

Sensors 2019, 19, x; doi: FOR PEER REVIEW www.mdpi.com/journal/sensors

Supplemental

Table S1. Recognition-Transduction-Acquisition (RTA) triad.

Examples of Components Reference
Mobile phone sensing hardware -

Optical sensing [47,56,57]
electrochemical sensing [48,58]

Mobile phone sensing software -
cloud-based analytics [69–71]

Drag and drop analytics [72–78,81−83]

Figure S1. Overview of Review.

Figure S2. Recognition-Transduction-Acquisition (RTA) triad.

Concluding Remarks
Challenges Opportunities

Proof of Concept SNAPS
Mercury SNAPS Listeria SNAPS

Autonomy
Auto-actuation Low Risk Automation

SNAPS
Roadmap Hardware and Software

Sensor Engineering
RTA triad Pont of need sensing

Overview

Key enters Pins align in lock
INTERACTION RECOGNITION TRANSDUCTION ACQUISITION

Tumbler turns in Lock opens

M
O

D
EL

Sensors 2019, 19, x FOR PEER REVIEW 2 of 4

Figure S3. Design of SNAPS must use a retrosynthetic approach, beginning with the intended
application in mind. This allows proper selection of materials, transduction techniques, and analytics
for ensuring quality of service. (A) Correct matching of engineered transduction with heuristic
analytics. (B) Incorrect matching of engineered transduction with algorithmic analytics leads to
overdesign of the tool, consuming unnecessary energy and computational power. (C) Incorrect
matching of inherent transduction with heuristic analytics leads to excessive data collection, which
causes systematic negative effects unless the data. This approach is valid for long term monitoring
programs, but is not relevant for rapid, point of need SNAPS. (D) Correct matching of engineered
transduction with algorithmic analytics.

Figure S4. Traditional autonomy may not be the dogma for development of SNAPS.

ComputationalHeuristicImplementationRecognition Eng. Transd. Acquisition

Recognition Acquisition ComputationalAlgorithmicImplementation

ComputationalImplementation HeuristicRecognition AcquisitionInh. Transd.

Recognition AcquisitionInh. Transd. ComputationalImplementation Algorithmic

Eng. Transd. X
X

A)

B)

C)

D)

System type

L
e

ve
l

o
f

a
u

to
n

o
m

y

Simple

Assisted

Partial (remote control)

Highly automated

Automated

Autonomous conglomerate

Human interaction

required

high

moderate

rare

negligible

N/A

(1)

(2)

(3)

(4)

(5)

(6)

Sensors 2019, 19, x FOR PEER REVIEW 3 of 4

Figure S5. (A) Information hierarchy depicting the evolution of sensor data towards knowledge.
Higher levels (wisdom, understanding) may be beyond the scope of sensor data, but here we describe
a platform for evolution of sensor data to information (SNAPS-ART and SNAPS-DIDA’S) and suggest
a path forward for evolution to knowledge via the KIDS platform. (B) When KIDS is applied to the
agro-ecosystem, the convergence of performance metrics, environment, actuators, and sensors (PEAS)
encompass the platform through agent-based systems.

SNAPS-Listeria Monocytogenes

The program below reads raw impedance data files, converts the data to the necessary form for
machine learning classification, and predicts whether the tested sample “may be contaminated” or is
“safe”. When run via R-Studio, the program prompts the user to attach an impedance data file and
classifies the results using training data as described in previous publications. This program can be
utilized directly (without the app shown in the manuscript) using R Programming Compiler app by
Kappsmart.

In the bagged random forest analysis, the number of variables for each split was equal to one
third of the total available features (150 in this dataset). The random forest model was generated
using the randomForest() function in R. The predict() function from the stats package was utilized to
predict the binary response of the “unknown” test sample based on the generated model. The
program below may be altered to utilize other classification machine learning techniques such as
neural networks and support vector machines for rapid pathogenic contamination determination.

R Code for Mobile Phone Using Compiler App:

setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
set.seed(0)
#IMPORT TRAINING DATA
RawData =
read.csv("https://www.dropbox.com/s/b52smaqt618qq4t/TrainingDataSet.csv?raw=1", header =
T)
#Remove Name Column
TrainDataForest = RawData[,c(2:152)]
#Converting binary classification label to a factor
TrainDataForest[["Label"]] = factor(TrainDataForest[["Label"]])
#RANDOM FOREST (Bagged)
library(randomForest)
bagged = randomForest(Label~., data=TrainDataForest, mtry=150, importance=TRUE)
#Open Impedance Data File for the "Unknown" Food Test Sample
library(tcltk)
RawTestSampleData = read.csv(file="stdin",header=T)
#Separates Out Real and Imaginary Impedance

Wisdom

Understanding

Knowledge

Information

Data

Sensors

D

I

K

U

W

Information hierarchy

KIDS

SNAPS, DIDA’S

KIDS

P

E

A

S

A) B)

Sensors 2019, 19, x FOR PEER REVIEW 4 of 4

SampleRealZ = data.frame(RawTestSampleData[,(1:1)]) ; colnames(SampleRealZ) = "Z"
SampleImaginaryZ = data.frame(RawTestSampleData[,c(2:2)]) ; colnames(SampleImaginaryZ) =
"Z"
#Combines Impedances into One Column then Transposes The Dataset into the Same Format as
the Training Data
SampleTestColumn = rbind(SampleRealZ, SampleImaginaryZ)
SampleTest = data.frame(t(SampleTestColumn))
#Classifies Test Sample Dataset Based on Training Data
SamplePred= predict(bagged, SampleTest, type = "class")
SamplePredValue=as.numeric(paste(SamplePred))
#Displays Results of Classification as Possible Contaminated or Safe
if(SamplePredValue > 0)
{print("Based on data anlysis, the sample is may be CONTAMINATED, please hold for further
validation")} else {print("Based on data anlysis, the sample is SAFE!")}

R Code for Windows Surface/PC using R-Studio:

#Choose Working Directory via Dialogue Box
setwd(choose.dir(default = "", caption = "Select Your Working Directory"))
set.seed(0)
#IMPORT TRAINING DATA
RawData = read.csv("TrainingDataSet.csv", header = T)
#Remove Name Column
TrainDataForest = RawData[,c(2:152)]
#Converting binary classification label to a factor
TrainDataForest[["Label"]] = factor(TrainDataForest[["Label"]])
#RANDOM FOREST (Bagged)
library(randomForest)
bagged = randomForest(Label~., data=TrainDataForest, mtry=150, importance=TRUE)
#Open Impedance Data File for the "Unknown" Food Test Sample
library(tcltk)
RawTestSampleData = read.csv(tk_choose.files(caption = "Select Test Sample Dataset"))
#Separates Out Real and Imaginary Impedance
SampleRealZ = data.frame(RawTestSampleData[,(1:1)]) ; colnames(SampleRealZ) = "Z"
SampleImaginaryZ = data.frame(RawTestSampleData[,c(2:2)]) ; colnames(SampleImaginaryZ) =
"Z"
#Combines Impedances into One Column then Transposes The Dataset into the Same Format as
the Training Data
SampleTestColumn = rbind(SampleRealZ, SampleImaginaryZ)
SampleTest = data.frame(t(SampleTestColumn))
#Classifies Test Sample Dataset Based on Training Data
SamplePred= predict(bagged, SampleTest, type = "class")
SamplePredValue=as.numeric(paste(SamplePred))
#Displays Results of Classification as Possible Contaminated or Safe
if(SamplePredValue > 0){msgBox <- tkmessageBox(title = "Is this sample safe?",

message = "Based on data anlysis, the sample may be CONTAMINATED, please hold for
further validation.",
 icon = "warning", type = "ok")} else {
 msgBox <- tkmessageBox(title = "Is this sample safe?", message = "Based on data anlysis,
the sample is SAFE!",
 icon = "info", type = "ok")}

