2

concentration on the training set for ANFIS-SA and ANFIS-PSO, respectively. Figure 4b,d shows the
same information but applied to the testing set. From the figures and Table 4, we can see that, for the
training set, ANFIS-SA and ANFIS-PSO yielded slope angles of 42.23◦ and 42.34◦, respectively. For the
testing dataset, ANFIS-SA and ANFIS-PSO produced slope angles of 42.11◦ and 42.03◦, respectively.
For NO2 concentration, these results suggest that the performance of the two developed models was
similar; the three other performance measures suggest similar results.
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Figure 2. Optimization curves using metaheuristic technique for concentration of NO2. Figures for
adaptive neuro-fuzzy inference system (ANSIF) optimized by SA (ANFIS-SA): (a) correlation coefficient
(R), (b) root mean squared error (RMSE), and (c) mean absolute error (MAE). Figures for ANSIF
optimized by PSO (ANFIS-PSO): (d) R, (e) RMSE, and (f) MAE.

With regard to the concentration of CO, Figure 5a,c shows the prediction capability of ANFIS-SA
and ANFIS-PSO, respectively, using the training dataset. Figure 5b,d shows the same information but
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applied to the testing set. For the training set, ANFIS-SA and ANFIS-PSO produced slope angles of
37.73◦ and 39.51◦, respectively. For the testing set, ANFIS-SA and ANFIS-PSO generated slope angles
of 37.65◦ and 39.16◦, respectively. The ANFIS-PSO therefore performed slightly better than ANFIS-SA.
The three other measures support similar conclusions.Sensors 2019, 19, x FOR PEER REVIEW 7 of 17 
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Table 4. Summary information for prediction capability of the scaled data.

Output Dataset Model R RMSE MAE Std Error Slope

Concentration
of NO2

Training ANFIS-SA 0.934 0.103 0.075 0.102 42.23
ANFIS-PSO 0.950 0.090 0.063 0.089 42.34

Testing ANFIS-SA 0.935 0.101 0.075 0.100 42.11
ANFIS-PSO 0.951 0.088 0.064 0.087 42.03

Concentration
of CO

Training ANFIS-SA 0.885 0.134 0.100 0.134 37.73
ANFIS-PSO 0.910 0.119 0.088 0.119 39.51

Testing ANFIS-SA 0.883 0.135 0.102 0.135 37.65
ANFIS-PSO 0.907 0.121 0.090 0.121 39.16
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Figure 6a,c shows the histograms of errors of ANFIS-SA and ANFIS-PSO for concentration of
NO2 using the training and testing datasets, respectively. Figure 6b,d shows the histograms of two
models for NO2 concentration. We can see that ANFIS-PSO had a higher peak of error concentration
around 0 than ANFIS-SA. A similar pattern can be observed for concentration of CO. Moreover, Table 4
shows that the R values tended to be higher for ANFIS-PSO, and the MAE and RMSE values tended to
be lower for ANFIS-PSO.
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In conclusion, although both models performed well and were statistically significant, ANFIS-PSO
was shown to be slightly superior to ANFIS-SA to model CO and NO2 concentrations.

4.3. Sensitivity Analysis

Predicting air quality is complex as the relationships between the input and target variables
are nonlinear. In this section, a sensitivity analysis of the input variables on the predicted results is
discussed. In the literature, this type of analysis has been successfully applied to quantify the sensitivity
level of input parameters in AI models. For instance, Ly et al. [63] used sensitivity analysis to study the
influence of input parameters such as bubble radius, viscosity, and saturation for a problem related to
the 3D selective laser sintering process in predicting bubble dissolution time.

The main idea is to exclude one input variable successively from the input space while keeping
the others at their median value. Therefore, the method allows us to quantify how sensitive a model is
to individual input parameters. Specifically, using the AI prediction model developed previously, a
new eight-dimensional input space was constructed based on the probability density distribution of
each variable. Here, the value of each input variable was recorded at the following percentiles: 0, 10,
25, 50, 75, 90, and 100. One input variable was then selected, and the model was run seven times, once
for each of the seven percentile values. Each time, the other variables were kept at their median value
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(i.e., 50 percentile). Essentially, the method provided quantitative information on the deviation (i.e.,
change) of an output when varying the input variables.

In this study, deviation in the output solution, or level of sensitivity δ j
i , for the jth input variable

was expressed as follows:

δ
j
i =

O j
i −Ore f

Ore f
, (5)

where Ore f is the output of the configuration of reference, and O j
i is the output using jth input variable

at its ith percentile. Finally, the global percentage of sensitivity of each input was computed based on
the following equation:

∆ j =
7∑

i=1

∣∣∣∣δ j
i

∣∣∣∣ (6)

Table 5 summarizes the values of each input at its seven percentiles, whereas Table 6 summarizes
the output solution of the developed AI models corresponding to each percentile. Sensitivity, as a
function of the percentile, is plotted in Figure 7 for NO2 and in Figure 8 for CO. We can see that, for
NO2, the input parameters X2 (sensor NMHC) and X4 (sensor NO2) had the most important influence
on the predicted results, both for ANFIS-SA and ANFIS-PSO. In addition, the other input parameters
had a low impact on the predicted results compared to sensors NMHC and NO2 (which was expected
as NO2 concentration was measured, thus also partly validating the accuracy of the models developed).
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Table 5. Values of the seven percentiles of each input in the scaled space.

Variable/Percentile P0 P10 P25 P50 P75 P90 P100

Sensor CO −1.00 −0.68 −0.55 −0.38 −0.13 0.13 1.00
Sensor NMHC −1.00 −0.74 −0.61 −0.42 −0.19 0.02 1.00

Sensor NOx −1.00 −0.83 −0.73 −0.61 −0.47 −0.31 1.00
Sensor NO2 −1.00 −0.64 −0.43 −0.19 0.02 0.22 1.00
Sensor O3 −1.00 −0.72 −0.54 −0.32 −0.05 0.22 1.00

Temperature −1.00 −0.64 −0.44 −0.20 0.10 0.37 1.00
Relative humidity −1.00 −0.60 −0.32 0.04 0.37 0.64 1.00
Absolute humidity −1.00 −0.73 −0.50 −0.23 0.06 0.39 1.00
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Table 6. Summary of level of sensitivity δ j
i of each input at six percentiles. By definition, δ j

50 of jth input
is zero.

Output Model
Used Variable Q0 Q10 Q25 Q75 Q90 Q100

Concentration
of NO2

ANFIS-SA

Sensor CO −21.37 −10.57 −6.11 8.44 17.36 47.12
Sensor NMHC −270.95 −150.42 −87.62 105.13 203.01 383.83

Sensor NOx −31.77 −17.89 −9.63 10.89 23.76 77.76
Sensor NO2 261.32 143.70 76.46 −68.35 −134.97 −387.09
Sensor O3 −32.66 −18.99 −10.31 13.29 26.12 64.10

Temperature −12.33 −6.84 −3.70 4.62 8.77 18.41
Relative humidity −55.45 −33.83 −18.95 17.94 32.28 51.37
Absolute humidity −35.46 −23.21 −12.45 13.31 28.47 56.79

ANFIS-PSO

Sensor CO −23.66 −6.49 −1.72 1.92 10.26 31.96
Sensor NMHC −238.61 −131.82 −76.29 90.17 181.71 503.04

Sensor NOx −31.78 −20.34 −9.95 10.62 21.01 85.62
Sensor NO2 197.17 105.12 62.02 −66.11 −124.34 −362.43
Sensor O3 −20.76 −11.92 −6.43 5.03 23.26 −14.37

Temperature −23.93 −18.44 −9.76 1.85 −9.99 −14.60
Relative humidity −65.34 −42.17 −19.60 4.16 14.59 28.51
Absolute humidity −31.50 −20.21 −10.33 3.67 12.48 36.95

Concentration
of CO

ANFIS-SA

Sensor CO −13.61 −6.73 −3.89 5.38 11.05 30.00
Sensor NMHC −39.86 −22.13 −12.89 15.47 29.87 97.39

Sensor NOx 20.32 11.44 6.16 −6.96 −15.19 16.31
Sensor NO2 48.86 26.87 14.30 −12.78 −25.23 −72.37
Sensor O3 −19.42 −11.29 −6.13 7.90 15.53 38.11

Temperature −2.34 −1.30 −0.70 0.88 1.67 −4.24
Relative humidity 4.78 2.92 1.63 −1.55 −2.78 −4.43
Absolute humidity 23.56 15.42 8.27 −8.84 −18.92 −37.73

ANFIS-PSO

Sensor CO −14.49 −6.86 −3.87 23.01 33.73 40.94
Sensor NMHC −39.36 −21.38 −12.07 15.71 31.91 105.58

Sensor NOx 32.00 21.01 6.11 −4.66 −9.13 −64.71
Sensor NO2 54.82 33.23 13.90 −11.84 −22.59 −46.19
Sensor O3 −15.02 −8.14 −3.72 5.30 18.09 49.56

Temperature 28.37 6.63 −1.08 2.28 4.32 9.63
Relative humidity −5.28 −2.71 −0.80 −2.57 −4.15 −6.30
Absolute humidity 26.66 17.85 9.96 −10.23 −21.02 −27.74
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In terms of CO concentration, the sensitivity levels of the input parameters fluctuated significantly
more; their level of sensitivity can also be consulted in Table 6. Similar to the NO2 concentration,
NMHC also had the most important impact in terms of sensitivity. For CO, the CO, O3, NOx, and NO2
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sensors were also found to have a significant impact. It is also worth noting that the input variables X6

(temperature) and X7 (relative humidity) had the lowest impact on the predicted results.
In conclusion, from the sensitivity analysis, the NMHC and NO2 sensors were the most important

parameters in the input space. This means that excluding one of them from the input space would
impact the accuracy of the model. It is interesting to notice that using a dataset with 9357 records, De
Vito et al. [61] found similar observations.

In their work, to estimate NO2 concentration, the best results came from the use of all sensors. In
other words, omitting the NMHC or NO2 sensors led to lower performance. Interestingly, this was
not the case for the CO concentration model. In fact, De Vito et al. [61] found that coupling the CO
sensor with NMHC gave the best performance and that including the NO2 sensor actually led to lower
performance. This phenomenon might be a result of the size of the dataset, with 6941 data points in
our study compared with 9357 records in the case of De Vito et al. [61].

The total percentage of sensitivity, calculated by summing all levels of sensitivity for each input
variables (in absolute values), is presented in Figure 9a for NO2 concentration and Figure 9b for CO
concentration. The NMHC and NO2 sensors appeared as the most important variables to predict both
NO2 and CO concentrations.
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5. Conclusions

Predicting air quality accurately is paramount in many cities around the world that are suffering
from chronic and severe air pollution problems, notably linked to emissions from fossil fuel-powered
transport vehicles. The main goal of this study was to develop an AI model that can reliably predict
hourly NO2 and CO concentrations from gas multisensor and local weather data. A total of eight input
variables were used, consisting of five sensor variables and three weather variables. Moreover, two AI
models were trained and tested, namely, ANFIS-PSO and ANFIS-SA.

First, the technical details of the two models and the dataset were introduced and discussed. The
results showed that both models performed well and were statistically significant but that ANFIS-PSO
performed slightly better. To further investigate the role of each individual input variable in the models
developed, a detailed sensitivity analysis was carried out. It was found that the NMHC and NO2

sensors particularly affected the sensitivity of both the NO2 and CO concentration models. The CO
concentration model was shown to be generally more sensitive to all variables. Nonetheless, the three
weather variables did not overly affect the accuracy of the model.
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Overall, accurately modeling air quality is paramount as the health of millions of people is
affected by poor air quality. We have shown that combining multioutput sensor data with advanced
AI techniques offers a powerful avenue, especially to model nonlinear processes such as air quality,
as was done in this study. Thanks to the collection of new and larger datasets, future work should
focus on developing new techniques that can analyze the problem as time series to further improve
prediction performance, possibly as done in [64–66]. Finally, interested readers are recommended to
consider cross-interference, sensitivity, and response time of sensors [67] in AI models developed to
predict air quality.
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